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Abstract—In this paper we present the plan, motivation, back-
ground, and the design of an agent-based simulation framework
describing the spread of Hospital-Associated Infections (HAIs).
We are developing a general simulation environment that is able
to model wide range of pathogen transmission scenarios in hos-
pital environment. The elements of the simulation include among
others: admission and discharge patients, pathogen transmission
via healthcare workers, colonization and infection, modelling
hospital events, scheduling treatments, the interventions against
HAI spreading. The evolution of the model is tracked in discrete
time, and the simulation is driven by stochastic events sampled
from predefined distributions. Our aim is to build a general,
customisable and extensible simulation environment for the
domain of HAIs, therefore the presented design is in Object-
Oriented fashion. We implement the system in R using S4 classes,
although the design is general. The results of the simulations are
time series and transmission networks.

I. INTRODUCTION

Healthcare-associated infections are infections that patients
get while receiving treatment in healthcare settings. HAIs
cause each year around 150,000 deaths in Europe and 100,000
in the USA [1], and drastically increase the length and the cost
of the treatment [2]. Furthermore, these infections are often
spread by antibiotic-resistance bacteria such as Methicillin-
Resistant Staphylococcus Aureus (MRSA), Clostridium dif-
ficile, Drug-resistant Streptococcus pneumonia, therefore the
treatment of these illnesses are very complicated. This is the
reason why prevention gets great emphasis. Infection control
is the discipline concerned with preventing HAIs. In infection
control, it is essential to understand the dynamics of infection
spreading, and predicting the effects of the interventions
against HAIs, furthermore clinical trials are very costly and
its scope is strongly limited, therefore mathematical modelling
and simulations have an increasing importance in decision
making.

A. Infection control measures

Infection control measures are all the interventions against
HAIs what a hospital can use to prevent the infections. In
this section we briefly overview the most common infection
control measures:
• Hand hygiene: Studies have shown that hand hygiene is

one of the most important factors of HAI spreading [3],
[4]. Pittet at al [3] identified the 5 main steps of pathogen

transmission via healthcare workers’ (HCW) hands and
the evidences supporting each steps:

1) Pathogens are present on the patient’s skin or in the
patient’s immediate environment

2) Transfer of pathogens to HCW’s hands
3) Pathogens must be survive on HCW’s hands for at

least several minutes
4) Hand decontamination (hand washing/rubbing or

hand antisepsis) by the health-care worker must be
inadequate or omitted entirely

5) The HCWs contaminated hand(s) must come into
direct contact with another patient or with a fomite
in direct contact with the patient

In the prevention of HAI spreading, our aim is to break
this sequence. There are two main factors when we are
talking about hand hygiene: compliance and the quality
of hand decontamination. In brief, the first one refers to
the frequency of hand washing/rubbing, the second refers
to the quality of it.

• Staff cohorting: This is a method to restrict the trans-
mission network. If we assign a caregiver to a subgroup
of patients, we can eliminate the transmission of the
pathogen (via the HCW’s hand) between patient groups.
In other word, we can decrease the role of the 2. and 5.
steps of the transmission sequence discussed before.

• Patient isolation: This is an another way to restrict the
transmission network. If a patient is found to be colonized
or infected, then isolation is justifiable. In this case, there
are special hygiene and precaution rules for the HCW
who enters or leaves the room of the isolated patient.
However, patient isolation is very costly and often prac-
tically impossible as the number of colonized/infected
patients are increasing

• Surveillance: a collection of methods for collecting ev-
ery information regarding to the epidemic process. This
can contain a lot of data collection methods: swabbing
(microbiological sampling) at admission, periodically re-
peated swabbing of the patients, tracking the patients’
temperature chart, illness records, compute the risk fac-
tors, etc. The result of the surveillance can be used to
ordain special interventions, such as isolation.

• Patient decolonization: We suppose that patients are per-
sistent carriers after colonization, and this fact has an
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important role in the pathogen transmission sequence. For
example, patients can carry MRSA on their skin, nose
or injured skin, therefore they act as a constant source
for MRSA transmission [5]. MRSA eradication can be
effectively done by using mupirocin and chlorhexidline
for decolonization [6]

• Antibiotic usage protocols: antibiotic usage in hospitals
has a key role in emergence and spread of HAIs [7], and
the applied protocol has a great impact [8]

• Cleaning and sterilization: contaminated environment
may also a source of pathogens in hospitals. For example
strains of MRSA can survive and remain viable on dust
particles or skin scales for many weeks and months [9],
and it is also proved that low densities of MRSA can
initiate infections [10]

B. Mathematical modelling and simulations in infection cont-
rol

The most important model types in HAI modelling and
simulation are compartment-based and agent-based models
[11]–[13]. In a compartment-based model, the population
is divided to groups (compartments), and the number of
agents of each compartments are tracked in the model. Each
compartment represents a stage of the infection history. The
most common compartments are Susceptible (S), Exposed
(E), Infectious (I) and Recovered or removed (R). Different
combinations of these compartments lead to different model
structures, and the usual model structures, depending on the
aims and the level of details are: S-I, S-I-S, S-I-R and S-I-R-S.
Inside a compartment, we suppose homogeneous mixing of the
agents. After the compartments are decided, one can define the
governing equations of the model, therefore the compartment
models are given by closed mathematical equations. These
equations can be differential or stochastic equations, and since
the nature of the system is highly stochastic and the population
size in a hospital is relatively low, therefore the later one is
more common.
In an agent-based or individual-based model, we separately
represent each actor/agent/individual of the domain, and sim-
ulate the interactions between the agents. In case of modelling
HAIs, the agents are patients and HCWs, and the interactions
are the treatments. The model is driven by discrete (usually
stochastic) events. A model like this can be use to predict
the effect of the interventions, and therefore, it can support
decision making. In an agent-based model we can investigate
models where the population is inhomogeneous, and we can
define any interaction what we can represent with a computer
program, therefore we have greater flexibility in the modelling
compared to the compartment-based models, but this flexibility
has a price [14]: the simulation time can be very long due
to the complexity, the validation of the model is much more
difficult, and in addition, it is very hard to plug an agent-
based model into an estimation method to estimate the model
parameters from recorded time series.
In this paper our focus is on agent-based models. Ferrer at al.
[15] built a model that combines the operational and the epi-

demiological perspectives to size-up the effect of understaffing
and overcrowding in a intensive care unit. In their model
they have taken into account the work schedule, sick leaves,
workload, fatigue and occupation state of HCWs. Milazzo at
al. [14] tested the effect of spatial and personnel cohorting.
In [16] the spread of influenza like illness was simulated.
The model contains the immunity of the patients and the
spatiality of the ward (emergency ward), and they tested the
effect of infection control policies. Meng at al. [17] built
a transmission model based patient to patient transmission
routes, and tested the effect of admission and repeat screening
tests, shorter test turnaround time, isolation, and decoloni-
sation. Lee at al. [18] investigated the effect of an MRSA
outbreak in a region (Orange Country, California) containing
multiple hospitals, they modelled the patient movement and
the MRSA spreading between the institutions. Hernbeck at al.
[19] tracked the motion of HCWs and the patient-HCW, HCW-
HCW interactions using sensor network. They have built an
agent-based simulation on the result hospital society network,
and investigated the effect of peripatetic HCWs (having large
and diverse set of contacts) on the spread of HAIs.
Safdar at al [20] have created a roadmap for future research
in HAIs, and argued for the need of more complex models.
Our aim is to build an extensible simulation framework that
is able to simulate wide range of scenarios in the domain of
hospital infection control.

II. SYSTEM DESIGN

The main motivation of this framework is building an
extensible simulation environment for simulating the spreading
of HAIs. At designing the system we have two main contra-
dictory goals: build an extensible and customisable system
while maintaining the complexity. To achieve these aims,
after identifying the main building blocks of the system,
we represent each component of the system in a general
way, and parallel, we provide one or more (commonly used)
implementation of the basic building blocks. We implement
the system in the R [21] programming environment using S4
classes and general methods (The S programming language
has two implementations: S-plus is commercial, R is free. S4
is the fourth version of S, and it supports object-oriented pro-
gramming. As extension, R also contains the object-oriented
elements of S4 [22]), however the design is general, one
could implement it in any object oriented language with small
modifications.

A. The basic building blocks

This framework provides a programming environment for
simulating HAI spreading in hospital settings. The program-
ming environment means a predefined (but customisable and
extensible) structure of the simulation, which is implemented
using (abstract) classes, and predefined methods. The simu-
lation is agent-based (individual-based), and the agents are
patients and HCWs. The basic organization unit of the hospital
is the ward, the patients are assigned to a specific ward, the
HCWs can be assigned to multiple wards. The colonization
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state of the patients can be clear, colonized or infected, and
the colonization state of HCWs can be clear or colonized. The
system is designed to be able to handle multiple pathogen
spreading, and we suppose that patients are reservoirs, there-
fore if a patient become colonized, she/he remains colonized
(unless we do not do a complete decolonization), but HCWs
are not reservoirs, so for HCWs we define maximum colo-
nization time. The most important processes of the simulated
model are the following:

1) The admission process refers to the process of the arrival
of new patients to a hospital ward. New patients can
arrive from outside (other hospital, community) or from
an another ward of the hospital, and their state can be
clear, colonized or infected. At simulation, we refer to
the process which decides if a new patient is colonized
or not as admission colonization. Since the wards ”own”
the patients, and the characteristic of each ward can
be very different, therefore every ward has it’s own
admission process (but these processes can communicate
with each other in some implementations).

2) The discharge of the patients means the removal of the
patient from the ward. In this framework, the discharge
process is simple: determine (sample from a predefined
distribution) the Length-of-Stay (LOS) of each patient
at admission, and if the LOS is elapsed, the patient will
be removed from the ward. After admission only one
thing can modify the value of LOS: if a patent become
infected this increases the LOS value of the patient.

3) Treatment scheduling: Every HCW has a list about the
treatments that she/he can perform, and at admission,
a list of treatments is assigned to each patients. Every
treatment has an urgency value between 0 and 1 (which
can increase in time). The treatment scheduling process
assigns an available HCW to the patients according
to the necessary treatments urgency, and also sample
the length of the treatment duration from a predefined
distribution. The default implementation is a randomized
greedy scheduler algorithm, but one can implement an
(in some sense) optimal stochastic scheduler.

4) Treatment processing: The treatment scheduler gener-
ates HCW-patient pairs, and assigns a treatment and
a treatment duration for each pair. In this step the
HCWs perform the treatment. The treatment processing
step calls the transmission and infection processes as
a sub step, and records the temporal evaluation of the
transmission network.

5) Transmission process refers to the pathogen transmission
from contaminated HCWs to not contaminated patients
or from contaminated patients to not contaminated
HCWs. Pathogen transmission or colonization does not
means infection, it means only that the pathogen moves
from an agent to the other.

6) If a patient become colonized it does not means that
she/he will be infected and become sick. Infection
process is the process that a patient become infected

and has symptoms.
7) The infection control measures are sub-processes or

modifiers of the previously defined processes. For exam-
ple hand washing/rubbing is performed in the treatment
processing part, staff cohorting strategy modifies the
treatment scheduler, surveillance can be part almost all
of the main processes.

B. Selected parts of the design

In this section we review some highlighted parts of the
design, omitting the details.

1) Preparations: Object is the base class of all classes what
we want to store in the ObjectDB storage class. ObjectDB
is a simple class to store objects, practically we use it to
store the representations of patients and HCWs. It is often
necessary to draw a random number from a distribution. To
be able to handle the distributions flexible, all the distribution
samplers has a common base class: DistrSampler. The specific
distribution sampling methods are wrapped into its subclasses
such as GaussDistrSampler, UniformDistrSampler, etc.

Fig. 1. Pathogen representation

2) Pathogen representation: The class Pathogen represents
a pathogen in the system (Figure 1). Each pathogen has
a name, colonization and infection properties. Colonization
properties contain the pathogen specific informations regarding
to the colonization process, and infection properties regarding
to the infection process.

Fig. 2. Treatment representation

3) Treatment representation: The class TreatmentType rep-
resents a possible treatment (Figure 2). One can define par-
ticular treatments, or just an ”any treatment” with averaged
properties. The Treatment class refers to a treatment as-
signed to a patient. Every instance of a Treatment has an
assigned treatment type, and has an urgency property, which
is implemented via the TreatmentUrgencyBase class and it’s
descendants. The urgency is a number between 0 and 1, and
increases as the time elapsed from the last treatment time. The
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urgency property has role at the scheduling of the treatments.
There are some predefined urgency class, such as: Treat-
mentUrgencyStep, TreatmentUrgencyExp, etc. For example the
TreatmentUrgencyExp type changes as u(∆t) = 1 − eλ∆t,
where u is the urgency value, ∆t is the elapsed time since the
last treatment, and λ is a predefined parameter.

Fig. 3. Agents

4) Patients and HCWs: The structure of agents is sketched
on Figure 3. The base class of all agents is the Agent class.
Every agent contains it’s colonization state represented by
the Colonization class. The Colonization class contains the
id and the source of the pathogen. An agent can be colonized
by multiple pathogens. The Agent class has two subclasses:
Patient and HCW, representing a patient and an HCW. An
HCW can perform multiple treatments, and a patient can have
multiple treatment needs. In the processes of the system, we do
not create agents directly, factory classes are the abstraction of
instance creation, in this specific case, these are PatientFactory
and HCWFactory classes. One can extend this structure with
inheritance from the agent and the factory classes, and plug it
in to the other parts of the system.

Fig. 4. Admission and disharge

5) Admission and discharge: The admission process is
governed by the Admission class (Figure 4). The process is
driven by random events – arrival of new patients –, where
the waiting times are sampled using a predefined DistrSampler
instance. The admission process (depending on the current
implementation) can affect the cohorting process, because one
can assign the new patient to a HCW at admission time.

Some portion of the new patients can be colonized, it is
also a random process, the default implementation is the
AdmissionColonization class, which uses Bernoulli distribu-
tion sampler to decide the colonization state. The discharge
time is also determined at admission time, sampling from the
LOS sampler member, which is again a distribution sampler.
The LOS value of the patient can be changed only if the patient
becomes infected.

Fig. 5. Treatment scheduler

6) Treatment scheduling: The treatment scheduler (Figure
5) creates (patient, HCW) pairs from the patients who have
treatment needs and from the available HCWs who can per-
form the necessary treatment. The cohorting process naturally
modifies the working of the scheduler. The default scheduler is
simple and greedy: it shorts the patients according their most
urgent treatment needs, and assigns a HCW randomly from
the available HCWs who can do the treatment, if the urgency
is greater than a predefined threshold.

Fig. 6. Treatment processing

7) Treatment processing: After a list of treatment(patient,
HCW) created, the treatment processor (Figure 6) samples the
length of the treatments, and performs them. The hand hygiene
infection control measure (one of the descendants of the
HandHyginie class), and the colonization process (one of the
descendants of the TransmissionBase class) are sub-processes
of the treatment processes. After a pathogen transmission
occurred, the system records this transmission as a new edge
of the transmission graph using the instance member of the
NetworkTracking class. At the end of the simulation running
one can get the transmission graph and it’s temporal evolution
from the NetworkTracking instance.

8) Simulation: The basic organization unit of the hospital
in this model is the ward (Figure 7). The admission, the
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Fig. 7. One ward

Fig. 8. Simulation

treatment processing, the surveillance (screening), and the
patient decolonization belong to the ward.
A possible structure of a hospital-level simulation is sketched
on Figure 8. Simulation class encapsulates all the building
blocks:

• Database of HCWs and patients
• SimulationInitializer class initialize the simulation: cre-

ates the HCWs and the list of initial patients of the wards,
etc.

• The SimulationTimer class is responsible for the simula-
tion timing

• The scheduling of treatments is done in hospital level,
therefore the simulation has a TreatmentScheduler object.

• The NetworkTracker object
• A Discarge object. The simplest discharge methods just

simply removes the patient if it’s LOS time is elapsed. A
sophisticated version can model the patient movements
between the wards.

• Representation of wards
• InfectionProcess governs the process if a colonized pa-

tient become infected or not, and the consequences:
increased LOS, additional treatment needs, etc.

9) Simulation scheme: In this section we overview the main
loop of the simulation (see Algorithm 1.): Lines 3-5. perform
the admission process for each ward in the hospital. In line
6-7 the simulation calls the scheduler method and creates the
list of treatment(patient,hcw). The lines 9, 11, 12 calls respec-

tively the treatment processing, screening and decolonization
methods for each ward. Line 15 calls the infection process to
decide if a colonized patient become infected. Line 16 calls
the discharge method, and line 17 remove the colonized status
of HCWs if their maximum colonized time is elapsed. In line
18 the simulation time is increased.

Algorithm 1 The main loop of the simulation
1: procedure THE MAIN LOOP
2: while timer.run() do
3: for ward in wardList do
4: ward.admission(timer.currentTime, patientDB)
5: end for
6: treatmentList = scheduler.schedule(patientDB,
7: hcwDB, timer.currentTime)
8: for ward in wardList do
9: ward.treatmentProcessing.process(treatmentList,

10: patientDB, hcwDB)
11: ward.screening(patientDB, timer.currentTime)
12: ward.decolonization(patientDB,
13: timer.currentTime)
14: end for
15: infectionProcess.run(patietDB, timer.currentTime)
16: dischargeProcess.run(patietDB, timer.currentTime)
17: hcwDecolonization(hcwDB, timer.currentTime)
18: timer.tick()
19: end while
20: end procedure

C. Parametrization

The processes of the simulation is driven by discrete
stochastic events, which means they are sampled by some
predefined distributions. This subsection contains some results
about how to choose these distributions and rates. The values
can hardly depends on the ward type and the pathogen. The
most discussed case in the literature is the intensive care unit
(ICU) and the MRSA pathogen.

• Admission of patients: we can suppose that the proba-
bility of more than one patient arriving to the ward in
the same time is low, and the p(∆t) probability that
at least one patient arrives in a ∆t time interval is
p(∆t) = a∆t + o(∆t) (where a is a positive constant
and o is the common asymptotic notion: f(x) ∈ o(g(x))

means limx→∞
f(x)
g(x) = 0) The consequence of these

assumptions is that arrival of new patients as a stochastic
process is a Poission-process [23]. The Poission-process
is a counting process, where the waiting times are inde-
pendent random variables. If the waiting times between
the arrival of two patients are sampled independently
from a common exponential distribution, then the result
is a Poission-process [24]

• Length-of Stay: Statistical parameter fitting methods
shows that Lognormal, Weibull and Gamma distributions
fit best to LOS empirical data [25]. Additionally, one can
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find country-specific average LOS values on the OECD
web page: [26]

• Length-of-treatment or the total duration of HCW-patient
contact. In the study [19] sensor network was used to
track the interaction between the agents, and among
others, the duration of the total contact was recorded.
They found that the observed distribution of the contact
durations was a heavy tailed distribution with median
values in the 1-minute range, but the nighttime HCW-
patient contacts tend to be longer in duration.

• Bed Occupancy (daily patients per bed) in a ICU can be
chosen around 0.83 according the [27] study.

• The probability of admission colonization can be chosen
between 0.1 and 0.2 according to [28].

• Pathogen transmission probability in a ICU, during a 30
min patient-nurse visit is about 0.25, and during a 15 min
patient-physician visit as about 0.03 [15]

III. SUMMARY

In this study we presented the plan, the motivation, and the
design of an agent-based simulation system to simulate HAIs.
We briefly reviewed the background of HAIs and their simula-
tion, described the main processes of the system, and sketched
some highlighted elements of the object-oriented (OO) design,
illustrated with class diagrams. We have implemented the
system in the R statistical programming environment using S4
classes, but the presented design is general, one can implement
it in any OO programming language with small modifications.
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