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Abstract—As the technology for acquiring and storing images
becomes more prevalent, we are faced with a growing need to sort
and label these images. At this time, computer vision algorithms
cannot parse abstract concepts from images like a human. As
a result, there may be performance gains possible from the
integration of human analysts with computer vision agents. We
present an image triage system which facilitates the collaboration
of heterogeneous agents through a novel unsupervised meta-
learning technique. The system iteratively allocates images for
binary classification among heterogeneous agents according to
the Generalized Assignment Problem (GAP) and combines the
classification results using the Spectral Meta-Learner (SML). In
simulation, we demonstrate that the proposed system achieves
significant speed-up over a naive parallel assignment strategy
without sacrificing accuracy.

I. INTRODUCTION

While the Large Scale Visual Recognition Challenge has
shown that computer vision algorithms can label large
databases of images of objects as well as a human [1],
mastery of complex concepts such as scene recognition [2], the
identification of ”danger,” or the interpretation of visualized
data eludes current computer vision algorithms. In contrast,
visual analytics [3] and human computation applications [4]
leverage the human visual system to identify patterns in data
and solve problems that are difficult or intractable to current
artificial intelligence technology. It is possible that with larger
data sets and more training time, computer vision systems wil
achieve human-level performance in these tasks [5], but it will
require a human to provide or verify labels. This points to the
potential benefit of integrating human analysts with computer
vision agents in ways that leverage the unique capabilities of
each. In this paper, we introduce an image triage system which
synchronizes the effort of human analysts manually labeling
images, augmented human analysts that use a brain-computer
interface (BCI) to more rapidly label images, and deep-learned
computer vision to efficiently and accurately classify a two-
class database of images, and we test this system in simulation.

Recent work has shown how BCI technologies, among many
other applications [6], can be used to improve the speed of
collecting labels for images from human analysts [7], [8].
In one particular paradigm, Rapid-Serial Visual Presentation
(RSVP), brain-signals are recorded from a person while pas-
sively viewing images at high rates of speed (2-10Hz) and
images are classified according to the neural signature they
elicit. Thus, RSVP augmented human analysts can achieve
higher rates of throughput than traditional human analysts,
but this speed-up comes at the cost of a reduction in labeling
accuracy. Sajda, et al. address this trade-off in [9] through
a collaborative system of a computer vision algorithm and a
human performing image triage via RSVP. The authors explore
a serial implementation in which either the computer vision
algorithm or RSVP agent first screen the database before the
other agent classifies the images.

This human-system approach is not unlike active learning
approaches which team a human oracle with a computer vision
system [10]–[12]. In [12], Joshi, et al. present human-machine
system for multi-class image labeling in which a computer
vision system iteratively clusters images and prompts a human
for binary decisions.

The field of optimal crowd-sourcing takes a different ap-
proach to address the solution of problems such as image triage
that can be decomposed into a large set of simple problems.
Crowd-sourcing applications facilitate the large-scale collab-
oration of non-expert humans by distributing simple tasks to
numerous low-cost human agents (i.e. Amazon Mechanical
Turk) [13]–[19]. Necessary to these approaches are decisions
about task allocation and meta-learning. For example, Karger,
et al. use a random assignment of tasks with the assumption
of agent and task homogeneity while implementing a belief
propagation technique for meta-learning [15]. In [14], Ho, et
al. implement an exploration phase to infer the difficulty of
tasks and reliability of agents before using the Generalized
Assignment Problem (GAP) to determine an optimal allocation
of tasks in the subsequent exploitation phase.

As these systems can increase the pool of potential agents,U.S. Government work not protected by U.S. copyright
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Fig. 1. The image triage system. An assignment node distributes images to
agents in parallel. The agents label images, and the results are consolidated
at a fusion node. At this point, the confidence, si, in the image classification
label is used to threshold images for completion or routing back to the image
database for re-assignment. Two forms of feedback occur in the system: the
return of images to the database for further assignment and the inference of
agent reliability, rj and image confidence, si, provided to the assignment
node for further assignment. Here, agents can be human analysts, computer
vision, or RSVP analysts.

the cost of recruitment must be balanced with the expected
performance of an agent [13]. This prioritizes the ability
to infer agent performance without labeled data. Numerous
approaches have addressed combining labels of noisy agents
and inferring the performance of individual agents from the
aggregated responses [15]–[17], of which, the work of Parisi,
et al. provides an elegant computational approach to achieve
both through the Spectral Meta-Learner (SML) [19].

In the proposed image triage system, we present three
primary scientific contributions: a heterogeneous multi-agent
system for image labeling, an extension to SML, and an
unsupervised meta-learning approach. Previous approaches
to image labeling have included human-machine systems
(human-computer, BCI-computer) or homogenous ensembles
of agents, but here we present a heterogeneous multi-agent
system comprising computer vision, human, and BCI agents.
Additionally, we apply SML to a full-rank sub-matrix of the
incomplete data matrix required for SML. This extension of
SML allows the meta-data gained from SML to inform subse-
quent image assignments through the Generalized Assignment
Problem (GAP). By iterating image allocation and SML, the
system improves both its estimate of agent capabilities and
confidence in image labels over time, resulting in a novel
unsupervised meta-learning approach (see Figure 1). Finally,
we test our proposed image triage system in simulation and
achieve human-level accuracy while finding a balance in the
trade-off between time-cost and accuracy.

II. APPROACH

A. Image Assignment

Consider a system with n heterogeneous images and m
heterogeneous agents. Denote I = {1, . . . , n} as the index of
images and J = {1, . . . ,m} as the index of agents. Any agent
j may perform a binary decision, {−1, 1}, for any assigned
image i. Each image has a confidence parameter, si ≥ 0, which
reflects the current confidence in the meta-label of that image,
and each agent has a reliability, 0 ≤ rj ≤ 1, which reflects
the system’s assessment of the agent’s accuracy. Additionally,
each agent has a budget, bj , which reflects the time available

to an agent on a given iteration. The assignment of an image
i to an agent j will have an associated cost, cji ≥ 0, which
accounts for the time required for labeling an image, and value,
vji. This image assignment problem, where we are looking
for the optimal assignment policy over all images and agents,
{xji}i∈I,∈J , can be mapped onto the Generalized Assignment
Problem (GAP) as in [14]:

x = arg max
x

∑
i∈I

∑
j∈J

vjixji (1)

1)
∑
i∈I

cjixji ≤ bj , j ∈ J

2)
∑
j∈J

xji = 1, i ∈ I

3) xji ∈ {0, 1}
4) vji = rj − si + maxi∗∈I si∗

Besides having known solutions, GAP captures both the de-
cision problem and the inherent trade-off between assignment
value and time [20].

B. Joint Classification

Upon the receipt of image labels from the agents, we can
consider the binary decision of the agents as conditionally
independent discrete random variables, Aj : {−1, 1} → R,
and the set of decisions from m agents for a single image,
(A1, . . . , Am)t, as a joint random variable, Ai : {−1, 1}m →
R. If the true label of an image is a discrete random variable,
Y : {−1, 1} → R, then we seek the decision rule, d, which
maximizes P(d(Ai) = yi).

The obvious choice for this decision rule would be the
decision which maximizes the log-likelihood [21] of the
predictions of the individual classifiers:

d(ai) = arg max
yi∈{−1,1}

∑
j∈J

logPAj |Y (aj |yi) (2)

If we define the balanced accuracy, πj , of an agent j as

πj =
1

2
(ψj + ηj), (3)

where ψj is sensitivity, P(aj = 1|yi = 1), and ηj is specificity,
P(aj = −1|yi = −1), then, as shown in [19], the decision rule
can be written in terms of the sensitivity and specificity of each
agent,

d(ai) = sign
m∑
j=1

aj (logαj + log βj) , (4)

where αj =
ψjηj

(1−ψj)(1−ηj) and βj =
ψj(1−ψj)
ηj(1−ηj) . This form

of the maximum likelihood estimate invites an expectation-
maximization (EM) approach to improve the decision rule
[19], [21]. We implement a variant of the SML, further referred
to as mSML, which accepts non-fully-populated results and
uses the first order approximation of the SML for a full-rank
sub-matrix to label images not in the set of images classified
by all agents (Algorithm 1).

This procedure provides more than simply a decision rule
for joint classification. The absolute value of the maximum
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Algorithm 1 Modified Spectral Meta-Learner (mSML)
procedure MSML({Ai}i∈I )

I∗ = {i ∈ I||Ai| = m}
Q = 1

|I∗|−1

∑
i∈I∗

(ai − ā)(ai − ā)T

v = {v`|` = arg max` λ`} s.t. Qv` = λ`v`
k = 0
for i ∈ I∗ do

ski = vT ai
dk(ai) = sign(ski )

end for
while not converged do

for j ∈ J do . E-step:
ψk+1
j = P (aj = 1|dk(ai) = 1)

ηk+1
j = P (aj = −1|dk(ai) = −1)

rkj = 1
2 (ψj + ηj)

end for
for i ∈ I∗ do . M-step:

sk+1
i =

m∑
j=1

aj
(
logαk+1

j + log βk+1
j

)
dk+1(ai) = sign(sk+1

i )
end for
k = k + 1

end while
for i ∈ I \ I∗ do

ski =
∑
j∈J r

k
j aj

dk(ai) = sign(ski )
end for

end procedure

likelihood estimate provides a measure of confidence in the
image label, si, and the updated estimate of the agent balanced
accuracy provides a measure of reliability, rj . These values,
in turn, update the assignment value, vji, in (1) for the next
iteration.

C. System Implementation

Beyond providing a conceptual framework, we implemented
in software a flexible and scalable system depicted in Figure 2
which achieves task parallelism among heterogeneous agents
performing image labeling at distributed workstations. We
envisioned a system which works with as few as three agents
and scales to dozens of agents while also being agnostic to
the type of agents connected.

At each iteration, the image assignment problem incorpo-
rates parameters estimated from the mSML. This feedback
necessitates consideration of the stability and convergence of
the system. We first define convergence as all images labeled
with sufficient confidence. Ideally, this is where the system
would stop, but many things could happen to prevent this;
images could be continually assigned to the same reliable
agent who has already seen the image, or some images may
be equally hard for all agents and never achieve sufficient
confidence. In practice, there is no guarantee that all images

Fig. 2. Image triage system. The remote clients reside on networked
workstations with read-only access to a shared image database on the central
server. The central server generates assignments and communicates with the
remote clients through a custom message passing interface.

will achieve a given confidence threshold even if all agents
labeled the image, and the value of this threshold will likely
impact the number of agents who must see an image for it
to be classified. In order to address duplicate assignments, the
value of an assignment which has previously been made is set
to zero for all subsequent iterations. This is not a hard barrier,
such as vji = −∞, but it discourages duplicate assignments
unless necessary to satisfy the constraints of (1). As the system
evolves, and images achieve confidence threshold, there will
be the same number of agents available to label fewer images;
however, more of those agents will have seen some or all
of the images, and the active constraints for the system will
be the inequality constraints of the low-throughput agents.
If we relax these constraints and increase the budget of all
agents, we can facilitate system convergence. This comes at
a cost of increasing the length of iteration intervals, so we
introduce a maximum interval length, Lmax, to bound the time
required to achieve system convergence. The dynamic budget
and maximum interval length result in problems which are
pseudo-infeasible, which we define as being unable to satisfy
constraint [2] of (1) without zero-value assignments. Thus,
we amend our definition of system convergence to include
the alternative stopping condition that the assignment problem
becomes pseudo-infeasible.

In order to initiate the system, prior to any inferred knowl-
edge of the reliability of the agents, we use a batch assignment
to all m agents of m(m + 1) images in order to adequately
estimate the sample covariance matrix, Q, of Algorithm 1.

III. SIMULATIONS

All software was developed in MATLAB R2015a and later
releases. Simulations ran on a Unix-based desktop computer
with two Intel Xeon 2.67 GHz processors, for a total of 8 cores
to support independent processes. Agent performance was
provided by simulation modules, which randomly generated
both image labels and pauses for their interface with the
RemoteAgent objects. This simulation framework allowed the
experiment to take place on a single multi-core workstation
in which each agent and the central server ran on a separate
dedicated instance of MATLAB.
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TABLE I
PROPERTIES OF SIMULATED AGENTS

Type Accuracy (pj ) Cost (cji) Service Time (µj )

CV 0.75 1 0.01s

RSVP 0.85 1 0.1s

Human 0.95 1 1.0s

The agents generated labels randomly according to a
Bernoulli distribution, fAj |Y (aj |y) = bern(pj). The agents
generated service times for each image according to an expo-
nential distribution, T ∼ exp(µ). The budget was a function
of the speed of the agent, bj = Lk

µj
, where Lk is the desired

interval length for iteration k.
We wanted to simulate a scenario in which very little train-

ing data is available for the computer vision algorithms such
that both the human and RSVP analysts possess an accuracy
advantage. We encoded this expected performance into the
simulation parameters, with the human agent and RSVP agent
having a higher relative accuracy than the computer vision,
while maintaining an order of magnitude difference in speed
between each agent type. See Table I for a summary of the
agent parameters. For all simulations, we measured balanced
accuracy (3), wall time, the objective elapsed time while
the system runs to convergence, and the number of overall
assignments to reach convergence.

Assigning all images to all agents in parallel already repre-
sents a speed-up over the serial labeling of all images by all
agents, but we want to specifically decrease the wall time of
such a system; therefore, we compared three assignment con-
ditions of the proposed framework against this naive parallel
implementation:
• Naive - all images assigned to all agents in parallel in a

single batch.
• GAP-2 - images assigned in parallel according to (1);

images classified if confidence meets or exceeds two,
si ≥ 2.

• GAP-3 - same as GAP-2, but with si ≥ 3.
• GAP-4 - same as GAP-2, but with si ≥ 4.

All methods use Algorithm 1 to combine image labels. Addi-
tionally, we considered three distinct ensembles of agents for
the proposed system:
• CV × 6
• {CV × 2, RSV P × 2, H × 2} (Mixed)
• H × 6

A. Analytical Results

We can determine the expected performance of the naive
assignment condition analytically, which provides a true per-
formance ceiling to which the GAP assignment conditions can
be measured.

The accuracy from the joint classification using the first-
order approximation of the SML is bounded from below by
the accuracy of the best individual agent in the ensemble to

TABLE II
ANALYTICAL RESULTS OF NAIVE ASSIGNMENT CONDITION

Agent Ensemble Accuracy (πj ) Wall Time (µT ± σT )

CV × 6 0.75 2.2± 0.1s

Mixed 0.95 208.0± 12.0s

H × 6 0.95 218.3± 9.7s

within an additive constant (Lemma S2 (iii) of [19]). This
result depends on the strict conditional independence of all
classifiers and that all classifiers are better than random, which
is easily satisfied by the simulated agents in this experiment.

For the naive assignment condition, the wall time for a
single agent to complete classification of n images will be
an Erlang random variable, Tj ∼ Erlang(n, µj), and the
system wall time will be the maximum of m independent,
non-identical Erlang distributions, T = maxj∈J Tj . We can
numerically evaluate the probability density function,

fT (t) = FT (t)
∑
j∈J

fTj (t)

FTj
(t)
, (5)

to calculate the mean and standard deviation of the system
wall time, µT = E(T ) and σT = 2

√
E((µT − T )2).

B. Simulation 1

We compared the performance of a mixed ensemble over
all four assignment conditions and collected results from 30
trials of six remote agents classifying 200 images for each
assignment condition.

C. Simulation 2

We compared the performance of three distinct agent ensem-
bles using the GAP-2 assignment condition: CV × 6, Mixed,
and H × 6. These results provide context to any speed-up
in the results of Simulation 1 by comparing the mixed agent
ensemble against a fully automated implementation and a fully
human ensemble. Again, 30 trials were collected for six remote
agents classifying 200 images.

IV. RESULTS

A. Analytical Results

The analytical results for all ensemble conditions under the
naive assignment condition are reported in Table II. The mixed
agent ensemble matches the lower bound of balanced accuracy
of the human ensemble while benefiting from a lower expected
wall time. With the automated ensemble, a 95× and 99×
fold speed-up can be expected versus the mixed agent and
human ensembles respectively, but this speed-up incurs a 21%
decrease in the lower bound of balanced accuracy.

B. Simulation 1

All four methods exceeded the analytical lower bound of
the mixed agent ensemble. The results are summarized in
Table III. We first performed a one-way analysis of variance
(ANOVA) which reveals significant differences among the
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TABLE III
SIMULATION 1 RESULTS (MEAN AND STANDARD DEVIATION)

Condition Balanced Accuracy Wall Time Images Assigned

Naive 0.988± 0.011 204.1± 7.9 1200

GAP-2 0.974± 0.014 124.1± 19.3 879.9± 16.3

GAP-3 0.975± 0.011 147.9± 21.8 983.1± 15.1

GAP-4 0.978± 0.011 204.4± 12.3 1047.6± 6.4

assignment strategies (F (3, 116) = 8.8, p = 2.6 × 10−5).
For the three GAP assignment conditions, there is not a
significant difference in the means of the data at the p < 0.05
level, but there is a significant difference between the GAP
conditions and the control in a multiple comparisons test
(GAP-2: p = 7.7 × 10−5, GAP-3: p = 2.4 × 10−4, GAP-
4: p = 3.8× 10−3).

In the case of wall time, much more noticeable differ-
ences arise. An ANOVA reveals significantly different mean
wall times between the assignment conditions (F (3, 116) =
186.5, p < 1.0 × 10−9). GAP-2 and GAP-3 achieve signif-
icantly lower run-times than the naive assignment condition
under a multiple comparisons test (GAP-2: p = 3.8 × 10−9,
GAP-3: p = 3.8 × 10−9). The mean of the GAP-2 condition
achieves a 1.6× speed-up over the mean of the naive condition,
while the GAP-3 achieves a 1.4× speed-up.

Again, an ANOVA reveals significant differences between
the number of assignments (F (2, 87) = 1205.8, p < 1.0 ×
10−9). Under a multiple comparisons test, the number of over-
all assignments for all assignment conditions is significantly
different than that for all other assignment conditions at the
p < 1.0× 10−9 level.

The mixed agent system clearly achieved superior wall time
under the GAP-2 and GAP-3 assignment conditions versus
the naive assignment condition, but the results of the accu-
racy were less clear. Although the naive condition achieved
significantly better balanced accuracy than any of the GAP
conditions, we are more specifically testing the hypothesis
that the GAP conditions achieved or exceeded the analytical
lower bound of the naive assignment condition. In this light,
the results are more favorable. Under a one sample t-test, it
is almost certain that the accuracy of the mixed ensemble
GAP assignment conditions achieved or exceeded the ana-
lytical lower bound of the mixed ensemble naive assignment
(p-values of 8.5 × 10−11, 7.7 × 10−14, and 1.3 × 10−14

for the GAP-2, GAP-3, and GAP-4 conditions respectively).
Under this more relaxed hypothesis, the GAP-2 and GAP-
3 conditions achieved the accuracy performance of the naive
assignment condition while significantly decreasing the wall
time required to do so.

C. Simulation 2

Not surprisingly, the ensemble with computer vision agents
achieved the minimum wall time and also the minimum
accuracy, and the ensemble of human agents achievesd the
maximum accuracy and the maximum wall time. The effect

TABLE IV
SIMULATION 2 RESULTS (MEAN AND STANDARD DEVIATION)

Ensemble Balanced Accuracy Wall Time Images Assigned

CV × 6 0.898± 0.030 6.3± 0.3s 913.8± 13.8

Mixed 0.974± 0.014 124.1± 19.3s 879.9± 16.3

H × 6 0.999± 0.003 294.2± 18.3s 770.1± 7.2

of varying the agent ensemble while using the GAP-2 frame-
work mirrored the analytical results of the naive assignment
condition. Results are summarized in Table IV.

Significant differences in balanced accuracy are confirmed
under a one-way ANOVA (F (2, 87) = 255.47, p < 1.0 ×
10−9). Specific significant differences between the mixed
ensemble and the automated (p < 1.0 × 10−9) and hu-
man (2.2 × 10−6) ensembles are confirmed under a multiple
comparisons test. Significant differences also arose in wall
time (F (2, 87) = 2667.44, p < 1.0 × 10−9), and under a
multiple comparisons test, the automated and human ensem-
bles were significantly different than the mixed ensemble,
p < 1.0×10−9 and p < 1.0×10−9 respectively. Similar results
were found in the overall number of assignments to reach
system convergence between the three ensembles (F (2, 87) =
1000.9, p < 1.0 × 10−9). Under a multiple comparisons test,
the mixed ensemble requires a significantly different num-
ber of assignments than either the fully-automated ensemble
(p < 1.0× 10−9) or the human ensemble (p < 1.0× 10−9).

V. DISCUSSION

We presented an image triage system which leverages
the collaboration of heterogeneous agents through a novel
unsupervised meta-learning technique, and we demonstrated
the benefit of such a system through a simulated comparison
a naive parallel implementation or a similar homogeneous
ensemble of agents. Three types of agents were simulated,
representing varying levels of accuracy and throughput. The
system dynamically inferred the performance of these agents
using the mSML and incorporated that information into sub-
sequent assignments using the GAP.

Even in the naive parallel implementation, the performance
of the mixed agent ensemble provides a superior lower bound
in balanced accuracy to that of the automated ensemble.
Additionally, the mixed ensemble provides a decrease in the
expected wall time of the system. This substantial increase
in accuracy requires a sacrifice of a similar scale in wall
time. This trade-off underlies the challenge of optimizing such
a system, but the proposed image triage system attempts to
mitigate the time cost of this trade-off through an intelligent
assignment framework.

In Simulation 1, we observed the same mixed ensemble
achieve similar accuracy in significantly less time under the
GAP assignment conditions. For the case of the GAP-2
assignment condition, the system exceeded the guaranteed
accuracy of the mixed ensemble naive assignment condition
while also affording a 1.6× speed-up over the mixed ensemble
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naive assignment condition. It apparently accomplished this
time savings by making 27% fewer overall image assignments.

The proposed framework minimizes the number of assign-
ments in the system to achieve a desired confidence. This goal
is similar in nature to the CrowdSynth system proposed in
[13], where the control logic attempts to calculate the marginal
value of recruiting another agent for labeling the image. Here,
that decision is encoded in the GAP problem and made
simultaneously over all images. Interestingly, we observed
a speed-up from this approach in the mixed ensemble, but
the automated ensemble and human ensemble required more
time in the GAP assignment conditions than that expected
from the naive assignment condition. The time cost of this
additional decision process is apparently detrimental in the
case of a homogeneous ensemble, which corroborates the work
of Karger, et al. in [15].

It is likely that in a real-world implementation, the results
of incorporating a human into the system will be even more
significant. As a result of the simulation, all agents here
provided truly conditionally independent labels; however, this
quality could be hard to realize in practice. Even different
models trained on the same data will introduce conditional de-
pendence to the system. In application, heterogeneous agents
may provide the optimal means of introducing independence
into the ensemble.

VI. CONCLUSION

The proposed heterogeneous multi-agent image triage sys-
tem achieved human-level accuracy while minimizing the time
required to do so. These results introduce a framework for the
collaboration of heterogeneous agents in a multi-agent system
through a novel approach to meta-learning in crowdsourcing
applications. More immediately, we showed that the introduc-
tion of a human to an automated image triage system can
instantly increase the expected accuracy of the system to the
performance ceiling, and an intelligent assignment policy can
minimize the time cost incurred. Future work will confirm
these findings in an image triage task with actual human,
computer vision, and BCI agents.
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