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Abstract— In this paper, we explore the capability of selective 
decentralization in improving the control performance for 
unknown large-scale systems using model-based approaches. In 
selective decentralization, we explore all of the possible 
communication policies among subsystems and show that with the 
appropriate switching among the resulting multiple identification 
models (with corresponding communication policies), such 
selective decentralization significantly outperforms a centralized 
identification model when the system is weakly interconnected, 
and performs at least equivalent to the centralized model when the 
system is strongly interconnected. To derive the sub-optimal 
control, our control design include two phases. First, we apply 
system identification to train the approximation model for the 
unknown system. Second, we find the suboptimal solution of the 
Halminton-Jacobi-Bellman (HJB) equation to derive the 
suboptimal control. In linear systems, the HJB equation 
transforms to the well-solved Riccati equation with closed-form 
solution. In nonlinear systems, we discretize the approximation 
model in order to acquire the control unit by using dynamic 
programming methods for the resulting Markov Decision Process 
(MDP). We compare the performance among the selective 
decentralization, the complete decentralization and the 
centralization in our two-phase control design. Our results show 
that selective decentralization outperforms the complete 
decentralization and the centralization approaches when the 
systems are completely decoupled or strongly interconnected. 

Keywords— decentralized control, nonlinear control, linear 
control, Markov Decision Process, Dynamic Programming 

I. INTRODUCTION 

To tackle major issues in in large scale adaptive control 
design, decentralization has been one of the major topics in 
control system since 1970s. Decentralization employs the 
domain-knowledge to decouple the entire system’s state 
variables into subsystems, and applies the control algorithms on 
each subsystem. With decentralization, the control algorithms 
operate on less number of state variables; therefore, the control 
algorithms are less susceptible to uncertain system parameters 
[1]. In addition, decentralization may adapt to the structure 
change in the system, which the centralized system often fails to 
do [2]. In addition, decentralization with smaller state space may 
allow the control algorithm to overcome the curse of 

dimensionality and improve the convergence speed. Most of the 
decentralization methods focus on solving linear system [2, 3], 
in which the centralized and decentralized system could be 
uniformly represented in matrix form; therefore it is feasible to 
observe the estimated system parameter. Theory for the stability 
and controllability of the decentralized linear system has been 
found in [4, 5]. Application of decentralized control could be 
found in many large-scale system such as power networks, 
urban traffic networks or ecology systems [6]. Although 
decentralization is a promising approach for large-scale adaptive 
control, this type of approach is likely to suffer from instability 
because of interconnection among subsystems regardless of the 
interconnection strength [1, 3]. 

To overcome the stability issue, two major solutions: partial 
communication and multi-model-switching, have been 
proposed to integrate subsystem interaction into the control 
algorithm. In partial communication, each subsystem is 
responsible to select the other subsystems to communicate with, 
depending on the subsystem’s state variable and other 
circumstance [7]. In multi-model-switching, the entire system 
has K policies to allow the subsystems to communicate, and the 
system has a central communicator who is responsible to switch 
the communication policy depending on certain circumstances 
[8-10]. However, the question of how the subsystems should 
communicate in the system is still open, because the number of 
communication policies grows following the Bell’s number, 
which is more than exponential [11]. Other practical questions 
in decentralization are: how to create and justify the subsystems, 
and how fast the control algorithms converge. 

Besides the decentralization problem, solving the 
Halminton-Jacobi-Bellman equation is the key in the control 
system theory. For the linear system, the HJB equation becomes 
the well-known Ricatti equation with complete solution [12]. 
However, in most of the real-world cases, the system is 
nonlinear where the close-form solution for HJB equation is 
very difficult to find. Therefore, researchers have been focusing 
on approximation methods to tackle nonlinear HJB equation 
problem such as [13-16].  Generally, these efforts focus on the 
nonlinear feedback-linearization system, in which the close-
form solution for the approximation of HJB equation has been 
found [17]. Theoretically, the HJB equation could be solved 
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with dynamic programming [18]. In principle, the dynamic 
programming method updates the state-utility function 
(sometimes called the cost function) and the state-control 
function (sometimes called the policy function) iteratively [19, 
20]. Therefore, a simple idea is to discretize the nonlinear system 
to convert it into a Markov-decision-process (MDP) and solve it 
by the policy iteration algorithm [21]. Discretization of 
nonlinear control system has been studied in [22, 23]. 

In this paper, we propose the selective decentralization 
method to control the completely unknown system in two-phase 
approach: system identification and control. In addition, we 
create a simple discrete-MDP approach to tackle the nonlinear 
control in the most general form. From our knowledge, the 
approach using decentralized method with system identification 
to unknown system control is relatively unexplored. Supposing 
that the sub-components of the unknown system is given by 
domain knowledge, we also compare the control performance of 
our selective decentralization method with the completely 
decentralized method and the centralized method. 

II. PROBLEM STATEMENTS 

A. Decentralized control in linear system 
For linear system, we study the discrete-time invariant 

linear-quadratic-regulator (LQR) unknown system: 

  x(t+1) = Ax(t) + Bu(t)  (1) 

where x ∈ ℜn is the state vector, u ∈ ℜn is the control and A ∈ 
ℜn×n is the unknown state-transitional matrix. The main 
objective is to find the sequence of control u to minimize the 
infinite performance function  

 𝐽𝐽 = ∑ (𝐱𝐱(𝑡𝑡)𝐐𝐐𝐱𝐱(𝑡𝑡)𝑻𝑻 + 𝐮𝐮(𝑡𝑡)𝐑𝐑𝐮𝐮(𝑡𝑡)𝑻𝑻)∞
𝑡𝑡=0    (2) 

where Q and R are ℜn×n semi positive-definite matrices. Since 
A is unknown, the intermediate objective is to find the 
approximation matrix A�  ∈ ℜn×n for A in order to apply existing 
control algorithms such that with the predicted state vector: 

 𝐱𝐱� (t+1) = A�x(t) + Bu(t)   (3) 

the identification error 

 e(t) = |𝐱𝐱(𝑡𝑡) − 𝐱𝐱�(𝑡𝑡)|2     (4) 

approaches 0 as t → ∞.. In decentralized control, let k be the 
number of subsystems in (1) with dimension n1, n2, … nk such 
that ∑ 𝑛𝑛𝑖𝑖𝑘𝑘

𝑖𝑖=1 = 𝑛𝑛  . Decentralized identification computes A�  as 
the block-diagonal matrix 

 𝐀𝐀� =

⎣
⎢
⎢
⎡𝐀𝐀1
�

𝐀𝐀2�
⋱

𝐀𝐀𝑘𝑘�⎦
⎥
⎥
⎤
  (5) 

B. Decentralized control in nonlinear system 
For nonlinear system, we study the discrete-time invariant 

nonlinear system in arbitrary form: 

 x(t+1) = f (x(t) , u(t))   (6) 

where x ∈ ℜn is the state vector, u ∈ ℜm is the control input and 
f ∈ ℜn+m → ℜn is the completely unknown nonlinear state 
transition function. To ease the formulation for decentralization, 
here we assume that each state variable corresponds to one 
control unit, which means m = n. Similar to the linear system, 
the main objective is to find the sequence of control u to 
minimize the infinite performance function defined in equation 
(2). The intermediate goal is to find the approximated nonlinear 
function 𝑓𝑓  from a set of basis nonlinear functions (i.e. 
polynomial, neural network) such that with the predicted state 
vector 

 𝐱𝐱� (t+1) = 𝑓𝑓(x(t), u(t))   (7) 

the identification error e(t) approaches 0 as t → ∞. Similar to the 
linear system, let k be the number of subsystems in (6). 
Decentralized identification models 𝑓𝑓 as follow 

𝐱𝐱� (t+1) = �

𝐱𝐱�1 (𝑡𝑡 + 1) 
𝐱𝐱�2 (𝑡𝑡 + 1)

⋮
𝐱𝐱�𝑘𝑘 (𝑡𝑡 + 1)

� = 𝑓𝑓(x(t), u(t)) =  

⎣
⎢
⎢
⎡ 𝑓𝑓1 (𝐱𝐱1(𝑡𝑡),𝐮𝐮1(𝑡𝑡)) 
𝑓𝑓2 (𝐱𝐱2(𝑡𝑡),𝐮𝐮2(𝑡𝑡))  

⋮
𝑓𝑓𝑘𝑘  (𝐱𝐱𝑘𝑘(𝑡𝑡),𝐮𝐮𝑘𝑘(𝑡𝑡)) ⎦

⎥
⎥
⎤
   (8) 

C. Statement of the Decentralized Identification Problem 
More precisely, let w dynamical system (Σ) be described by 

the equation: 

 Σ: 𝒙𝒙(𝑡𝑡 + 1) = 𝑓𝑓[𝒙𝒙(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝜃𝜃]  (9) 

where 𝑥𝑥 ∈  ℝ𝑁𝑁 where 𝑁𝑁 is a large number. It is assumed in this 
problem that the input 𝑢𝑢(𝑡𝑡) is known.  𝜃𝜃 is an unknown 
parameter vector in ℝ𝑀𝑀  where the dimension 𝑀𝑀 is large. The 
objective is to estimate 𝜃𝜃  using measurements of the overall 
system. 

In the problem of interest to us, the system is assumed to 
consist of 𝑟𝑟  subsystems of low dimension which are 
interconnected. If the state vectors of the subsystems 
Σ1, Σ2, … , Σ𝑟𝑟  are respectively 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑟𝑟 , it is assumed that 
each subsystem can be described by the difference equation 

  Σ𝑖𝑖 : 𝒙𝒙𝑖𝑖(𝑘𝑘 + 1) = 𝑓𝑓𝑖𝑖[𝒙𝒙𝑖𝑖(𝑘𝑘),𝑢𝑢𝑖𝑖(𝑘𝑘),𝜃𝜃𝑖𝑖] + 𝜎𝜎𝑖𝑖𝑔𝑔[𝒛𝒛𝒊𝒊(𝑘𝑘)]  (10) 

where the parameter 𝜎𝜎𝑖𝑖  is assumed to be small, and [𝒙𝒙𝑖𝑖 , 𝒛𝒛𝑖𝑖] =
𝒙𝒙𝑇𝑇(i.e., the elements of 𝒛𝒛𝑖𝑖  are state variables not contained in 
𝒙𝒙𝑖𝑖). 

A decentralized model can be set up as: 

  𝒙𝒙�𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖[𝒙𝒙𝑖𝑖(𝑡𝑡), 𝒛𝒛𝒊𝒊(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃(𝑡𝑡)]  (11) 

At this stage, the knowledge that each subsystem has about 
the components of z that affect it, becomes important. We 
distinguish between two distinct cases: 

Every subsystem knows all the state variables that affect its 
outputs (known decentralization structure). 

Every subsystem Σ𝑖𝑖  knows the small set of variables in 𝒛𝒛𝑖𝑖 
that might affect its outputs, but does not know exactly which 
variables do affect them (unknown decentralization structure). 

In the former case, Σ𝑖𝑖   uses a single model set up with the 
correct decentralization structure, but in the latter case it uses 
multiple models corresponding to different possible 



decentralization structures, and switches between them. The 
former is referred to as strict decentralization, and the latter as 
selective decentralization.   

Selective decentralization policy: The number of possible 
decentralization structures for k subsystems is Bk (the kth Bell’s 
number), which grows super-exponentially. We set up a separate 
identification model for each such decentralization structure and 
adaptively switch among the models implementing the different 
decentralization policies to determine the best model. It is clear 
that a large of computation is carried out by the multiple 
identification models. However, since computation in many 
applications is cheap as compared to speed of convergence, we 
justify the increase in computational load by the significant 
improvement in performance resulting from such a selectively 
decentralized approach. 

III. DECENTRALIZED SYSTEM IDENTIFICATION 

A. Decentralized linear system identification 
The theory for linear time-invariant system identification has 

been well-studied. The gradient decent is one of the most robust 
methods as shown in [24]. The gradient decent minimizes the 
second norm of the identification error 

J = e(t)2 = �𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐮𝐮(𝑡𝑡 − 1)�
𝑇𝑇

… 

  �𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐮𝐮(𝑡𝑡 − 1)�  (12) 

Taking the derivative of J respect to 𝐀𝐀� yields 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐀𝐀�

  = −𝐱𝐱(𝑡𝑡 − 1)�𝐱𝐱(𝑡𝑡) − 𝐀𝐀�𝐱𝐱(𝑡𝑡 − 1) − 𝐮𝐮(𝑡𝑡 − 1)�𝑇𝑇  (13) 

From the Newton-Raphson method, 𝐀𝐀�  could be iteratively 
updated as 

 𝐀𝐀�(𝑡𝑡) = 𝐀𝐀�(𝑡𝑡 − 1) − 𝛼𝛼𝐇𝐇(𝐽𝐽,𝐀𝐀�) 𝜕𝜕𝜕𝜕
𝜕𝜕𝐀𝐀�

  (14) 

where 𝐇𝐇(𝐽𝐽,𝐀𝐀�)  is the Hessian matrix of J on 𝐀𝐀�  and α is the 
learning rate. A reasonable approximation of 𝐇𝐇(𝐽𝐽,𝐀𝐀�) is 

 𝐇𝐇�𝐽𝐽,𝐀𝐀�� = 𝐱𝐱(𝑡𝑡 − 1)𝐱𝐱(𝑡𝑡 − 1)𝑇𝑇 + 𝐈𝐈  (15) 

where I is the identity matrix. Substituting (15) and (13) to (14) 
we have 

𝐀𝐀�(𝑡𝑡) = 𝐀𝐀�(𝑡𝑡 − 1) −𝛼𝛼�𝐱𝐱(𝑡𝑡)−𝐀𝐀��t−1�𝐱𝐱�𝑡𝑡−1�−𝐮𝐮�𝑡𝑡−1��𝐱𝐱�𝑡𝑡−1�𝑻𝑻

1+𝐱𝐱�𝑡𝑡−1�𝑻𝑻𝐱𝐱�𝑡𝑡−1�
  

 = 𝐀𝐀�(𝑡𝑡 − 1) − 𝛼𝛼 (𝐱𝐱(𝑡𝑡)−𝐱𝐱�(t))𝐱𝐱(𝑡𝑡−1)𝑻𝑻

1+𝐱𝐱(𝑡𝑡−1)𝑻𝑻𝐱𝐱(𝑡𝑡−1)
  (16) 

B. Identification of nonlinear time-invariant systems 
In this work, we use the three-layer feedforward neural 

network as the basis function to approximate f as 𝑓𝑓 in nonlinear 
system identification. Neural networks have been known for 
their capability to approximate a large and general class of 
nonlinear functions over compact domains. Theoretical 
foundation and application of neural network as such universal 
function approximators in control systems can be found in [13, 

25, 26]. We use the backpropagation training/learning algorithm 
for neural networks [27], in which {x(t -1), u(t -1)} are presented  
at the input layer and 𝐱𝐱�(t)  is computed at the output layer of  the 
neural network identification model. 

IV. CONTROL DESIGNS 

A. Control in linear system 
In the linear system (1), the control vector u could be solved 

by finding the solution of the Riccati equation [28]. 

 𝐀𝐀𝐓𝐓𝐏𝐏𝐏𝐏 − 𝐏𝐏 − 𝐀𝐀𝑇𝑇𝐏𝐏𝐏𝐏(𝐁𝐁𝑇𝑇𝐏𝐏𝐏𝐏 + 𝐑𝐑)−1𝐁𝐁𝑇𝑇𝐏𝐏𝐏𝐏 + 𝐐𝐐 = 0  (17) 

The solution P could be solve by DARE algorithm 
implemented by Arnold et al [29]. At each iteration, by replacing 
A by the approximator 𝐀𝐀�(𝑡𝑡) and solution P(t), the control vector 
u(t) is computed by 

 𝐮𝐮(𝑡𝑡) = −(𝐑𝐑 + 𝐁𝐁𝑇𝑇𝐏𝐏(𝑡𝑡)𝐁𝐁)−1𝐁𝐁𝑇𝑇𝐏𝐏(𝑡𝑡)𝐀𝐀�(𝑡𝑡)𝐱𝐱(𝑡𝑡)   (18) 

B. Nonlinear control system 
We design the control mechanism with two phases: control 

iteration and identification. In the identification phase, we train 
the neural networks according to [21] to acquire the function 
approximators 𝑓𝑓 from using <x(t), u(t)> as the input tuples and 
x(t+1) as the outputs. After training𝑓𝑓, we use 𝑓𝑓 to update the 
state-action transitional matrix for the MDP. We apply the 
Monte Carlo simulation to convert from 𝑓𝑓 to the MDP [30]. In 
the control phase, from the MDP, we use policy iteration 
algorithm  to compute the estimated optimal policy [21]. Here, 
the window size parameter M decides how frequently we call the 
identification phase. In other words, M decides the number of 
<x(t), u(t), x(t+1)> tuples to train 𝑓𝑓. 

In this design, discretization is the most important step to 
ensure the performance of the overall control system. In this 
work, we apply the ad-hoc method to discretize x and u based 
on the distribution of x(t+1) on <x(t), u(t)>. Different systems 
have different discretization schemes, as shown in each case 
study in the later sections. 

C. Selective decentralization in control system 
We propose a selective decentralization method to tackle the 

decentralized identification problem in systems with unknown 
decentralization structures. Here, we assume that the 
components of the system are known by the domain knowledge, 
i.e. combustion engine, brake, wheels of a car; however, the 
interconnection among these components is unknown. Below is 
the description of selective decentralization method using a 
simplified example. 

For the system of k component, the number of possible 
decentralization schemes is B(k) (the kth Bell number [11]), or 
the number of possible partition for the set of size k. B(k) 
schemes cover all possible number of subsystems from 1 to k. 
For example, with k = 3, we have B(k) = 5 possible 
decentralization schemes:  {{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, 
{2}}, {{1}, {2, 3}} and {{1}, {2}, {3}}, in which each scheme  

 



has 3, 2, 2, 2 and 1 subsystem(s), correspondingly. A subsystem 
only uses its state and control variable to compute its own 
approximator. For example, with scheme  {{1, 2}, {3}}, we 

have the format 𝐀𝐀� = �
𝐀𝐀�1,2

𝐀𝐀�13
�  for linear system and 𝑓𝑓 =

�
𝑓𝑓1,2

𝑓𝑓3
�. In this example, 𝐀𝐀�1,2  and 𝑓𝑓1,2  are computed only using 

x1,x2, u1 and u2 according to formula (11) and backpropagation 
training algorithm, meanwhile 𝐀𝐀�3  and 𝑓𝑓3  are computed only 
using x3 and u3. 

Let Ω be the time-window size and w be the window index. 
Then the window w covers the discrete time index from t = (w-
1) Ω + 1 to t = wΩ. Let E(w) be the window-identification error 
at window w, which is the average of e(t) from t = (w-1) Ω + 1 
to t = wΩ. Let ε and γ be two small numbers for thresholding. 
The pseudo code for selective decentralization is as follow 

initialize b: the best decentralization scheme 

for w from 1 to the maximum window index 

     calculate u using b using Riccati equation for linear  
 system and discrete-MDP for nonlinear system 

     Train approximator and compute E(w) for B(k)  
      decentralization schemes 

     Select the decentralization scheme with the lowest E(w)  
      as b 

     if w > 1 and (E(w) < ε or |E(w) - E(w-1)| / |E(w)| < γ ) 

           return final identification error E(w) and   
                       convergence time wΩ. 

           (stop the identification process) 

     end if 

end for 

V. SIMULATION CASE STUDIES 

A. Linear system 
In this simulation, we setup a system of 6 state and 6 control 

variables with k = 3 for equation (1). The unknown transitional 
block matrix A is setup with real components {{1,2}, {3, 4}{5, 
6}}as follow 

  A = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡0.7 0.3 𝜎𝜎

0.2 0.8

𝜎𝜎

0.23 0.77
0.4 0.6

0.5 0.5
0.35 0.65⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (17) 

where the non-block entries of A are a random number between 
0 and σ. The control variables ut and initial state variable x1 are 
set randomly between -1 and 1. As shown in (17), σ decides the 
interconnection strength among system components. We call σ 

                           
Fig 1. Comparison of control performance among the centralized system, the completely decentralized system and the selectively 
decentralized system when the systems  are linear and completely decouple. 
 

                                    
Fig 2. Comparison of control performance among the centralized system, the completely decentralized system and the selectively 
decentralized system when the systems are linear and weakly couple. 
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coupling parameter. We setup the completely decouple system 
by setting σ  = 0 and the strongly couple system by σ = 0.1.  To 
avoid numerical overflowing, we normalize A into a Markov 
matrix before identification in (1). We set B, Q and R as the 
identity matrix. For identification, we set α  = 1. At the starting 
point, we randomly set x(0) between -1 and 1. 

In Figures 1 and 2, we observe that the selectively 
decentralized system shows better control performance than the 
completely decentralized system and the centralized system. In 
these figures, we draw the y-axis in log scale due to the 
numerical characteristics of x and u. We use norm(x) and 
norm(u) to denote the second-norm of x and u, correspondingly. 
Clearly, after 15 iterations, both x and u in the completely 
decentralized system converge to 0 significantly faster than they 
do in the completely decentralized system and the centralized 
system. At the first few iterations, the selectively decentralized 
system shows slightly poorer control performance. This may 
due to the complexity of the selectively decentralized system in 
identifying unknown A. In the other hands, as the systems are 
more couple, we see that the performance gap between the 
decentralized systems and the centralize system is less. 

B. Nonlinear system 
In this example, we choose the system 

  𝑓𝑓�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐀𝐀𝐀𝐀(𝑡𝑡) + 𝐮𝐮(𝑡𝑡)� − 0.5   (18) 
where x, u ∈R6 , matrix A is defined in equation (17)  and the 
sigmoid function is defined as 

  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐱𝐱) = �
1/(1 + 𝑒𝑒−𝑥𝑥1)

⋮
1/(1 + 𝑒𝑒−𝑥𝑥6)

�   (19) 

Here, we assume that the boundary of x an u is known as -1 ≤ xi, 
ui ≤ 1 ∀i∈[1,6].  

For system approximation, we use a three-layer neural 
network with 30 hidden units and backpropagation to train the 
neural network for 𝑓𝑓. We call the identification phase after every 
50 iterations in the control phase. At the starting point, we set 
x(0) as a vector of random numbers between -1 and 1. Similar 
to the linear system case study, we setup the completely 
decouple system by setting σ  = 0 and the strongly couple system 
by σ = 0.1 

In the MDP-discretization method, we discretize x and u into 
𝐱𝐱� and 𝐮𝐮�  as follow 

                                     

Fig 3. Comparison of control performance among the centralized system, the completely decentralized system and the selectively 
decentralized system when the systems are nonlinear and completely decouple. 

 

                            
Fig 4. Comparison of control performance among the centralized system, the completely decentralized system and the selectively 
decentralized system when the systems are nonlinear and strongly couple. 
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 𝑥̅𝑥𝑖𝑖 =  �
−1 if 𝑥𝑥𝑖𝑖 < −0.01

0 if −0.01 ≤ 𝑥𝑥𝑖𝑖 < 0.01
1 if 𝑥𝑥𝑖𝑖 > 0.01

   (20) 

and 

  𝑢𝑢�𝑖𝑖 =  �
−1 if 𝑢𝑢𝑖𝑖 < −0.01

0 if −0.01 ≤ 𝑢𝑢𝑖𝑖 < 0.01
1 if 𝑢𝑢𝑖𝑖 > 0.01

   (21) 

We choose the discretization thresholds [-0.01, 0.01] in 
formula (23) due to the natural distribution of x(t+1) when x(t) 
and u(t) are uniformly generated from -1 to 1. As can be seen in 
figure 5, x(t+1) follows the bell-shape distribution centered at 0. 
Therefore, with discretization thresholds [-0.01, 0.01], the 
solution of the MDP for system (21) ensures that the boundary 
of the control performance (2) is 12×(0.01)2 = 0.0012 when the 
input and control are 6-dimmensional vector and R, Q are 
identity matrices. 

In Figures 3 and 4 we observe that the selectively 
decentralized system shows better control performance than the 
completely decentralized system and the centralized system in 
the major of cases.. In these figures, we observe that the 
selectively decentralized systems converge x and u to 0 after less 
than 20 iterations, which is significantly faster than the 
completely decentralized systems do. 

VI. CONCLUSIONS 
In this paper, we show that selective decentralization can 

improve the control performance in both linear and nonlinear 
systems with several levels of interconnection among 
subsystems. In addition, we show that the discrete-MDP 
technique could solve the nonlinear control problem in general 
form. Practically, this fact is important to apply selective 
decentralization in adaptive and learning systems, such as in 
reinforcement learning, in which the system is required to 
perform not only precisely but also quickly, even when the data 
set and the time window of operation are limited. However, the 
discrete-MDP technique in this work is limited to case studies. 
The discretization thresholds need the distribution of the next 
state assuming that the current state and control vectors are 
uniformly distributed. 
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