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ABSTRACT 

Robots are becoming an important part of our life and industry. Although a lot of 

robot control interfaces have been developed to simplify the control method and improve 

user experience, users still cannot control robots comfortably. With the improvements of 

the robot functions, the requirements of universality and ease of use of robot control 

interfaces are also increasing. This research introduces a graphical interface for Linear 

Temporal Logic (LTL) specifications for mobile robots. It is a sketch based interface built 

on the Android platform which makes the LTL control interface more friendly to non-

expert users. By predefining a set of areas of interest, this interface can quickly and 

efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow 

users to customize the paths for this plan by sketching a set of reference trajectories. Given 

the custom paths by the user, the LTL specification and the environment, the interface 

generates a plan balancing the customized paths and the LTL specifications. We also show 

experimental results with the implemented interface. 
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Chapter1 

INTRODUCTION 

There is a constant progress in robotics every day. Humans are stepping into to a 

new society - a society in which robots play significant a role in Human’s daily life. Tesla 

Factory uses robots to assemble car parts 1 ; Amazon deploys robots to manage their 

warehouses2; many people buy home cleaning robots to clean their carpets. From industrial 

machines to cleaning robots, the ability of robots to accomplish complex tasks is increasing 

at a high rate.  

In the development of these robots, experts need to address not only the hardware 

design, but the control software as well. Robots designed for different purpose may require 

different control methods. Let us consider few control methods: To order a robot to move 

forward, a forward button is sufficient. If the robot is moving in a 2D plane, a joystick can 

be a good option. If the robot is required to reach a certain destination autonomously, a 

touch screen is a much easier option to locate the desired coordinates on a displayed map. 

Lastly, if there is also a specific path that the robot should follow, a sketch interface should 

be handy to define this requirement.  

In order to fulfill control requirements, graphic control interfaces appear to be an 

effective way to control mobile robots [1, 2]. With a graphical interface, users can control 

multiple robots more conveniently [3] by clicking a predefined button instead of writing a 

robot control program. For example, consider a scenario that firefighters are searching for 

fire spots in a big building. Before going into some dangerous spots, they deploy an 

                                                           
1 http://www.fool.com/investing/general/2014/08/24/3-surprising-things-you-may-not-know-about-tesla-m.aspx 
2 http://www.chonday.com/Videos/how-the-amazon-warehouse-works 

http://www.chonday.com/Videos/how-the-amazon-warehouse-works
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unmanned robot using a graphical interface with the building blueprint to search this area. 

After quickly and concisely defining the task by sketching the path on the interface, 

firefighters can command the robot to follow such a path autonomously. 

Even though a graphical interface is intuitive for non-experts and provides a 

convenient way to define each task for different robots, complex tasks can hardly be 

described only with a few buttons. Consider the following task: The robots should reach 

destination B by passing through A and avoid C only until A has been reached by at least 

one robot (in Figure 1). In this case, we need a formal representation to represent the task. 

 

Figure 1: A scenario Firefighters control robots to search for fire sites in a big building. 

Linear Temporal Logic (LTL) is a formal language that enables the specification of 

time related robot tasks. As it is concise, LTL has become a popular specification language 

[4, 5, 6, 7]. Furthermore, the logic is compact and can be used with a whole variety of tools 

available for planning.  Therefore, LTL can easily capture human language intention. For 

example, in a firefighter scenario, firefighters need to control robots to explore the burning 

building. The robots have to sequentially visit locations A, B, C. This requirement can be 

translated into LTL specification as in the following formula.  

𝐹(𝐴 ⋀ 𝐹(𝐵 ⋀ 𝐹(𝐶))) 
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The ‘F’ operator means that at some time point in the future, the value will become true. 

More temporal operators will be introduced in later sections. 

However, writing planning tasks in LTL is a challenging prospect for people who 

do not have formal language expertise. There are only few works about graphically 

specifying temporal logic formulas (see [5, 8] and the references therein) or translating 

English language to temporal logic formulas (see [9, 10, 11] and the references therein). 

In path planning, users may have extra requirements besides the starting point and 

final destination. Previous results from [12, 13] have provided solutions for such cases. 

There, using a sketch based interface, users can specify the exact path that the robot is 

required to follow. They also show that sketch-based interfaces are generally more efficient 

than button-based interfaces. In order to satisfy these extra requirements, the sketched path 

must be added to the LTL specification. We need to keep the interface user friendly while 

adding new features to it. This increases the challenge of designing a simple but multi-

functional interface layout.  

Fortunately, there is existing work which graphically visualizes the LTL 

specification [5]. By defining nodes and edges as atomic propositions and temporal 

operators, LTL specification can be transferred from a formula into a graph. Finding the 

optimal path between the nodes in this graph will be the one of the challenges of this 

research. 
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Figure 2: A sample screenshot of LTLvis 

When using a graphic interface, it would be more efficient and useful to be able to 

draw preferred trajectories for the robot as for example in papers [12, 13]. In these works, 

using a sketch based interface, users can specify the exact path that the robot is required to 

follow by drawing a curve from start to an end point.  

For the above firefighter example, if firefighters control robots using a sketch based 

interface, it will be more convenient and faster to describe the task than pressing a few 

buttons which is time consuming in such emergency scenarios. Besides, if the interface 

supports LTL specification, firefighters can describe the task more precisely than natural 

language. 

 

Contributions 

The main contribution in this research is to combine an easy-to-use sketch-based 

interface with the expressive power of LTL and to improve the LTL path planner provided 

by [14] for this hybrid interface. A secondary contribution is that we provide a greedy 

algorithm to identify the closest path on a directed topologically grounded graph to a hand 

Drawn curve. We remark that our algorithm allows the path to be cyclic. 
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Preliminary results of this thesis were published in [15]: 

 W. Wei, K. Kim and G. Fainekos, "Extended LTLvis Motion Planning 

interface," in Conference on Systems, Man, and Cybernetics (SMC 2016), 2016.
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Chapter 2 

PRELIMINARY 

In this section, we will first cover the graphical language for LTL. Then, we will 

review LTL path planning. 

Linear Temporal Logic 

 Temporal logic is the logic in terms of time. The statement “I am rich now” can be 

an instance of temporal logic. It is true in time range “now”. This true value may not hold 

if the time range is beyond “now”. Similarly, “I was rich until the great depression” and “I 

will be rich eventually” are true referring to “until the great depression” and “eventually” 

respectively.  

Temporal logic is used to define properties of requirements of robotic system. It 

has similar form as structured English. As it can formulate the properties of the 

specification, it is much precise and unambiguous than structured English. 

Linear temporal logic (LTL) is first proposed for the formal verification of 

computer programs by Amir Pneli [16]. It is a modal temporal logic with infinite sequence 

of states. Each point in this sequence has unique successor.  

Syntax 

LTL formula consists of: 

 A finite set of atomic propositions (AP) 

 A set of logic operators 

o Negation (¬) 

o Conjunction (∧) 

o Disjunction (∨) 
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o Implication (→) 

 A set of temporal operators 

o always (G) 

o eventually (F) 

o next (X)  

o until (X) 

With these atomic propositions and operators it is possible to formulate the truth 

values of propositions over time. By combining several operators together, it can generate 

more complicated operators. Because of this property, LTL can be extended to express 

high level specifications like task plan for robot navigation.  

LTL formula can be defined as follows: 

 If 𝑝 ∈ 𝐴𝑃 then p is an LTL formula; 

 If 𝜓  and 𝜑  are LTL formulas then ¬ 𝜓 ,  𝜓 ∨ 𝜑 , 𝑋 𝜓  and  𝜓 ∪ 𝜑  are LTL 

formulas. 

Therefore, the gramma can be defined as: 

𝜙 ∷= 𝑡𝑟𝑢𝑒 | ¬𝜓 | 𝜓 ∨ 𝜑 | 𝑋 𝜓 | 𝜓 ∪ 𝜑 

 These basic operators can be further combined into always (G) and eventually (F) 

operators.  

𝐹 𝜓 = 𝑡𝑟𝑢𝑒 ∪ 𝜓 

𝐺 𝜓 = ¬ 𝐹 ¬ 𝜓 

 𝐹 𝜓 means that 𝜓 is true at some point of time in the future. 

 𝐺 𝜓 means that 𝜓 is always true. 
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 Once F and G are formally defined, they can be combined with other operators to 

form composite operators.  

 𝜓 → 𝐹 𝜑 means if 𝜓 is true, 𝜑 will be true eventually. 

  𝐺𝐹 𝜓 means 𝜓 is true infinitely often. 

 𝐹𝐺 𝜓 means 𝜓 will be true eventually. And from that point of time, 𝜓 is always 

true. 

 𝜓 ∪ 𝜑 means 𝜓 is true at current time and stays true until 𝜑 is true. 

These composite propositions can also be joined with conjunction and disjunction 

operators to build higher level composite propositions.  

Semantics 

 Let 𝜓 be an LTL formula over AP. The LTL property induced by 𝜓 is: 

𝑊𝑜𝑟𝑑𝑠(𝜓) = {𝜎 ∈ (2𝐴𝑃)𝜔 | 𝜎 ⊨ 𝜓 } 

 Where the satisfaction relation ⊨ ⊆ (2𝐴𝑃)𝜔 × 𝐿𝑇𝐿 is the smallest relation with the 

properties in below table where 𝜎 = 𝐴0𝐴1𝐴2 … ∈  (2𝐴𝑃)𝜔, 𝜎[𝑗 … ] = 𝐴𝑗𝐴𝑗+1𝐴𝑗+2  is the 

suffix of 𝜎 starting in the (j+1) symbol 𝐴𝑗. 

𝜎 ⊨ 𝑡𝑟𝑢𝑒  

𝜎 ⊨ 𝑎 Iff 𝑎 ∈ 𝐴0 

𝜎 ⊨ 𝜑1 ∧ 𝜑2   Iff 𝜎 ⊨ 𝜑1and 𝜎 ⊨ 𝜑2 

𝜎 ⊨ ¬ 𝜑 Iff 𝜎 ⊭ 𝜑 

𝜎 ⊨ 𝑋 𝜑 Iff 𝜎 [1 … ] = 𝐴1𝐴2𝐴3 … ⊨ 𝜑 

𝜎 ⊨ 𝜑1 ∪ 𝜑2 Iff ∃𝑗 ≥ 0. 𝜎[𝑗 … ] ⊨ 𝜑2 𝑎𝑛𝑑 𝜎[𝑖 … ] ⊨ 𝜑1,for all 0 ≤ 𝑖 < 𝑗 

Table 1: LTL semantics 
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LTL Planning 

Path planning is the problem of finding a path between a start position and an end position. 

Temporal logic path planning is the path planning problem whose result, i.e., path must 

satisfy a temporal logic requirement. The basic theory on temporal logic planning is 

described in [4] [17] [18]. First we need to represent the environment as a discrete graph. 

Here, we introduce the definition of transition system. 

Definition 1. (TS) A transition system is a tuple 

   𝑄𝑇𝑆 is a set of states. It represents the accessible area in the graph. 

 𝑞𝑖𝑛𝑖𝑡 ∈ 𝑄𝑇𝑆 is the starting state. 

 𝛿𝑇𝑆 ⊆ 𝑄𝑇𝑆 × 𝑄𝑇𝑆 denotes the transition relation between two states. 

 𝛱  is a finite set of atomic propositions. 

 ℎ: 𝑄𝑇𝑆 → 2𝛱  is a function labeling areas in the environment with atomic 

propositions. 

𝑤𝑇𝑆: 𝛿 →  ℕ is the weight assigned to each transition. 

We denote a finite path on the transition system as 𝑝 =  𝑞0, 𝑞1, … qn , where 𝑞0 =

 𝑞init, 𝑞𝑘 ∈ QTS and (𝑞𝑘 , 𝑞𝑘+1) ∈ 𝛿. The result generated from running this path is a word 

𝑣0𝑣1, … where 𝑣𝑘 = ℎ(𝑞𝑘) is the set of atomic propositions satisfied at 𝑞𝑘. 

After discretizing the environment into a transition system, we also need to convert the 

specification into the same format. Thanks to the tool3 provided by [19], we can easily 

convert any LTL formula into a Büchi automaton. We introduce the definition of a Büchi 

automaton. 

                                                           
3 ltl2ba is a tool accepting LTL formulas as input and returning a Büchi automaton as output 



 

10 
 

Definition 2. (BA) A Büchi automaton is a tuple  

𝐵 ≔ (𝑄𝐵𝐴, 𝑄𝑖𝑛𝑖𝑡, 𝛿𝐵𝐴, 𝛴, 𝐹𝐵𝐴), where 

 𝑄𝐵𝐴 is a set of states. 

 𝑄𝑖𝑛𝑖𝑡 is a set of initial states. 

 𝛿 ⊆ 𝑄𝐵𝐴 × 𝛴 × 𝑄𝐵𝐴 is a transition relation. 

 𝛴 is the input alphabet. 

 𝐹𝐵𝐴 is a set of accepting states. 

For a run of input word 𝑊 = 𝜔0𝜔1 … on the Büchi automaton where 𝑤𝑖 ∈ Σ, the resulting 

sequence would be 𝑟 = 𝑠0𝑠1 …, where 𝑠𝑖 ∈ QBA and (𝑠𝑖 , 𝜔𝑖, 𝑠𝑖+1) ∈ 𝛿𝐵𝐴.  

Now we have both TS and BA in a graph format. The goal is to find a resulting sequence 

𝑟 = 𝑐0𝑐1 … where 𝑐𝑖 ≔ (𝑞𝑗 , 𝑠𝑘) and 𝑞𝑗 ∈ Q𝑇𝑆, 𝑠𝑘 ∈ QBA. The resulting sequence should be 

valid in TS and ending at one accepting state in BA. Hence, we need to construct a product 

automaton 𝑃 ∶= 𝑇𝑆 × 𝐵𝐴. 

Definition 3. (PA) the product automaton  𝑃 = 𝑇𝑆 × 𝐵𝐴 between the transition system  

𝑇𝑆 ≔   (𝑄𝑇𝑆, 𝑞𝑖𝑛𝑖𝑡, 𝛿𝑇𝑆, 𝛱, ℎ,   𝑤𝑇𝑆)  and Büchi automaton 𝐵𝐴 ∶=  (𝑄𝐵𝐴, 𝑄𝑖𝑛𝑖𝑡, 𝛿𝐵𝐴, 𝛴,

𝐹𝐵𝐴) is a tuple  

𝑃 ∶= (𝑆𝑃, 𝑆𝑃0, 𝛿𝑃, 𝑤𝑃 , 𝐹𝑃), where 

 𝑆𝑃 = 𝑄𝑇𝑆 × 𝑄𝐵𝐴 is a finite set of states. 

 𝑆𝑃0 = {𝑞𝑖𝑛𝑖𝑡} × 𝑄𝑖𝑛𝑖𝑡 is the set of initial states. 

 𝛿𝑃 ⊆ 𝛿𝑇𝑆 × 𝛿𝐵𝐴 is a transition relation and ((𝑞𝑖, 𝑠𝑖), (𝑞𝑗 , 𝑠𝑗)) ∈ 𝛿𝑃 if and only if 

(𝑞𝑖, 𝑞𝑗) ∈ 𝛿𝑇𝑆 and (𝑠𝑖, 𝜔𝑖 𝑠𝑗) ∈ 𝛿𝐵𝐴. 

 𝑤𝑃 ((𝑞𝑖, 𝑠𝑖), (𝑞𝑗, 𝑠𝑗)) = 𝑤𝑇𝑆(𝑞𝑖, 𝑞𝑗)  is a weight function. 



 

11 
 

 𝐹𝑃 = 𝑄𝑇𝑆 × 𝐹𝐵𝐴 is a set of accepting states. 

The set of final states 𝐹𝑃  of the product automaton represents the ultimate goal of the 

planning path. Then we can reduce the problem of LTL path planning into finding the 

optimal path on a graph given a starting position. At this level, many methods can be utilized 

such as A*, DFS, Dijkstra etc. For example, if the resulting path is (𝑞0,

𝑠0), (𝑞1, 𝑠1) … (𝑞𝑛, 𝑠𝑛), tyhen the actual path on the transition system (robot workspace) will 

be 𝑞0, 𝑞1 … 𝑞𝑛. 

Graphical Language for LTL 

 Temporal logic is a logic that describes events in time. Linear Temporal Logic 

(LTL) is a modal temporal logic reasoning over an infinite sequence of states [17]. This 

section mainly introduces the research work by Srinivas, et al on defining a graphical 

language [5]. In their work, the authors provide a graphical representation of an LTL 

formula in a 2D space. The graph G is a tuple (V, E, 𝑣0, c, L, Λ, x) where, 

 V is the set of nodes. 

 E ⊆ 𝑉 × 𝑉 is the set of edges. 

 𝑣0 ∈ 𝑉 is the start node. 

 𝑐: 𝑉 → {green, red} is a function that colors each node either green or red, which 

corresponds to visiting or avoiding a node4. 

 𝐿: 𝑉 → Φ𝔹(𝜏) labels each node with an LTL formula over the set of propositions Π. 

 Λ: 𝐸 → 𝐵𝑂1 × 𝐵𝑂2 × 𝑇𝑂2 × 𝑇𝑂1 is a function that labels each edge on the graph 

with one or more Boolean or temporal operators. In detail: 

                                                           
4 Icons can be added to help people with color blindness. 
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o 𝐵𝑂1 ={AND, OR} 

o 𝐵𝑂2 = 𝐵𝑂1 ∪ {휀 5, IMPLIES} 

o 𝑇𝑂1 = {휀, FUTURE, ALWAYS} 

o 𝑇𝑂2 = 𝑇𝑂1 ∪ {NEXT, UNTIL} 

 𝑥: 𝑉 → ℝ2 is the position of the node on the map or on the image. 

As 𝐵𝑂1  is always implicitly used to connect consecutive propositions, it is not 

included when forming the graph. Figure 3 below is the flowchart of possible values of Λ. 

Table 2 explains the icons shown in Figure 3. 

 

Figure 3: The allowed combinations of Boolean and temporal operators over an edge 

(reproduced from [5]). 

 

A node must be visited or an action must be performed 

 

A node must be avoided or an action must be forbidden 

 

Conjunctively connect two nodes or two actions 

                                                           
5 ε denotes an empty symbol. 
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Disjunctively connect two nodes or two actions 

 

Conjunctively connect previous node and specification corresponding to the 

next node. 

 

Disjunctively connect previous node and specification corresponding to the 

next node. 

 

If the starting node or action is satisfied, the pointing node or action should 

be satisfied. 

 

The pointing node or action should be satisfied at next step 

 

The pointing node or action should be satisfied sometime in the future. 

  

The pointing node or action should be satisfied from now on. 

 

The starting node or action should be satisfied until the pointing node or 

action is satisfied. 

Table 2: The meaning of icons in graphical language for LTL 

  

For example: 

 ¬𝑞1 ∧ 𝐹 𝑞2 : 𝐵𝑂2 = AND, 𝑇𝑂2 = FUTURE, 𝑇𝑂3 = 휀 

 

 (¬𝑞1 ∧ 𝐹𝑞2) ∨ (¬𝑞1)𝑈 𝑞3 :  

 ¬𝑞1 ∧ 𝐹 𝑞2: 𝐵𝑂2 = AND, 𝑇𝑂2 = FUTURE, 𝑇𝑂3 = 휀 

(¬𝑞1)𝑈 𝑞3: 𝐵𝑂2 = OR, 𝑇𝑂2 = UNTIL, 𝑇𝑂3 = 휀 



 

14 
 

 

More examples will be given in the chapter 4. 

The theory has been implemented and tested in LTLvis which will be talked about 

later. 

Android Platform 

 Android is an open source operating system from Google. It is now wildly used in 

varies of devices including smart phones, table, smart watch, smart TV and smart car. This 

operating system are mainly running on ARM framework based processors and requires 

less RAM and processing power which tremendously reduces the hardware cost. As its low 

doorsill, many manufacturers are able to produce Android device nowadays. Low cost and 

mass production make these devices affordable to most of business, engineering and 

academic customers.  

Architecture 

Android operating system is based on Linux kernel and primarily designed for 

touchscreen devices such as phones and tablets. Although most Android devices are based 

on ARM architecture, it also officially supports x86 and MIPS architecture.  

Today, tons of developers are building applications for Android device. Java is the 

preferred programming language. As the development of Android system, more and more 

programming languages are supported such as C/C++ and GO language. The research work 

of this thesis is based on Java as its programming environment is easiest to set up. It is 

similar to desktop java application; the source code of android application is first compiled 
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into bytecode. Instead of running these bytecode on Java Runtime Environment, Google 

provided their own runtime environment called Dalvik which is a process virtual machine. 

Android application was installed on Android platform as a form of bytecode until the 

release of Android 4.4. In this new release, users have options to further compile the code 

into machine code before the installation. These machine code will then run on the new 

runtime environment called Android Runtime (ART). This makes the program run much 

faster than before, but new runtime environment consumes more memories. As the 

development of hardware, memory cost is no more expensive and more devices are 

adopting large size of memory. From the release of Android 5.0, ART is the enabled by 

default and becomes the only runtime option. 

Activity lifecycle 

 An activity is a single, focused thing that user can do. Every Android application 

contains at least one activity if the application need to interact with users. Figure 4 shows 

the lifecycle of an activity during the runtime. 

Android manages activities in a stack. When a new activity is created or an existing 

activity is required, this activity will go to the top of the stack. If the activity (𝐴1) is new 

created, onCreate function will be called to initialize all necessary resource. After 

executing onStart and onResume function, 𝐴1  is able to run in the foreground. When 

another activity (𝐴2) is requested, current activity 𝐴1 will call onPause function and then 

be paused. If 𝐴2 is running at a full screen and 𝐴1 is no more visible, 𝐴1 will call onStop 

to enter sleep cycle. If 𝐴1 is requested while it is sleeping, it calls the onRestart and onStart 

function to go back to the foreground screen. Otherwise 𝐴1 will be removed from memory 

or even shut down. 
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Figure 4: Lifecycle of an Android program 

  

LTLvis 

 LTLvis is a graphical application running on android platform. It is based on the 

graphical language for LTL to express the specification of robot motion and mission plan. 

LTLvis combines the theory in [20] and [21], and realizes it on physical device. Motion 

gesture has been utilized in this application to define the actions to build the graphical 

language. Single tapping two different nodes will connect them with AND/OR operator 

and double tapping two different nodes will connect them with temporal operators. Long 

pressing a node will popup more option including renaming a node, toggling between logic 
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operators (𝐵𝑂2) and temporal operators (𝑇𝑂1 and 𝑇𝑂2). Author also implements a function 

to convert the graph to LTL specification formula. Once an action is performed, this 

function will be called to generate and display the formula in runtime. Below figure is the 

screenshot of LTLvis: 

 

Figure 5: Sample screenshot of LTLvis 
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Chapter 3 

PROBLEM DESCRIPTION 

In this section, we describe our problem and then the expected solution 

Problem Overview 

This research mainly focuses on the problems of solving the path planning under a 

given LTL specification. Given an environment, a graphical LTL specification, and the 

user's preferred paths sketched on the environment, find the optimal path satisfying the LTL 

specification and maximally follows the user's path sketches. Once there exist conflicts 

between the user sketch path and the LTL specification, the interface should be able to 

regard the LTL specification as a higher priority requirement and find an alternative path 

not following the user sketch path. The rationale behind this choice is that the user may not 

be explicitly aware of important safety requirements and event dependencies when drawing 

the desired path. An alternative approach would be to recommended revisions to the mission 

requirements based on the path drawn by the user. This problem has been studied in the past 

by multiple authors. For example, see [22] and the references therein. 

In addition, there are few more technical requirements and users may require robots 

operating in different environments. Thus, the control interface should be compatible to 

varieties of maps including laser scanned maps. Another necessary function for reducing 

users' mistakes and providing them convenience is the ability to undo and redo user’s 

operations. When the user makes a mistake, the interface should have an option to reverse 

the incorrect operation instead of requiring the user to start over. 

Scenario 1:  
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A data collection vehicle starts from location q1. It needs to visit location q2 to 

collect data, then visit q3 to upload data. But as the traffic along the path π1 is unstable, 

the vehicle should adopt π2 instead of π1 even though π1 has shorter geographical distance 

(in Figure 6).  

 

Figure 6: Data collection vehicle have to options (𝝅𝟏, 𝝅𝟐) to visit p3. 

 Assuming the vehicle always adopts the shortest path from current location to its 

destination. This scenario can be solved by creating another location q4 at lower right 

corner, then ask vehicle to visit q4 before q3. The resulting path π2 can be resolved as π2 

= (q2, q4, q3) (Figure 7). 

 

Figure 7: By adding node q4, the vehicle can visit q4, then visit q3. 
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 However, if π2 is complicated and even includes circles, the above solution may 

create a lot of temporary locations along π2 (Figure 8). The resulting path π2 can be 

resolved as π2 = (q2, q4, q5, q7, q6, q4, q3). Even though location q1 and q7 are close, the 

vehicle is not required to visit q1. Thus q7 is created just as a middle point for the vehicle 

to visit top-left corner. Same as q6 and q2, q6 is just a middle point for the vehicle to visit 

top-right corner. 

 

Figure 8: A complicated path 𝝅𝟐 including cycles. 

 Obviously, if the map is getting larger and π2 is becoming more complicated, it will 

be much harder for users to figure out a correct expression for π2.  

 If the vehicle only adopts the assigned path instead of shortest path, it may be easier 

to solve above scenario. However, the user may not always know the real time condition 

of the roadmap. Once the whole area of q4 is blocked, the vehicle will be confused as the 

next assigned destination is unreachable. But for the higher requirement, the vehicle is 

asked to visit q3 from q2. If the vehicle knows the shortest path excluding the blocked area 

from q2 to q3, then this scenario can be solved. 
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Figure 9: 𝝅𝟐 is visiting a blocked area 

 But, if the interface is smart enough to understand the meaning of path π2. It means 

that the vehicle are required to visit q3 from q2 via the preferred path π2. If π2 is not 

applicable, find another applicable alternative. This is also one objective of the proposed 

interface. 

 

Scenario 2: 

 If q2 and q4 are suppliers, then the vehicle may need to repetitively visit q2 or q4 

to pick up machine parts and drop them off at q3.  

 

Figure 10: The vehicle has two option paths to follow when leaving q3. 
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 If a user controls the vehicle via a sketched interface and assign a bi-directional 

path between q2 and q3, and between q3 and q4, this may confuse the vehicle when it 

reaches q3 and there are two assigned next destinations.  

 Linear Temporal Logic (LTL) can easily solve this scenario. In LTL, q1, q2, q3 and 

q4 are regarded as atomic propositions. The edges between atomic propositions can be 

regarded as temporal or Boolean operators. Then above solution can be presented as: 

(𝑞1 → 𝑋 (𝑞2 ∨ 𝑞4)) ∧  𝐺𝐹(𝑞3 ∧  𝐺(𝑞3 → 𝑋 (𝑞2 ∨ 𝑞4))) 

And the graphically expression should look like below: 

 

Figure 11: The graphical expression of (𝒒𝟏 → 𝑿 (𝒒𝟐 ∨ 𝒒𝟒)) ∧  𝑮𝑭(𝒒𝟑 ∧

 𝑮(𝒒𝟑 → 𝑿 (𝒒𝟐 ∨ 𝒒𝟒))) 

 From Scenario 1 and Scenario 2, we know that path based control interface and 

LTL control interface have their own advantages. A better solution will be the combination 

of both interfaces which allows uses to specify their preferred path and high level 

specifications.  
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Solution Overview 

The interface starts with an empty screen asking the user to input a map image. Then 

the user can sketch on the map using the interface. There are three different editing modes 

for planning, roadmap editing, and LTL editing. 

 

Load Map Sketch pathRoadmap exists? yes

Create roadmap

no

Edit LTL Send data

 

Figure 12: The flowchat of the interface process. 

  

 Sketching Mode (Figure 21) 

 Create nodes 

 Move nodes 

 Draw a path from one node to another 

 Calculate the most suitable path according to the user drawing 

 Clear current drawing and planning path 

 Roadmap Mode (Figure 15 to Figure 18) 

 Create nodes 

 Add or remove undirected edges between nodes 

 Automatically save once switching to another mode. 

 LTL Mode (Figure 28) 

 Create nodes 
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 Add or remove edges with LTL attributes 

 Edit LTL attributes 

After loading the map, the interface enters the roadmap mode. A roadmap is an 

editable and storable transition system. For example, the roadmap in Figure 20 is the 

workspace of the robot [23]. The roadmap is stored locally as roadmap data. If the roadmap 

data exists, it will be loaded and then the sketch mode will be entered; otherwise, the 

interface will enter the roadmap mode and automatically create an empty roadmap for 

editing. When a user is done editing a roadmap, the interface will switch to sketching mode. 

The last step is to create an LTL specification. However, there is no restriction for the 

accessing order of each mode. A user can access any mode at any time. The basic order of 

each process is shown in Figure 12. 

 From the design aspect of view, the interface has one main activity. This activity 

will load several sub modules including roadmap editor (Figure 13), LTL formula 

generator, optimal path generator, TCP socket module, and status monitor. Roadmap editor, 

LTL formula generator and optimal path generator are deployed in roadmap mode, LTL 

mode and plan mode respectively. TCP socket module requires data of roadmap, LTL 

formula and optimal path, then sends the package to third party planner. Status monitor 

will keep tracking every action the user inputs to the interface and provide a jump point to 

recover the interface to a previous status which realizes the undo and redo functions. 
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Main interface

LTL Formula 
Generator

TCP Socket

Roadmap Editor
Optimal Path 
Generator

Status monitor

 

Figure 13: The five main modules of the interface 
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Chapter 4 

EXTENDED LTLvis GUIDE 

In this section, an extended LTLvis (E-LTLvis) will be introduced. It enables 

several drawing features and different interface layouts from the original LTLvis [5]. 

Load Map and Create Roadmap 

The first goal of this interface is to develop the ability to be compatible to varieties 

of maps.  

Roadmaps can be automatically generated using grid decomposition or a polyhedral 

decomposition of the environment [23]. In our interface, we require user to manually create 

their own roadmap. First, the interface requires the user to load the map image when the 

interface starts (Figure 14). 

 

Figure 14: The user is asked to load a map. 

 After loading the map image, the interface will enter roadmap mode (Figure 15). In 

this mode, user is able to edit roadmap data.  
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Figure 15: The starting interface of roadmap mode 

 Long press on the map to add a node at that location (Figure 16).  

 

Figure 16: Long press to add a node 

 Single click the node to select it. Selected node will be surrounded by a green circle. 

After selecting the node, two actions will be provided, deleting the node and adding out-

going edges for this node. 
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Figure 17: The selected node is marked green 

 When adding the node, first select the node, click the ‘Add Edge’ button, and then 

select other nodes as its neighbors. Once a neighbor is selected, it will be surrounded by a 

red circle and a line will be display between them (Figure 18). 

 

Figure 18: When adding edges, the nodes got selected will be marked red and become 

the green node’s neighbors. 

 After the image is loaded, the interface will search the corresponding roadmap file 

(.spc) which stores roadmap data6. If it exists, the data is loaded. If it does not exist, the 

interface will switch to roadmap mode and automatically create an empty roadmap data to 

allow the user to edit.  When finishing editing the map, the roadmap file will be created to 

                                                           
6 For example, if the roadmap image is “simple.png”, the corresponding roadmap data related to this image is stored in “simple.spc” 

file. 
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store these nodes and edges locally. Next time, when the same map image is selected, this 

roadmap file will be loaded automatically. We also provide a video demo7 to show in more 

detail the procedure for creating a roadmap.  

 By manually creating the roadmap, the interface can apply to most environments 

as long as the environment can be described as a node-edge based roadmap. 

Sketch Path 

Users can customize the plan between two nodes in sketch mode, including adding 

nodes, renaming nodes, removing nodes, and defining paths. 

 

Figure 19: The staring interface of sketch mode 

Same as roadmap mode, users can add a node by long pressing on the screen. In this 

mode, all roadmap information will be hidden, thus users can achieve the experience as if 

they are planning directly on the map (Figure 20). 

                                                           
7 https://www.assembla.com/spaces/ltlvis/wiki/E-LTLvis 
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Figure 20: In sketch mode, the roadmap data will be hidden 

 When customizing the path, you can first select the starting node, drag the path 

along the map, and end the path at another node. This path is denoted as user sketched 

path 𝑝𝑢. Then, we find the node in the environment closest to the first node of 𝑝𝑢, and 

denote it as 𝑞𝑠𝑡𝑎𝑟𝑡. Also, we find the node in the environment closest to the last node of 𝑝𝑢, 

and denote it as 𝑞𝑒𝑛𝑑 . Because the user sketched path may be drawn by curves which 

consist of too many nodes, to reduce the computation workload, the path is sampled by 

distance 𝑑𝑚 and angle 𝜃𝑚 into a list of (blue in the figure) nodes (n1, n2…). The sample 

algorithm is shown in Alg. 0 below. After appending 𝑞𝑠𝑡𝑎𝑟𝑡 to the beginning of the list and 

𝑞𝑒𝑛𝑑 to the end of the list, we get a new list of nodes. This list of nodes is denoted as 

sampled user sketched path 𝑝0. For example, in Figure 21, the green curve is the user 

sketched path. 
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Figure 21: Black nodes and edges: the roadmap of a simple environment. Green path: 

𝒑𝒖. Blue nodes: 𝒑𝟎 

 

Algorithm0 sampling 

Input: 𝑝𝑢, TS 

Output: 𝑝0 

1. 𝑑𝑚 ← distance threshold 

2. 𝜃𝑚 ← angle threshold 

3. 𝑝𝑢 ← [ ]  
4. 𝑝0 ← [ ] 
5. 𝑞𝑠𝑡𝑎𝑟𝑡 ←the node closet to 𝑝𝑢[1] in 𝑄𝑇𝑆 

6. 𝑞𝑒𝑛𝑑 ←the node closet to 𝑝𝑢[−1] in 𝑄𝑇𝑆 

7. for 𝑛𝑖
𝑢 as 𝑖𝑡ℎ point in 𝑝𝑢 do: 

8.  flag ← false 

9.  if i = 0 then: 

10.   flag ← true 

11.  else: 

12.   𝑛−1
0 ← 𝑝0[−1] 

13.   if distance(𝑛𝑖
𝑢, 𝑛−1

0 ) > 𝐷 then: 

14.    flag ← true 

15.   if ¬flag & 𝑠𝑖𝑧𝑒(𝑝0) > 1 then: 

16.    𝑛−2
0 ← 𝑝0[−2] 

17.    if 𝑎𝑛𝑔𝑙𝑒(𝑛𝑖
𝑢, 𝑛−1

0 , 𝑛−2
0 ) < 𝜃𝑚 then: 

18.     flag ← true 

19.  if flag then: 

20.   append 𝑝𝑖 to 𝑝0 

21. append 𝑞𝑠𝑡𝑎𝑟𝑡 to the beginning of 𝑝0 

22. append 𝑞𝑠𝑡𝑎𝑟𝑡 to the end of 𝑝0 

23. return 𝑝0 
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 In this algorithm, before putting a point into sampling set, we need to check if it 

satisfies either of the two requirements:  

1. The distance of current point and last sampled point should be greater than the 

predefined threshold 𝑑𝑚. 

2. The angle of the current point, last sampled point and last second sampled point 

should be less than the predefined threshold 𝜃𝑚. 

This algorithm will tremendously reduce the number of point in the sampling set. 

To balance the accuracy and computation workload, the distance threshold is set to 50 

pixels and the angle threshold is set to 145 degree. 

 After the sampling process, the input path will be represented as a list of nodes. 

Then, the touch up event will be triggered and the computed best matching path will be 

displayed. Since 𝑝𝑢 may stretch to areas undefined in the roadmap, this best match path 

may not be the same as 𝑝𝑢 (Figure 27). As we need to compare the similarity of two paths, 

the best approach is to calculate the volume between two paths. But this approach has 

heavy workload, so that we define a new heuristic, CWPD, to compare two paths.  

Definition 4. (CWPD) component-wise path distance is distance of two paths 𝑝0 =

(𝑛0
0, 𝑛1

0 … 𝑛𝑁−1
0 ) and𝑝𝑥 = (𝑛0

𝑥 , 𝑛1
𝑥 … 𝑛𝑁−1

𝑥 ).  

EQ1: 𝐶𝑊𝑃𝐷(𝑝0, 𝑝𝑥) = ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛𝑖
0, 𝑒𝑑𝑔𝑒

(𝑛𝑗
𝑥,𝑛𝑖

𝑥)
)

𝑁−1

𝑖=1

, 

Where  𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝0), 𝑛𝑖
0 ∈ 𝑝0, 𝑛𝑖

𝑥, 𝑛𝑗
𝑥 ∈ 𝑝𝑥 , and 𝑛𝑗

𝑥  is previous node which differs 

from 𝑛𝑖
𝑥. If 𝑛𝑖

𝑥 is the first node, 𝑛𝑗
𝑥 equals to 𝑛𝑖

𝑥.  
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From above EQ1, we can also derive:  

EQ2: 𝐶𝑊𝑃𝐷((𝑛0
0, 𝑛1

0 … 𝑛𝑁−1
0 ), (𝑛0

𝑥 , 𝑛1
𝑥 … 𝑛𝑁−1

𝑥 )) = ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛𝑖
0, 𝑒𝑑𝑔𝑒

(𝑛𝑗
𝑥,𝑛𝑖

𝑥)
)

𝑁−1

𝑖=1

= 

(∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛𝑖
0 , 𝑒𝑑𝑔𝑒

(𝑛𝑗
𝑥 ,𝑛𝑖

𝑥)
)

𝑁−2

𝑖=1

) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛𝑁−1
0 , 𝑒𝑑𝑔𝑒(𝑛𝐽−1

𝑥 ,𝑛𝑁−1
𝑥 ))

= 𝐶𝑊𝑃𝐷((𝑛0
0 , 𝑛1

0 … 𝑛𝑁−2
0 ), (𝑛0

𝑥 , 𝑛1
𝑥 … 𝑛𝑁−2

𝑥 )) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛𝑁−1
0 , 𝑒𝑑𝑔𝑒(𝑛𝐽−1

𝑥 ,𝑛𝑁−1
𝑥 )) 

Then, we definite the best match path in order to compare it in terms of distance. 

Definition 5. (BMP) Best Matching Path 𝑝𝑏𝑚𝑝  is a feasible path on the transition 

system 𝑇𝑆 with the same starting 𝑞𝑖𝑛𝑖𝑡  and ending position 𝑞𝑒𝑛𝑑  as 𝑝0 . It also has the 

properties:  

 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑏𝑚𝑝) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝0) 

 𝑝𝑏𝑚𝑝 can be cyclic on TS 

 The component-wise path distance between 𝑝𝑏𝑚𝑝 and 𝑝0 should be minimal.  

We use distance to line segment (𝑒𝑑𝑔𝑒
(𝑛𝑗

𝑥 ,𝑛𝑖
𝑥)

) instead of line to avoid the situation where 

𝑛𝑖
0  is very far from 𝑒𝑑𝑔𝑒

(𝑛𝑗
𝑥 ,𝑛𝑖

𝑥)
 but close to the line(𝑛𝑗

𝑥 , 𝑛𝑖
𝑥) (Figure 22). The distance can be 

defined as following. 

Definition 6. (DISTANCE) The distance of a point to a line segment is the shortest 

distance from a point to another point in the line segment in Euclidean geometry.  
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Figure 22: Distance 𝒅𝒍𝒔 of C to edge(A, B)  equals to distance 𝒅𝒍 of C to line(A, B). But 

distance 𝒅𝒍𝒔 of D to edge(A, B) does not equal to distance 𝒅𝒍 of D to line(A, B). 

For example in Figure 22, 𝑑𝑙 is the distance from node C to line AB which is equal to the 

distance 𝑑𝑙𝑠 from node C to line segment AB. But 𝑑𝑙 and 𝑑𝑙𝑠 do not always equal each 

other. For node D, 𝑑𝑙𝑠 is greater than 𝑑𝑙. 

We can reduce the sample distance 𝑑𝑚 and angle 𝜃𝑚 to increase 𝑁. Thus 𝑝0 can always 

have more nodes than 𝑝𝑏𝑚𝑝 so that the size of  𝑝𝑏𝑚𝑝 can be extended to 𝑁 by adding copies 

of nodes in between. For the example (Figure 21), some possible BMP candidates are listed 

in Table 3 for the candidate path set (𝑝1, 𝑝2, 𝑝3): 

𝑝1 A B B B B E E E 

𝑝2 A C C D D E E E 

𝑝3 A B B B B B E E 

𝑝0 A n1 n2 n3 n4 n5 n6 E 

Table 3: Path 𝒑𝟎 and its possible BMP candidates.   

As 𝒑𝟎 has more nodes than 𝒑𝒙, we can extend the path (A, B, C) to path (A, B, 

B… C) or (A, B, C… C) to make their number of nodes equal to 𝑵. 

To achieve the minimum CWPD, we need to compare the CWPDs (shown in Figure 

23) between 𝑝0 and each 𝑝𝑥. In this example, the path 𝑝3 minimizes the CWPD.  
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Figure 23: The CWPDs of  𝒑𝟏, 𝒑𝟐, 𝒑𝟑 

As the number of candidate path in the worst case is 𝑁𝑀, where M is the number 

of nodes in TS, it is impractical to list all of them before searching the minimum CWPD. 

Instead, we create a matrix to store a BMP ending at 𝑛𝑖
𝑥 for each node in the roadmap. 

When looping through each node in 𝑝0, the path stored in the matrix will be updated. The 

pseudo code of this greedy algorithm is provided in Alg. 1. 

Because the user sketched path may contain cycles intentionally, standard shortest 

path algorithm [24] will not return results with cycles. This is why we cannot modify and 

utilize standard shortest path algorithm. Algorithm 1 solves the problem also with cycles 

on the graph. It takes 𝑝0 and TS as input. It proceeds sequentially through all nodes in 𝑝0 

(line 7). In each iteration of this ourter loop, it calculates M BMPs for each 𝑞𝑗 (line 8) 

according to current user input path (𝑛0
0, 𝑛1

0 … 𝑛𝑖−1
0 ). These BMPs start from 𝑞𝑠𝑡𝑎𝑟𝑡 and end 

at 𝑞𝑗. 

Algorithm 2 calculates the new CWPD and BMP by utilizing the results from the 

previous BMPs and CWPDs using EQ2. For each  node 𝑞𝑗 in 𝑄𝑇𝑆, it first checks if 𝑞𝑗’s 

previous BMP 𝑏𝑚𝑝[𝑖 − 1, 𝑗] for (𝑝0[1] … 𝑝0[𝑖 − 1]) exists. If it exists, it calculates the 

distance between 𝑝0[𝑖] and the last edge of the path (𝑏𝑚𝑝[𝑖 − 1, 𝑗], 𝑞𝑗). Then, it stores 

the result in 𝑏𝑚𝑝[𝑖, 𝑗] and 𝑐𝑤𝑝𝑑[𝑖, 𝑗] if the new 𝑐𝑤𝑝𝑑[𝑖, 𝑗] is smaller than the existing 
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value. Then, it repeats the process for all paths(𝑏𝑚𝑝[𝑖 − 1, 𝑗], 𝑞𝑘), where 𝑞𝑘 ∈

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑞𝑗). Note that we can get 𝑞𝑗’s previous BMP and CWPD directly from 

𝑏𝑚𝑝[𝑖 − 1, 𝑗] and 𝑐𝑤𝑝𝑑[𝑖 − 1, 𝑗], respectively, without recomputing the results. The 

process will repeat at most M times; thus, the run time of Alg. 2 is O(M). 

Algorithm 1 FIND_BMP 

Input: 𝑝0, 𝑇𝑆 

Output: 𝑝𝑏𝑚𝑝 

1. M ← |𝑄𝑇𝑆|  
2. N ← |𝑝0| 
3. cwpd[: , : ] ← ∞ //for N x M matrix 

4. 𝑏𝑚𝑝[: , : ] ← ∅  //for N x M matrix 

5. ⟨𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑⟩ ← ⟨𝑖𝑛𝑑𝑒𝑥(𝑝0[1]), 𝑖𝑛𝑑𝑒𝑥(𝑝0[𝑁])⟩  //index of nodes in 𝑄𝑇𝑆 

6. ⟨𝑐𝑤𝑝𝑑[1, 𝑠𝑡𝑎𝑟𝑡], 𝑏𝑚𝑝[1, 𝑠𝑡𝑎𝑟𝑡]⟩ ← ⟨0, {𝑝0[1]}⟩ 
7. for 𝑖 in range (2, N) do: 

8.   for j in range (1, M) do: 

9.    UPDATE(𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0, 𝑇𝑆) 

10. 𝑝𝑏𝑚𝑝 ←  𝑏𝑚𝑝[𝑁, 𝑒𝑛𝑑] 

11. Return 𝑝𝑏𝑚𝑝 

where 𝑄𝑇𝑆 = {𝑞0, 𝑞1 … 𝑞𝑀−1} is the set of nodes in the TS  

|𝑄𝑇𝑆| returns the number of elements in 𝑄𝑇𝑆 

 

Algorithm 2 UPDATE 

Input: 𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0, 𝑇𝑆 

1. if 𝑏𝑚𝑝[𝑖 − 1, 𝑗] ≠ ∅ then: //previous bmp ending at this node  

2.   𝑞𝑗 ← 𝑖𝑛𝑑𝑒𝑥−1(𝑗, 𝑄𝑇𝑆) //𝑖𝑛𝑑𝑒𝑥−1() returns a node of 𝑄𝑇𝑆 

3.   𝑛𝑖
0 ← 𝑖𝑛𝑑𝑒𝑥−1(𝑖, 𝑝0) //𝑖𝑛𝑑𝑒𝑥−1() returns a node of 𝑝0 

4.   𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑣 ← GetLastEdge(𝑏𝑚𝑝[𝑖 − 1, 𝑗])  

5.   𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 ← 𝑐𝑤𝑝𝑑[𝑖 − 1, 𝑗] + distance( 𝑛𝑖
0, 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑓) //EQ2 

6.   if 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 < 𝑐𝑤𝑝𝑑[𝑖, 𝑗] then: 

7.    𝑐𝑤𝑝𝑑[𝑖, 𝑗] ← 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 

8.    𝑏𝑚𝑝[𝑖, 𝑗] ←  𝑏𝑚𝑝[𝑖 − 1, 𝑗] + 𝑞𝑗 //concatenate 𝑞𝑗 to the end 

9.   for 𝑞𝑘 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑞𝑗) do: 

10.    𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 ← ⟨𝑞𝑗 , 𝑞𝑘⟩ 

11.    𝑘 ← 𝑖𝑛𝑑𝑒𝑥(𝑞𝑘)  //𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑄𝑇𝑆 

12.    if 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 ≠ 𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑣 then: 

13.     𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 ← 𝑐𝑤𝑝𝑑[𝑖 − 1, 𝑘] + distance( 𝑛𝑖
0, 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟)  

14.     if 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 < 𝑐𝑤𝑝𝑑[𝑖, 𝑘] then: 
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15.      𝑐𝑤𝑝𝑑[𝑖, 𝑘] ← 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 

16.      𝑏𝑚𝑝[𝑖, 𝑘] ← 𝑏𝑚𝑝[𝑖 − 1, 𝑘] + 𝑞𝑘 

GetLastEdge() returns the last edge of a given path or an edge with the same two 

nodes if there is no last edge e.g., GetLastEdge([ABCDE]) returns ⟨ DE ⟩  and 

GetLastEdge([A]) returns ⟨𝐴𝐴⟩. 
 

In each step, the minimum CWPD ending at each node in TS will be stored. Thus, 

this algorithm finds the BMP with the minimum CWPD eventually. Let us proceed this 

algorithm over the example in Table 3. 

0. Step 0: Initialize the tables. 

BMP A B C D E 

A ∅ ∅ ∅ ∅ ∅ 

n1 ∅ ∅ ∅ ∅ ∅ 

n2 ∅ ∅ ∅ ∅ ∅ 

n3 ∅ ∅ ∅ ∅ ∅ 

n4 ∅ ∅ ∅ ∅ ∅ 

n5 ∅ ∅ ∅ ∅ ∅ 

n6 ∅ ∅ ∅ ∅ ∅ 

E ∅ ∅ ∅ ∅ ∅ 

1) Navigate to the current node in 𝑝0,  which is the start point A. 

2) Add node A as the current best matching path ending at node A in bmp[A, 

A].  

3) Add 0 to as the current minimum CWPD whose path ends at node A in 

cwpd[A, A]. 

CWPD A B C D E 

A  ∞  ∞  ∞  ∞  ∞ 

n1  ∞  ∞  ∞  ∞  ∞ 

n2  ∞  ∞  ∞  ∞  ∞ 

n3  ∞  ∞  ∞  ∞  ∞ 

n4  ∞  ∞  ∞  ∞  ∞ 

n5  ∞  ∞  ∞  ∞  ∞ 

n6  ∞  ∞  ∞  ∞  ∞ 

E  ∞  ∞  ∞  ∞  ∞ 

Table 4: All cells in BMP are set to empty and all cells in CWPD are set to infinite 
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Figure 24: Step 0 

BMP A B C D E 

A A         

n1           

n2           

n3…E           

  

CWPD A B C D E 

A 0         

n1           

n2           

n3…E           

Table 5: Step 0-2 and 0-3 

1. Step 1:  

1) Navigate to the current node in 𝑝0,  which is the n1. 

2) For cell bmp[n1, A], find all possible best matching paths ending at A by adding 

one node to all paths in bmp[A, :], which is AA8. 

3) Calculate the CWPD by adding daa1 to the previous cwpd which is cwpd[A, 

A]. The new CWPD is daa1. 

                                                           
8 Possible BMPs for cell bmp[n1,A]= (all BMP[A,:] that can access A within one step) + A. These BMPs can be ended at A or A’s 

neighbors. For above row n1, previous BMP is A. By adding a node to A, we can get AA, AB, AC. 
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4) Compare all CWPD calculated in cwpd[n1, A] and only save the minimum one 

as cwpd[n1, A]. 

5) Save the corresponding BMP as bmp[n1, A]. 

6) Repeat above 2) to 5) for node B, C, D and E respectively.  

 

Figure 25:  Step 1. dab1 denotes  the distance from 𝒏𝟏 to edge 𝒆𝒂𝒃 

BMP A B C D E 

A A         

n1 AA AB AC     

n2           

n3…E           

 

CWPD A B C D E 

A 0         

n1 daa1 dab1 dac1     

n2           

n3…E           

Table 6: Step 1-2 to 1-5.  

As node D and E cannot be access by adding one node to all the path in bmp[A, :], there 

will be no value in bmp[n1, D] and bmp[n1, E], thus cwpd[n1, D] and cwpd[n1, E] will 

also be empty. 

2. Step 2: 

1) Navigate to the current node in 𝑝0,  which is the n2. 
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2) For cell bmp[n2, A], find all possible best matching paths ending at A by adding 

one node to all paths in bmp[n1, :], which is AAA, ABA and ACA. 

3) Calculate the CWPD of AAA by adding daa2 to the previous cwpd which is 

cwpd[n1, A]. Calculate the CWPD of ABA by adding dab2 to the previous 

cwpd which is cwpd[n1, B]. Calculate the CWPD of ACA by adding dac2 to 

the previous cwpd which is cwpd[n1, C]. 

4) Compare all CWPD calculated above and only save the minimum one as 

cwpd[n2, A]. 

5) Save the corresponding BMP as bmp[n2, A]. 

6) Repeat above 2) to 5) for node B, C, D and E respectively.  

 

Figure 26:  Step 2 

BMP A B C D E 

n1  AA  AB  AC     

n2 

bmp[n1][A]+A 

-> AAA 

bmp[n1][B]+A 

-> ABA  

bmp[n1][C]+A 

-> ACA 

bmp[n1][B]+B 

-> ABB 

bmp[n1][A]+B 

-> AAB 

bmp[n1][C]+C 

-> ACC 

bmp[n1][A]+C 

-> AAC 

bmp[n1][C]+D-

> ACD 

bmp[n1][B]+D 

-> ABE 

n3…E           
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CWP

D 
A B C D E 

n1 daa1 dab1 dac1     

n2 

cwpd[n1][A]+d

aa2 

cwpd[n1][B]+d

ab2 

cwpd[n1][C]+d

ac2 

cwpd[n1][B]+d

ab2 

cwpd[n1][A]+d

ab2 

cwpd[n1][C]+d

ac2 

cwpd[n1][A]+d

ac2 

cwpd[n1][C]+d

cd2 

cwpd[n1][B]+d

be2 

n3…E           

Table 7: Step 2-2 to 2-5 

3. Repeat step 2 for rest of the note in 𝑝0. 

4. Find the minimum CWPD in cwpd[E, E] and its corresponding BMP will be the 

final path. 

BMP A B C D E 

A  A         

n1  AA  AB  AC     

n2 

bmp[n1][A]+A 

-> AAA 

bmp[n1][B]+A 

-> ABA 

->bmp[n2][A] 

bmp[n1][C]+A 

-> ACA 

bmp[n1][B]+B 

-> ABB 

->bmp[n2][B] 

bmp[n1][A]+B 

-> AAB 

bmp[n1][C]+C 

-> ACC 

->bmp[n2][C] 

bmp[n1][A]+C 

-> AAC 

bmp[n1][C]+D-> 

ACD 

->bmp[n2][D] 

bmp[n1][B]+D 

-> ABE 

->bmp[n2][E] 

n3 

bmp[n2][A]+A 

-> ABAA -> 

bmp[n3][A] 

bmp[n2][B]+A 

-> ABBA 

bmp[n2][C]+A 

-> ACCA 

bmp[n2][B]+B 

-> ABBB -> 

bmp[n3][B]  

bmp[n2][A]+B 

-> ABAB 

bmp[n2][E]+B 

-> ABEB 

bmp[n2][C]+C 

-> ACCC 

bmp[n2][A]+C 

-> ABAC -> 

bmp[n3][C] 

bmp[n2][D]+C 

-> ACDC 

bmp[n2][D]+D 

-> ACDD 

bmp[n2][C]+D 

-> ACCD 

bmp[n2][E]+D 

-> ABED -> 

bmp[n3][D] 

bmp[n2][E]+E 

-> ABEE -> 

bmp[n3][E] 

bmp[n2][B]+E 

-> ABBE 

bmp[n2][D]+E 

-> ACDE 

n4 

bmp[n3][A]+A 

-> ABAAA -> 

bmp[n4][A] 

bmp[n3][B]+A 

-> ABBBA 

bmp[n3][C]+A 

-> ABCAA 

bmp[n3][B]+B 

-> ABBBB 

bmp[n3][A]+B 

-> ABAAB 

bmp[n3][E]+B 

-> ABEEB -> 

bmp[n4][B] 

bmp[n3][C]+C 

-> ABACC 

bmp[n3][A]+C 

-> ABAAC -> 

bmp[n4][C] 

bmp[n3][D]+C 

-> ABEDC 

bmp[n3][D]+D 

-> ABEDD 

bmp[n3][C]+D 

-> ABACD 

bmp[n3][E]+D 

-> ABEED -> 

bmp[n4][D] 

bmp[n3][E]+E 

-> ABEEE 

bmp[n3][B]+E 

-> ABBBE-> 

bmp[n4][E] 

bmp[n3][D]+E 

-> ABEDE 
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n5 

bmp[n4][A]+A 

-> ABAAAA 

bmp[n4][B]+A 

-> ABEEBA-> 

bmp[n5][A] 

bmp[n4][C]+A 

-> ABAACA 

bmp[n4][B]+B 

-> ABEEBB 

bmp[n4][A]+B 

-> ABAAAB 

bmp[n4][E]+B 

-> ABBBEB -> 

bmp[n5][B] 

bmp[n4][C]+C 

-> ABAACC 

bmp[n4][A]+C 

-> ABAAAC -> 

bmp[n5][C] 

bmp[n4][D]+C 

-> ABEEDC 

bmp[n4][D]+D 

-> ABEEDD 

bmp[n4][C]+D 

-> ABAACD 

bmp[n4][E]+D 

-> ABBBED -> 

bmp[n5][D] 

bmp[n4][E]+E 

-> ABBBEE -> 

bmp[n5][E] 

bmp[n4][B]+E 

-> ABEEBE 

bmp[n4][D]+E 

-> ABEEDE 

n6 

bmp[n5][A]+A 

-> ABEEBAA 

bmp[n5][B]+A 

-> 

ABBBEBA-> 

bmp[n6][A] 

bmp[n5][C]+A 

-> ABAAACA 

bmp[n5][B]+B 

-> ABBBEBB 

bmp[n5][A]+B 

-> ABEEBAB 

bmp[n5][E]+B 

-> ABBBEEB 

-> bmp[n6][B] 

bmp[n5][C]+C 

-> ABAAACC 

bmp[n5][A]+C 

-> ABEEBAC 

bmp[n5][D]+C 

-> 

ABBBEDC-> 

bmp[n6][C] 

bmp[n5][D]+D 

-> ABBBEDD 

bmp[n5][C]+D 

-> ABAAACD 

bmp[n5][E]+D 

-> ABBBEED-> 

bmp[n6][D] 

bmp[n5][E]+E 

-> ABBBEEE 

-> bmp[n6][E] 

bmp[n5][B]+E 

-> ABBBEBE 

bmp[n5][D]+E 

-> ABBBEDE 

E 

bmp[n6][A]+A 

-> 

ABBBEBAA 

bmp[n6][B]+A 

-> 

ABBBEEBA-> 

bmp[E][A] 

bmp[n6][C]+A 

-> 

ABBBEDCA 

bmp[n6][B]+B 

-> 

ABBBEEBB 

-> bmp[E][B] 

bmp[n6][A]+B 

-> 

ABBBEBAB 

bmp[n6][E]+B 

-> 

ABBBEBAB 

bmp[n6][C]+C 

-> 

ABBBEDCC 

bmp[n6][A]+C 

-> 

ABBBEBAC 

bmp[n6][D]+C 

-> 

ABBBEEDC-> 

bmp[E][C] 

bmp[n6][D]+D 

-> ABBBEEDD 

bmp[n6][C]+D 

-> ABBBEDCD 

bmp[n6][E]+D 

-> 

ABBBEEED-> 

bmp[E][D] 

bmp[n6][E]+E 

-> ABBBEEEE 

-> bmp[E][E] 

bmp[n6][B]+E 

-> ABBBEEBE 

bmp[n6][D]+E 

-> 

ABBBEEDE 

 

CW

PD 
A B C D E 

A  0         

n1 daa1 dab1 dac1     

n2 

 cwpd[n1][A]

+daa2 

cwpd[n1][B]+

dab2 -> 

cwpd[n2][A] 

cwpd[n1][C]+

dac2 

 cwpd[n1][B]+

dab2-> 

cwpd[n2][B] 

cwpd[n1][A]+

dab2 

 cwpd[n1][C]

+dac2-> 

cwpd[n2][C] 

cwpd[n1][A]+

dac2 

 cwpd[n1][C]+

dcd2-> 

cwpd[n2][D] 

 cwpd[n1][B]+dbe2->c

wpd[n2][E] 

n3 

cwpd[n2][A]+

dab3 -> 

cwpd[n3][A] 

cwpd[n2][B]+

dab3 

cwpd[n2][C]+

dac3 

cwpd[n2][B]+

dab3 -> 

cwpd[n3][B]  

cwpd[n2][A]+

dab3 

cwpd[n2][E]+

dbe3 

cwpd[n2][C]+

dac3 

cwpd[n2][A]+

dac3 -> 

cwpd[n3][C] 

cwpd[n2][D]+

dcd3 

cwpd[n2][D]+

dcd3 

cwpd[n2][C]+

dcd3 

cwpd[n2][E]+

dde3 -> 

cwpd[n3][D] 

cwpd[n2][E]+dbe3 -> 

cwpd[n3][E] 

cwpd[n2][B]+dbe3 

cwpd[n2][D]+dde3 



 

43 
 

n4 

cwpd[n3][A]+

dab4 -> 

cwpd[n4][A] 

cwpd[n3][B]+

dab4 

cwpd[n3][C]+

dac4 

cwpd[n3][B]+

dab4 

cwpd[n3][A]+

dab4 

cwpd[n3][E]+

dbe4 -> 

cwpd[n4][B] 

cwpd[n3][C]+

dac4 

cwpd[n3][A]+

dac4 -> 

cwpd[n4][C] 

cwpd[n3][D]+

dcd4 

cwpd[n3][D]+

dde4 

cwpd[n3][C]+

dcd4 

cwpd[n3][E]+

dde4 -> 

cwpd[n4][D] 

cwpd[n3][E]+dbe4 

cwpd[n3][B]+dbe4-> 

cwpd[n4][E] 

cwpd[n3][D]+dde4 

n5 

cwpd[n4][A]+

dab5 

cwpd[n4][B]+

dab5-> 

cwpd[n5][A] 

cwpd[n4][C]+

dac5 

cwpd[n4][B]+

dbe5 

cwpd[n4][A]+

dab5 

cwpd[n4][E]+

dbe5 -> 

cwpd[n5][B] 

cwpd[n4][C]+

dac5 

cwpd[n4][A]+

dac5 -> 

cwpd[n5][C] 

cwpd[n4][D]+

dcd5 

cwpd[n4][D]+

dde5 

cwpd[n4][C]+

dcd5 

cwpd[n4][E]+

dde5 -> 

cwpd[n5][D] 

cwpd[n4][E]+dbe5 -> 

cwpd[n5][E] 

cwpd[n4][B]+dbe5 

cwpd[n4][D]+dde5 

n6 

cwpd[n5][A]+

dab6 

cwpd[n5][B]+

dab6-> 

cwpd[n6][A] 

cwpd[n5][C]+

dac6 

cwpd[n5][B]+

dbe6 

cwpd[n5][A]+

dab6 

cwpd[n5][E]+

dbe6 -> 

cwpd[n6][B] 

cwpd[n5][C]+

dac6 

cwpd[n5][A]+

dac6 

cwpd[n5][D]+

dcd6 -> 

cwpd[n6][C] 

cwpd[n5][D]+

dde6 

cwpd[n5][C]+

dcd6 

cwpd[n5][E]+

dde6 -> 

cwpd[n6][D] 

cwpd[n5][E]+dbe6 -> 

cwpd[n6][E] 

cwpd[n5][B]+dbe6 

cwpd[n5][D]+dde6 

E 

cwpd[n6][A]+

dabe 

cwpd[n6][B]+

dabe-> 

cwpd[E][A] 

cwpd[n6][C]+

dace 

cwpd[n6][B]+

dbee -> 

cwpd[E][B] 

cwpd[n6][A]+

dabe 

cwpd[n6][E]+

dabe 

cwpd[n6][C]+

dcde 

cwpd[n6][A]+

dace 

cwpd[n6][D]+

dcde -> 

cwpd[E][C] 

cwpd[n6][D]+

ddee 

cwpd[n6][C]+

dcde 

cwpd[n6][E]+

ddee -> 

cwpd[E][D] 

cwpd[n6][E]+dbee -> 

cwpd[E][E] 

cwpd[n6][B]+dbee 

cwpd[n6][D]+ddee 

Table 8: Final BMP and CWPD tables. The final path is ABBBEEEE whish is 

equivalent to ABE. 

More detail of the step by step run of Alg. 1 over the example in Table 3 can be 

found in appendix. 

The algorithm only creates two global matrices of size NM. Thus, the space 

complexity of this algorithm is O(NM) and the runtime complexity is O(NMM). Hence, 

this algorithm can be implemented on a mobile device.  

After applying the algorithm to the scenario in Figure 19, we can get the result in 

Figure 27. 
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Figure 27: The user sketched path (arc with dots) and its BMP (solid blue line). Since the 

user sketchs in areas undefined in the roadmap, the resulting BMP is much different as 

the sketched path. 

Usually, users may need to specify the paths between multiple pairs of nodes. Our 

algorithm will generate multiple best matching paths for all user sketched paths. This set 

of best matching paths is called the preferred path set.  

 

Edit Specifications 

After a path is customized in the Sketching mode, there should be a default LTL 

specification displayed in the LTL Mode (for an example, see Figure 28). 
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Figure 28: The basic LTL specification that corresponds to the sketched path in above 

figure. 

 Users can also skip the Sketching mode to directly edit the LTL specification. In 

this mode, the editing gestures are identical to LTLvis [5]:  

 Single tap two consecutive nodes to connect them with AND or OR edge.  

 Double tap two consecutive nodes to connect them with ALWAYS, 

EVENTUALLY, NEXT or UNTIL edge. 

 Long press a node to display extra action options including renaming, toggling visit 

and avoid, toggling AND and OR, and changing operators between ALWAYS, 

EVENTUALLY, NEXT, and UNTIL (Figure 29).  

 

Figure 29: Long press the node to display the option panel. 
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 For each icon in the popup option panel, there is a unique handler linked to it. Once 

the button down event is triggered, the option panel will be dismissed and the 

corresponding action will be performed. Simply touching anywhere outside the panel can 

also dismiss the options panel. The meaning of each action in the option panel is listed 

below (Table 9): 

SET LABEL Change the label of a node on the graph. 

VISIT / AVOID This option tells the robot whether to visit the location or avoid 

it. 

AND / OR Cycle through the boolean operator 𝑏1 between AND and OR. 

Change operator 𝑏2 Cycle through the boolean operator 𝑏2 between AND, OR and 

IMPLIES.  

Change operator 𝑡1 Cycle through the temporal operator 𝑡1  between ALWAYS, 

EVENTUALLY, NEXT and UNTIL. 

Change operator 𝑡2 Cycle through 𝑡2 between ALWAYS and EVENTUALLY. 

Table 9: The options in the options panel are identical to LTLvis 

Send Data 

When all the data is ready, users can send the data to the LTL planner. The LTL planner 

used in this work is modified from the RHTL package [14]. By adding path preferance 

logic (Alg. 3) in the traditional LTL planner, the resulting path generated from the new 

planner will attempt to satisfy both the LTL specification and the user input requirement. 

The details of this planner are explained in the next section. 

 

PLANING USING E-LTLvis 

 The topic of this section will focus on how to do task planning using the proposed 

interface (E-LTLvis). As the interface provides additional information besides the LTL 

specification, regular LTL planner won’t generate intended result if these information is 

not utilized.  
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Consider the following scenario. Node 𝑞0, 𝑞1, 𝑞2 are atomic propositions (Figure 

30). In LTL mode, 𝑞0, 𝑞1, 𝑞2 consists of the specification 𝑞0 ∧ 𝐺𝐹(𝑞1 ∧ 𝐹(𝑞2)).  

 

 

Figure 30: A sample LTL specification 

After processing this specification through a tool such as lomap9 [14], two Büchi 

automata will be generated (Figure 31). 

 The first one in Figure 31 is transition system and second one is LTL automaton. 

To separate this transition system and the roadmap, we denote it as global transition system 

and the roadmap as local transition system. Global TS only has atomic propositions and 

the transitions between atomic propositions, while local TS represents real roadmap 

information and the transitions between all the nodes in the roadmap.  In the above example, 

the local transition system is presented in Figure 32. 

                                                           
9 lomap is one sub-package of RHTL. It provides functions to visualize automata generated from LTL2BA [19]. 
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Figure 31: Left: TS. Right: Buchi automaton which coresponds to LTL formula 𝐪𝟎 ∧

𝐆𝐅(𝐪𝟏 ∧ 𝐅(𝐪𝟐)) 
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Figure 32: Local TS 

Among all the nodes from the local transition system, node 0, node 1, node 2 share 

the same coordinates with labels q0, q1, q2 respectively in the global transition system. 

The simplified product10 of the above two automata is a finite state automaton 𝐴 as in 

Figure 33. For example, the state (𝑞0, 𝑇0_𝑆3) is a paired state of 𝑞0 in global TS and 𝑇0_𝑆3 

in Büchi automaton. 

It is a finite state automaton 𝐴: = (𝛹, 𝑞𝑖𝑛𝑖𝑡, 𝛿, 𝛴, 𝐹) where  

 𝛹 =

{𝑇0_𝑆3[𝑞0], 𝑇1_𝑆4[𝑞0], 𝑇0_𝑆3[𝑞1], 𝑇1_𝑆4[𝑞1], 𝑎𝑐𝑐𝑒𝑝𝑡_𝑆3[𝑞1], 𝑇1_𝑆4[𝑞2], 𝑇0_𝑆3[𝑞2]} 

 𝑞𝑖𝑛𝑖𝑡 = 𝑇0_𝑆3[𝑞0] 

 𝛴 = 2𝛱 accepting all finite words over 2𝛱  

 𝛿: 𝛹 × 𝛴 × 𝛹 is the deterministic transition relation in Figure 33. 

 𝐹 = {𝑎𝑐𝑐𝑒𝑝𝑡_𝑆3[𝑞1]}  

 

                                                           
10 The number of states in product automaton is 𝑁1 × 𝑁2, where N1, N2 are the number of state in there two the automaton 

respectively. However, there may exist some unreachable states. 
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Figure 33: The product automaton 
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Planning under the LTL constraint 𝑞0 ∧ 𝐺𝐹(𝑞1 ∧ 𝐹(𝑞2)) is equivalent to finding a path 

from 𝑞𝑖𝑛𝑖𝑡  to any accepting states in 𝐴 . Depending on the weight of each transition, 

different planner may adopt different path finding algorithm, then generate different path 

plan. If the shortest distance is preferred, 

𝑤 = {𝑤𝑒𝑞𝑖𝑞𝑗
| 𝑒𝑞𝑖𝑞𝑗

∈ 𝛿, 𝑤𝑞1𝑞2
𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑞1 𝑡𝑜 𝑞2} 

The solution can be generated using Dijkstra’s algorithm [9]. The expected path will 

be: 

 𝜋 =

(𝑇0_𝑆3[𝑞0], 𝑇0_𝑆3[𝑞1], 𝑇1_𝑆4[𝑞2], 𝑎𝑐𝑐𝑒𝑝𝑡_𝑆3[𝑞1], 𝑇1_𝑆4[𝑞2], 𝑎𝑐𝑐𝑒𝑝𝑡_𝑆3[𝑞1] … ) 

Namely, the robot starts from 𝑞0 then repeatedly visits 𝑞1 and𝑞2. As the shortest path is 

preferred. The resulted path should be (Figure 34): 

 

Figure 34: The path generated using shortest path 

Now, let’s introduce another constraint as: 
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Figure 35: Extra path requirement for 𝒒𝟎 ∧ 𝑮𝑭(𝒒𝟏 ∧ 𝑭(𝒒𝟐)) 

The other requirement provided in Figure 35 specifies the preferred path set 

between two assigned nodes. The expected result (shown in Figure 36) should satisfy both 

LTL specification and preferred path constraints.  

 

Figure 36: The path generated by the extended planner 

This research proposes an extended planner (Alg. 3) based on the general LTL 

planner [14].  

It takes the product automaton A, the local transition system TS and the preferred path set 

D as inputs. Here, We denote a preferred path set as D, where 

𝐷 = {𝜋𝑢𝑣|𝜋𝑢𝑣 = (𝑞𝑢, 𝑛𝑎1, 𝑛𝑎2, … , 𝑛𝑎𝑚, 𝑞𝑣), 𝑞𝑢, 𝑞𝑣 ∈ 𝛹, 𝑛𝑎1, 𝑛𝑎2, … , 𝑛𝑎𝑚 ∈ 𝑄𝑇𝑆} 
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Algorithm 3 EXTENDED-PLANNER 

Input: 𝐴, 𝑇𝑆, 𝐷 

Output: 𝜋𝑙𝑡𝑙 

1. create an empty list 𝜋𝑙𝑡𝑙 

2. 𝐟𝐨𝐫 𝒆𝒂𝒄𝒉 𝜋𝑖𝑗  𝐢𝐧 𝐷 𝒅𝒐: //set all the preferred paths to highest priority to be chosen. 

3.    ⟨𝑞𝒊, 𝑞𝑗⟩ ← ⟨𝜋𝑖𝑗[1], 𝜋𝑖𝑗[|𝜋𝑖𝑗|]⟩ 

4.    if (𝑞𝑖 , 𝑞𝑗) ∈ 𝛿 then: 

5.   change the weight 𝑤(𝑞𝑖, 𝑞𝑗) to 𝛼  

6. find the shortest path 𝜋𝐴𝑜 with minimum sum of edge weight  from 𝑞𝑖𝑛𝑖𝑡 to 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 

in 𝐴 //based on the modified priorities above 

7. for 𝑘 𝐢𝐧 𝑟𝑎𝑛𝑔𝑒 (1, |𝜋𝐴0| − 1) 𝒅𝒐: 

8.    ⟨𝑞ℎ, 𝑞𝑚⟩ ← ⟨𝜋𝐴0[𝑘], 𝜋𝐴0[𝑘 + 1]⟩ 
9.    found ←⊥ 

10.    for 𝜋𝐷 in D do: //𝜋𝐷 is a sequence of nodes in 𝑄𝑇𝑆 

11.     if 𝜋𝐷[1] = 𝑞ℎ 𝒂𝒏𝒅 𝜋𝐷[|𝜋𝐷|] = 𝑞𝑚 and 𝜋𝐷 is valid in A then: 

12.    𝑎𝑝𝑝𝑒𝑛𝑑 𝜋𝐷 𝑡𝑜 𝜋𝑙𝑡𝑙   
13.    found ← ⊤ 

14.    if ¬ found then: 

15.   find the shortest path 𝜋𝐷
′  from 𝑞ℎ to 𝑞𝑚 in TS 

16.   𝑎𝑝𝑝𝑒𝑛𝑑 𝜋𝐷
′   𝑡𝑜 𝜋𝑙𝑡𝑙 

17.  𝑎𝑝𝑝𝑒𝑛𝑑 𝜋𝐴0[|𝜋𝐴0|] 𝑡𝑜 𝜋𝑙𝑡𝑙 //this is 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 

18.  return  𝜋𝑙𝑡𝑙 

At line 5, 𝛼 is infinitesimal and 𝛼 ∈ ℝ+. It is much smaller than the smallest weight 

in W. 

At line 11, valid means this path never visit any avoiding states in A. 

At line 12, 16, 17, each append operation to 𝜋𝑙𝑡𝑙 adds the element to the tail of the 

list.  

 

Algorithm 3 works as following. Assume 𝜋𝑖𝑗 ∈ 𝐷, the algorithm first checks if 

there is transition (𝑞𝑖, 𝑞𝑗) ∈ 𝛿 (line 4). If such transition exists, it changes its weight to 𝛼. 

Here, 𝛼 ∈ ℝ+ denotes an infinitesimal value. This can increase the priority of the preferred 

path set when calculating the shortest path 𝜋𝐴𝑜 from 𝑞𝑖𝑛𝑖𝑡  to 𝑞𝑎𝑐𝑐𝑒𝑝𝑡  in line 6. After 

finding  𝜋𝐴𝑜 , we need to replace each transition (𝑞𝑖 , 𝑞𝑗) ∈ 𝜋𝐴𝑜  with a corresponding 

transition from either the preferred path set D or the transition system TS. As the preferred 

path set D has higher priority, if 𝜋𝐷 exists in the preferred set, we add it to the path 𝜋𝑙𝑡𝑙. 
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Otherwise, we find a shortest alternative 𝜋𝐷
′  in TS and add it to 𝜋𝑙𝑡𝑙. After 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is visited, 

𝜋𝑙𝑡𝑙 is completed.   
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Chapter 5 

Experiments 

In this section, we are going to test our interface and planner on a real robot - 

turtlebot. Turtlebot can be controlled using a ROS package. It contains two major hardware 

devices:  Kinect and iRobot base. The Turtlebot project also contains many useful packages. 

For example, turtlebot_navigation is one of the most popular packages used to localize the 

robot by itself. Also, we use turtlebot_rivz to visualize the environment. The final goal of 

this experiment is to use the proposed interface to send an LTL specification and a preferred 

path set to the planner. The planner should generate a path plan and order the turtlebot to 

execute the plan.  

 
Figure 37: The experiment environment 
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The testing environment is located in Arizona State University Centerpoint building 

(Figure 37).  

The real layout of the environment is a rough 5 meters by 5 meters area with some 

objects set up as obstacles. After using turtleBot_navigation package to scan the 

environment, we got a portable graymap format (pgm) file. PGM file uses 8 bits per pixel. 

For each pixel, the larger the digit is, the higher probability the pixel is occupied by 

obstacles. Below is the graymap for above environment (Figure 38). 

 

 

Figure 38: The graymap for above environment 

 

Experiment 1 

We have done two experiments. For the first one, we provided an LTL specification: 

(𝑞0 → 𝑋 𝑞1) ∧ (𝑞0 ∧ 𝐹𝑞2) ∧ (𝑞0 → 𝑋 ¬𝑞2) 

And two required inputs from E-LTLvis: 
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Figure 39: Two required inputs from E-LTLvis 

 

The left figure is the graphic representation of the LTL specification and the right figure is 

the user sketched path and its corresponding BMP. 

 

The task of the turtlebot is to follow the specification: 

(𝑞0 → 𝑋 𝑞1) ∧ (𝑞0 ∧ 𝐹𝑞2) ∧ (𝑞0 → 𝑋 ¬𝑞2) 

In natural language, it means “the turtlebot is required to start from q0 and head for q1 

while avoiding q2 before q1 is reached. Then it will reach q2 eventually”.  

However, we also provided a preferred path from q0 to q1 via p2. This path violates the 

LTL specification. Thus, the turtlebot should ignore the preferred path and find an 

alternative path to reach q1. The process is displayed in below figures (Figure 40 to Figure 

45) 
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Figure 40: The turtlebot started from q0 and went north. 

 

 

Figure 41: The turtlebot reached the turn point and was ready to go east. 
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Figure 42: The turtlebot reached the point in the north of q2 and continued to go east. 

 

 

Figure 43: The turtlebot reached the turn point and was ready to go south. 
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Figure 44: The turtlebot reached q1 and was ready to go to q2. 

 

 

Figure 45: The turtlebot reached q2. Task completed. 
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In this experiment, the turtlebot succeeded in avoiding q2 before visiting q1. The preferred 

path was not adopted. The LTL specification was satisfied. 

 

Experiment 2 

For the second experiment, we provided the LTL specification: 

(𝑞0 ∧ 𝐺𝐹 (𝑞1 ∧ 𝐹 𝑞2)) 

And two required inputs for E-LTLvis: 

  

Figure 46: Two required inputs for E-LTLvis 

The task of the turtlebot is to follow the specification (𝑞0 ∧ 𝐺𝐹 (𝑞1 ∧ 𝐹 𝑞2)). In natural 

language, it means “the Turtlebot is required to start from q0 and head for q1 then to q2 

and loop between q1 and q2”. Furthermore, we also provided a preferred path set from q0 

to q1, q1 to q2 and q2 to q1. These paths do not violate the LTL specification. Thus, the 

Turtlebot should obey the preferred path set. The process is displayed in below figures 

(Figure 47 to Figure 54) 
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Figure 47: The Turtlebot started from q0 and headed east. 

 

 

Figure 48: The Turtlebot reached q1. 
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Figure 49: The Turtlebot continued to go east. 

 

 

Figure 50: The Turtlebot made a U turn around the legs of the table. 
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Figure 51: The Turtlebot headed west and reached q2. 

 

Figure 52: The Turtlebot headed north and reached the turn point. 
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Figure 53: The turtle reached q1 again. 
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Figure 54: The turtle continued above actions until we manually stopped the planner. 

 

During the second experiment, the Turtlebot always followed the preferred path. The task 

was completed. 

 

Extra Experiments  

 

We also repeated the above experiments in another environment and recorded the trace of 

the robot. 

  

Figure 55: Experiment environment and scanned greymap. 

Experiment 1 

For the first one, we provided an LTL specification: 

(𝑞0 → 𝑋 𝑞1) ∧ (𝑞0 ∧ 𝐹𝑞2) ∧ (𝑞0 → 𝑋 ¬𝑞2) 
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And two required inputs from E-LTLvis: 

  

Figure 56: Two required inputs from E-LTLvis 

In this experiment, the Turtlebot succeeded in avoiding q2 before visiting q1. The 

preferred path was not adopted. The LTL specification was satisfied. Figure 57 shows the 

robot trajectory. 

 

Figure 57: Robot trajectory for experiment 1 
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Experiment 2 

For the second experiment, we provided the LTL specification: 

(𝑞0 ∧ 𝐺𝐹 (𝑞1 ∧ 𝐹 𝑞2)) 

And two required inputs for E-LTLvis: 

   

Figure 58: Two required inputs for E-LTLvis 

During the second experiment, the Turtlebot always followed the preferred path. Figure 

59 shows the robot trajectory. 

 

Figure 59: Robot trajectory for experiment 2 
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Chapter 6 

RELATED WORK 

Control Interface 

In [13], the authors had shown that planning using sketch based interfaces can be 

improved using path correction. The interface is designed to be friendly to all users 

including the ones with Parkinson disease. Once users draw a path bypassing an invalid 

region (collisions), this interface will auto-correct the invalid sub-path to a valid Bezier 

curve. It can also correct multiple collisions in the same path. 

Previous attempts to combine planning graphical user interfaces with Linear 

Temporal Logic are presented in [5]. The authors there define a graphical language for 

LTL. With the proposed interface, the user can ‘draw’ the formula with edges and nodes. 

This interface supports LTL operators such as ‘AND’, ‘OR’, ‘ALWAYS’, ‘FUTURE’, 

‘UNTIL’, ‘IMPLIES’, ‘NEXT’ and ‘UNTIL’. Users can simply drag and drop the nodes 

and edges to generate the LTL formula.  

 Most of home robot users are non-expert programmers. Sakamoto et al. proposed a 

robot control interface especially for home cleaning robots [1]. In their work, a vacuum 

machine was controlled by the proposed interface to complete a set of tasks. The authors 

define a set of gesture commands for a set of actions. They include move with an open 

curve, vacuum with a closed curve, stop with a cross mark, etc. 

The proposed work from [3] is similar to our research. But instead of commanding 

a robot to follow a path, they assign a start and an end position for the robot and the robot 

will explore its path by searching the RRT of the given map. Their interface and planner 

system allow users to assign destinations outside of the given map by assuming these 
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unknown regions are spatially free. They also conducted tests to prove that the autonomous 

control is more efficient than manual control, and to prove that two copies of this system 

can run simultaneously. 

 The work presented in [12] proposed an interface solution controlling multiple 

robots. In the interface design, users are able to give commands to each individual robot in 

each individual interface layer. Only one interface layer can be active at a time. Users can 

also set the active time for each layer. When there is time conflict between layers, the 

system will automatically delay the later one, so that the robots will not conflict during the 

tasks. 

 In our interface, when a user sketch crosses over an undefined region, the interface 

can still find its BMP. But if this BMP conflicts with the LTL specification, it will be 

ignored without notifying the user. The interface also inherits all the gesture language from 

LTLvis [5]. For example, long pressing the screen can create a new node and single tabbing 

two nodes can link them with “AND” relation. This interface also has multiple layers 

(modes). Instead of configuring different robots in different layers, we configure one robot 

in different layers for different requirements. For example, the sketch mode is used to 

configure user sketch path and LTL mode is used to edit the LTL specification. 

LTL Planner 

In terms of LTL planning, in [18], the authors had proposed a solution to generate 

the optimal plan under a temporal logic specification. The system accepts the LTL 

specification and the transition system as input and creates a product automaton. Then, it 

uses a predefined weight heuristic to find the optimal cycle path including at least one 

accepting node with minimum cost in this new automaton.  
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To let the robot complete the mission in a dynamic environment, Ulusoy et al. 

proposed a solution in [14]. As the robot sensors have limited ability to scan the whole 

environment, they define a limited region as the local environment. The local environment 

can be changed as time proceeds and the robot needs to be aware of these changes. In [14], 

the environment is a 𝑛 × 𝑚 grid map. Every time, the robot enters into the next grid cell, 

the solution will regenerate the local environment and re-calculate the optimal path under 

this new local environment. 

Dynamic Time Warping 

 Dynamic Time Warping (DTW) is a similar approach to ours calculating the 

similarity of two trajectories [25, 26]. For two trajectories 𝑋𝑁 = (𝑥1, 𝑥2 … , 𝑥𝑁) and 𝑌𝑀 =

(𝑦1, 𝑦2 … , 𝑦𝑀),  

𝐷𝑇𝑊(𝑋𝑁, 𝑌𝑀) = 𝑐𝑜𝑠𝑡(𝑥𝑁 , 𝑦𝑀)

+ min (𝐷𝑇𝑊(𝑋𝑁−1,𝑌𝑀 ), 𝐷𝑇𝑊(𝑋𝑁,𝑌𝑀−1 ), 𝐷𝑇𝑊(𝑋𝑁−1,𝑌𝑀−1 )) 

Where cost() is distance between two symbols 𝑥𝑁 , 𝑦𝑀. In my work, cost() is defined as 

the distance from a point in path A to a corresponding line segment in path B and DTW is 

a similar concept as CWPD. BMP is an approach to find the best matching among a large 

number of sequences based on the CWPD.  

Others 

 In [27], the authors propose an approach to extract navigation states in the form of 

relative, robot-centered spatial descriptions from a hand-drawn map. First, the user needs 

to draw objects by sketching a polygon. During the sketching process, a delimiter is 

included to separate the string of coordinates for each object. After all objects have been 
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drawn, another delimiter is included to indicate the start of the robot trajectory. The post 

processing will start once the robot trajectory is drawn. For each point in the trajectory. 

System will build a view within the radius of the sensor range and a spatial description is 

generated relative to the objects within the range. If there is an object detected at the current 

point in the robot trajectory, a formal description “Object is to the left of the Robot” will 

be generated. The approach represents a first step in studying the use of spatial relations as 

a symbolic language between a human user and a robot for navigation tasks. 

 The work in [28, 29, 30] is based on [27]. The authors present a strategy for 

extracting qualitative route information from a sketched route map and then they show how 

this information can be used for robot navigation along the sketched path. Landmark states 

are the labeled objects on the map. Instead of extracting state information from all objects, 

this strategy only extracts landmark states at critical path nodes. When there is an action 

change at a node in the path, like “stop”, “turn left” etc., this node can be treated as a critical 

path node. A sequential compilation of steps is being generated as they are encountered 

along the sketched path. They also did experiments on a robot simulator in [28]. Frist, a 

path is drawn on a hand-drawn map. Then a sequential compilation of steps is generated 

for the critical path nodes along the sketch path. Then, the robot goes forward at the starting 

position. When the robot approaches a critical path node, after checking all state 

information matched at the current state, the robot will perform the corresponding actions. 

Then, the robot will keep executing the last action until it reaches next critical path node. 

When all the critical path nodes are visited, the task is completed. In [30], they solve the 

problem when objects are too far from the robot by incorporating an adaptive sensory 

radius algorithm. 
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 In [2], the authors have updated the interface proposed above with some useful 

features. The interface now can distinguish the objects by recognizing any closed polygon. 

The objects can be deleted, moved and labeled. The user can undo the most recent operation. 

During the sketching, duplicate points are pruned to make the algorithm more efficient. 

They conducted experiments to test the improvements. The results showed that the 

interface is as easy as using pencil and paper. 

 Based on [28], the authors increased accuracy when searching the match of the 

compilation of steps in [31]. They added an adjustable threshold, landmark distance to the 

qualitative landmark states (QLS) conditions to provide better confidence. They also used 

a reactive obstacle avoidance algorithm to ensure that the robot does not collide with any 

objects. 

 In [32, 33], the authors propose an interface allowing one operator to manage a 

team of robots. In the interface, users can originate multiple destinations and the interface 

will measure the distance between destinations to the starting position of the robots, and 

then assign the closest target to each robot. To avoid congestion in navigation, robots need 

to wait to begin moving before the last robot finishes its task. The interface also supports 

path commands. The path command will be segmented into a series of sub-destinations on 

a fixed interval length. The robot position will be updated in the interface in real time as a 

relative position to the landmarks. They also did a usability study to prove its ease of use.  

There are major constraints for [32, 33]. Before navigation, the sketched map and 

the map detected by the robot should be matched and their objects should be labeled 

correctly. Fail to match or inaccuracy would cause the robot to not be able to navigate 
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through the scene. In [34], authors present a technique to perform scene matching between 

a sketched map and a map of environment. The approach neutralizes the difference 

between the two maps by scaling, orientating, translating the objects. In the experiment, 

the approach successfully matched 7 out of 8 cases.  
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CONCLUSIONS AND FUTURE WORK 

Our current research aims to solve the path planning problem with a path 

requirement under an LTL specification for a single robot. We combined the ease of use of 

a sketch interface and LTLvis [14] into a hybrid interface to allow users input customized 

paths. We conducted two sets of experiments. The interface can express user demands and 

the planner can realize these demands correctly in the experiments.  

In terms of future research, the interface can be extended to multiple robots by 

adding a cooperation module. Second, we can add a real-time feedback module to the 

planner so that the users will know how the robots are running. Third, we plan to perform 

a usability study to test its ease of use.  
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APPENDIX A 

 

PROCEDURE OF ALG. 1



 

 

8
1
 

 

 

Step0: initialize the tables

BMP A B C D E

A ∅ ∅ ∅ ∅ ∅

n1 ∅ ∅ ∅ ∅ ∅

n2 ∅ ∅ ∅ ∅ ∅

n3 ∅ ∅ ∅ ∅ ∅

n4 ∅ ∅ ∅ ∅ ∅

n5 ∅ ∅ ∅ ∅ ∅

n6 ∅ ∅ ∅ ∅ ∅

E ∅ ∅ ∅ ∅ ∅

CWPD A B C D E

A ∞ ∞ ∞ ∞ ∞

n1 ∞ ∞ ∞ ∞ ∞

n2 ∞ ∞ ∞ ∞ ∞

n3 ∞ ∞ ∞ ∞ ∞

n4 ∞ ∞ ∞ ∞ ∞

n5 ∞ ∞ ∞ ∞ ∞

n6 ∞ ∞ ∞ ∞ ∞

E ∞ ∞ ∞ ∞ ∞

Algorithm1 FIND_BMP
Input: 𝑝0 , 𝑇𝑆
Output: 𝑝𝑏𝑚𝑝

1. M ← |𝑄𝑇𝑆|

2. N ← |𝑝0|

3. cwpd : , : ← ∞ //for N x M matrix

4. 𝑏𝑚𝑝 : , : ← ∅ //for N x Mmatrix

5. ⟨𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑⟩ ← ⟨𝑖𝑛𝑑𝑒𝑥 𝑝0 1 , 𝑖𝑛𝑑𝑒𝑥 𝑝0 −1 ⟩ //index of

nodes in 𝑄𝑇𝑆

6. ⟨𝑐𝑤𝑝𝑑 1 𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑚𝑝 1 𝑠𝑡𝑎𝑟𝑡 ⟩ ← ⟨0, 𝑝0 1 ⟩

7. For 𝑖 in range (2, N) do:

8. For j in range (1, M) do:

9. UPDATE(𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0, 𝑇𝑆)

10. 𝑝𝑏𝑚𝑝 ←  𝑏𝑚𝑝 𝑁 [𝑒𝑛𝑑]

11. Return 𝑝𝑏𝑚𝑝

where 𝑄𝑇𝑆 = {𝑞0, 𝑞1 … 𝑞𝑀−1} is the set of nodes in the TS
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Step0: start point.
p0: [A]

*dab1:  the distance from 𝑛1 to edge 𝑒𝑎𝑏

BMP A B C D E

A A

n1

n2

n3…E

CWPD A B C D E

A 0

n1

n2

n3…E

Algorithm1 FIND_BMP
Input: 𝑝0 , 𝑇𝑆
Output: 𝑝𝑏𝑚𝑝

1. M ← |𝑄𝑇𝑆|

2. N ← |𝑝0|

3. cwpd : , : ← ∞ //for N x M matrix

4. 𝑏𝑚𝑝 : , : ← ∅ //for N x Mmatrix

5. ⟨𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑⟩ ← ⟨𝑖𝑛𝑑𝑒𝑥 𝑝0 1 , 𝑖𝑛𝑑𝑒𝑥 𝑝0 −1 ⟩ //index of

nodes in 𝑄𝑇𝑆

6. ⟨𝑐𝑤𝑝𝑑 1 𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑚𝑝 1 𝑠𝑡𝑎𝑟𝑡 ⟩ ← ⟨0, 𝑝0 1 ⟩

7. For 𝑖 in range (2, N) do:

8. For j in range (1, M) do:

9. UPDATE(𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0, 𝑇𝑆)

10. 𝑝𝑏𝑚𝑝 ←  𝑏𝑚𝑝 𝑁 [𝑒𝑛𝑑]

11. Return 𝑝𝑏𝑚𝑝

where 𝑄𝑇𝑆 = {𝑞0, 𝑞1 … 𝑞𝑀−1} is the set of nodes in the TS
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Step1: find the possible BMPs 
and calculate their CWPDs in 
row n1
p0: [A,n1]

*dab1:  the distance from 𝑛1 to edge 𝑒𝑎𝑏

BMP A B C D E

A A

n1 AA AB AC

n2

n3…E

CWPD A B C D E

A 0

n1 daa1 dab1 dac1

n2

n3…E

*Possible BMPs for cell BMP[n1][A]= (all BMP[A] that can access A within one step**) + A
**These BMPs can be ended at A or A’s neighbors. 
For above row n1, previous BMP is A. By adding a node to A, we can get AA, AB, AC. 

Algorithm1 FIND_BMP
Input: 𝑝0 , 𝑇𝑆
Output: 𝑝𝑏𝑚𝑝

1. M ← |𝑄𝑇𝑆|

2. N ← |𝑝0|

3. cwpd : , : ← ∞ //for N x M matrix

4. 𝑏𝑚𝑝 : , : ← ∅ //for N x Mmatrix

5. ⟨𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑⟩ ← ⟨𝑖𝑛𝑑𝑒𝑥 𝑝0 1 , 𝑖𝑛𝑑𝑒𝑥 𝑝0 −1 ⟩ //index of

nodes in 𝑄𝑇𝑆

6. ⟨𝑐𝑤𝑝𝑑 1 𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑚𝑝 1 𝑠𝑡𝑎𝑟𝑡 ⟩ ← ⟨0, 𝑝0 1 ⟩

7. For 𝑖 in range (2, N) do:

8. For j in range (1, M) do:

9. UPDATE(𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0, 𝑇𝑆)

10. 𝑝𝑏𝑚𝑝 ←  𝑏𝑚𝑝 𝑁 [𝑒𝑛𝑑]

11. Return 𝑝𝑏𝑚𝑝

where 𝑄𝑇𝑆 = {𝑞0, 𝑞1 … 𝑞𝑀−1} is the set of nodes in the TS
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Algorithm2 UPDATE
Input: 𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0 , 𝑇𝑆

1. If 𝑏𝑚𝑝 𝑖 − 1 𝑗 ≠ ∅ then:

2. 𝑞𝑗 ← 𝑖𝑛𝑑𝑒𝑥−1(𝑗, 𝑄𝑇𝑆)

3. 𝑛𝑖
0 ← 𝑖𝑛𝑑𝑒𝑥−1(𝑖, 𝑝0 )

4. 𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑣 ← GetLastEdge(𝑏𝑚𝑝 𝑖 − 1 𝑗 )

5. 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 ← 𝑐𝑤𝑝𝑑 𝑖 − 1 𝑗 + distance( 𝑛𝑖
0, 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑓 ) //EQ2

6. If 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 < 𝑐𝑤𝑝𝑑 𝑖 [𝑗] then:

7. 𝑐𝑤𝑝𝑑 𝑖 𝑗 ← 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖

8. 𝑏𝑚𝑝 𝑖 𝑗 ←  𝑏𝑚𝑝 𝑖 − 1 𝑗 + 𝑞𝑗 //concatenate 𝑞𝑗 to the end

9. For 𝑞𝑘  in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑞𝑗 do:

10. 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 ← ⟨𝑞𝑗 , 𝑞𝑘⟩

11. 𝑘 ← 𝑖𝑛𝑑𝑒𝑥 𝑞𝑘 //𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑄𝑇𝑆

12. If 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 ≠ 𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑣 then:

13.  𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 ← 𝑐𝑤𝑝𝑑 𝑖 − 1 𝑘 + distance( 𝑛𝑖
0 , 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 )

14. If  𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 < 𝑐𝑤𝑝𝑑[𝑖][𝑘] then:

15. 𝑐𝑤𝑝𝑑 𝑖 𝑘 ← 𝑑 +  𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖

16. 𝑏𝑚𝑝 𝑖 𝑘 ← 𝑏𝑚𝑝 𝑖 − 1 𝑘 + 𝑞𝑘

GetLastEdge() returns the last edge of a given path, e.g., GetLastEdge([ABCDE]) returns ⟨DE⟩.

Step2: find all possible BMPs 
and calculate CWPDs in n2
p0: [A, n1, n2]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

BMP A B C D E

n1
AA AB AC

n2
bmp[n1][A]+A -> AAA
bmp[n1][B]+A -> ABA 
bmp[n1][C]+A -> ACA

bmp[n1][B]+B -> ABB
bmp[n1][A]+B -> AAB

bmp[n1][C]+C -> ACC
bmp[n1][A]+C -> AAC

bmp[n1][C]+D-> ACD bmp[n1][B]+D -> ABE

n3…E

CWPD A B C D E

n1
daa1 dab1 dac1

n2
cwpd[n1][A]+daa2
cwpd[n1][B]+dab2
cwpd[n1][C]+dac2

cwpd[n1][B]+dab2
cwpd[n1][A]+dab2

cwpd[n1][C]+dac2
cwpd[n1][A]+dac2

cwpd[n1][C]+dcd2 cwpd[n1][B]+dbe2

n3…E

*Possible BMPs for cell BMP[n2][A]= (all BMP[n1] that can access A within one step**) + A
**These BMPs can be ended at A or A’s neighbors.

*Accoring to EQ2, cwpd([A, n1, n2], ABA) = cwpd([A, n2], AB) + dab2 = cwpd[n1][B] + dab2
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Algorithm2 UPDATE
Input: 𝑐𝑤𝑝𝑑, 𝑏𝑚𝑝, 𝑖, 𝑗, 𝑝0 , 𝑇𝑆

1. If 𝑏𝑚𝑝 𝑖 − 1 𝑗 ≠ ∅ then:

2. 𝑞𝑗 ← 𝑖𝑛𝑑𝑒𝑥−1(𝑗, 𝑄𝑇𝑆)

3. 𝑛𝑖
0 ← 𝑖𝑛𝑑𝑒𝑥−1(𝑖, 𝑝0 )

4. 𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑣 ← GetLastEdge(𝑏𝑚𝑝 𝑖 − 1 𝑗 )

5. 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 ← 𝑐𝑤𝑝𝑑 𝑖 − 1 𝑗 + distance( 𝑛𝑖
0, 𝑒𝑑𝑔𝑒𝑠𝑒𝑙𝑓 ) //EQ2

6. If 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 < 𝑐𝑤𝑝𝑑 𝑖 [𝑗]

7. 𝑐𝑤𝑝𝑑 𝑖 𝑗 ← 𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖

8. 𝑏𝑚𝑝 𝑖 𝑗 ←  𝑏𝑚𝑝 𝑖 − 1 𝑗 + 𝑞𝑗 //concatenate 𝑞𝑗 to the end

9. For 𝑞𝑘  in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑞𝑗 do:

10. 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 ← ⟨𝑞𝑗 , 𝑞𝑘⟩

11. 𝑘 ← 𝑖𝑛𝑑𝑒𝑥 𝑞𝑘 //𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑄𝑇𝑆

12. If 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 ≠ 𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑣

13.  𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 ← 𝑐𝑤𝑝𝑑 𝑖 − 1 𝑘 + distance( 𝑛𝑖
0 , 𝑒𝑑𝑔𝑒𝑐𝑢𝑟𝑟 )

14. If  𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖 < 𝑐𝑤𝑝𝑑[𝑖][𝑘]

15. 𝑐𝑤𝑝𝑑 𝑖 𝑘 ← 𝑑 +  𝑐𝑤𝑝𝑑𝑐𝑎𝑛𝑑𝑖

16. 𝑏𝑚𝑝 𝑖 𝑘 ← 𝑏𝑚𝑝 𝑖 − 1 𝑘 + 𝑞𝑘

GetLastEdge() returns the last edge of a given path, e.g., GetLastEdge([ABCDE]) returns ⟨DE⟩.

Step2.5: find the minimum 
cwpd. Its corresponding cell in 
BMP table is the correct BMP 
for this cell
p0: [A, n1, n2]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n1
daa1 dab1 dac1

n2

cwpd[n1][A]+daa2
cwpd[n1][B]+dab2 -> cwpd[n2][A]
cwpd[n1][C]+dac2

cwpd[n1][B]+dab2-> cwpd[n2][B]
cwpd[n1][A]+dab2

cwpd[n1][C]+dac2-> cwpd[n2][C]
cwpd[n1][A]+dac2

cwpd[n1][C]+dcd2-> cwpd[n2][D] cwpd[n1][B]+dbe2->cwpd[n2][E]

n3…E

BMP A B C D E

n1
AA AB AC

n2
bmp[n1][A]+A -> AAA
bmp[n1][B]+A -> ABA ->bmp[n2][A]
bmp[n1][C]+A -> ACA

bmp[n1][B]+B -> ABB ->bmp[n2][B]
bmp[n1][A]+B -> AAB

bmp[n1][C]+C -> ACC ->bmp[n2][C]
bmp[n1][A]+C -> AAC

bmp[n1][C]+D-> ACD ->bmp[n2][D] bmp[n1][B]+D -> ABE ->bmp[n2][E]

n3…E
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Step3: find all possible BMPs 
and calculate CWPDs in n3
p0: [A, n1, n2, n3]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n2
cwpd[n2][A] cwpd[n2][B] cwpd[n2][C] cwpd[n2][D] cwpd[n2][E]

n3
cwpd[n2][A]+dab3 
cwpd[n2][B]+dab3
cwpd[n2][C]+dac3

cwpd[n2][B]+dab3
cwpd[n2][A]+dab3
cwpd[n2][E]+dbe3

cwpd[n2][C]+dac3
cwpd[n2][A]+dac3 
cwpd[n2][D]+dcd3

cwpd[n2][D]+dcd3
cwpd[n2][C]+dcd3
cwpd[n2][E]+dde3

cwpd[n2][E]+dbe3
cwpd[n2][B]+dbe3
cwpd[n2][D]+dde3

n4…E

BMP A B C D E

n2
ABA ->bmp[n2][A] ABB ->bmp[n2][B] ACC ->bmp[n2][C] ACD ->bmp[n2][D] ABE ->bmp[n2][E]

n3
bmp[n2][A]+A -> ABAA 
bmp[n2][B]+A -> ABBA
bmp[n2][C]+A -> ACCA

bmp[n2][B]+B -> ABBB 
bmp[n2][A]+B -> ABAB
bmp[n2][E]+B -> ABEB

bmp[n2][C]+C -> ACCC
bmp[n2][A]+C -> ABAC 
bmp[n2][D]+C -> ACDC

bmp[n2][D]+D -> ACDD
bmp[n2][C]+D -> ACCD
bmp[n2][E]+D -> ABED

bmp[n2][E]+E -> ABEE
bmp[n2][B]+E -> ABBE
bmp[n2][D]+E -> ACDE

n4…E
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Step3.5: find the minimum 
cwpd. Its corresponding cell in 
BMP table is the correct BMP 
for this cell
p0: [A, n1, n2, n3]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n2
cwpd[n2][A] cwpd[n2][B] cwpd[n2][C] cwpd[n2][D] cwpd[n2][E]

n3
cwpd[n2][A]+dab3 -> cwpd[n3][A]
cwpd[n2][B]+dab3
cwpd[n2][C]+dac3

cwpd[n2][B]+dab3 -> cwpd[n3][B] 
cwpd[n2][A]+dab3
cwpd[n2][E]+dbe3

cwpd[n2][C]+dac3
cwpd[n2][A]+dac3 -> cwpd[n3][C]
cwpd[n2][D]+dcd3

cwpd[n2][D]+dcd3
cwpd[n2][C]+dcd3
cwpd[n2][E]+dde3 -> cwpd[n3][D]

cwpd[n2][E]+dbe3 -> cwpd[n3][E]
cwpd[n2][B]+dbe3
cwpd[n2][D]+dde3

n4…E

BMP A B C D E

n2
ABA ->bmp[n2][A] ABB ->bmp[n2][B] ACC ->bmp[n2][C] ACD ->bmp[n2][D] ABE ->bmp[n2][E]

n3

bmp[n2][A]+A -> ABAA -> 
bmp[n3][A]
bmp[n2][B]+A -> ABBA
bmp[n2][C]+A -> ACCA

bmp[n2][B]+B -> ABBB -> 
bmp[n3][B] 
bmp[n2][A]+B -> ABAB
bmp[n2][E]+B -> ABEB

bmp[n2][C]+C -> ACCC
bmp[n2][A]+C -> ABAC -> 
bmp[n3][C]
bmp[n2][D]+C -> ACDC

bmp[n2][D]+D -> ACDD
bmp[n2][C]+D -> ACCD
bmp[n2][E]+D -> ABED -> 
bmp[n3][D]

bmp[n2][E]+E -> ABEE -> bmp[n3][E]
bmp[n2][B]+E -> ABBE
bmp[n2][D]+E -> ACDE

n4…E
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Step4: find all possible BMPs 
and calculate CWPDs in n4
p0: [A, n1, n2, n3, n4]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n3
cwpd[n3][A] cwpd[n3][B] cwpd[n3][C] cwpd[n3][D] cwpd[n3][E]

n4
cwpd[n3][A]+dab4 
cwpd[n3][B]+dab4
cwpd[n3][C]+dac4

cwpd[n3][B]+dab4
cwpd[n3][A]+dab4
cwpd[n3][E]+dbe4

cwpd[n3][C]+dac4
cwpd[n3][A]+dac4 
cwpd[n3][D]+dcd4

cwpd[n3][D]+dde4
cwpd[n3][C]+dcd4
cwpd[n3][E]+dde4

cwpd[n3][E]+dbe4
cwpd[n3][B]+dbe4
cwpd[n3][D]+dde4

n5…E

BMP A B C D E

n3
ABAA -> bmp[n3][A] ABBB -> bmp[n3][B] ABAC -> bmp[n3][C] ABED -> bmp[n3][D] ABEE -> bmp[n3][E]

n4
bmp[n3][A]+A -> ABAAA
bmp[n3][B]+A -> ABBBA
bmp[n3][C]+A -> ABCAA

bmp[n3][B]+B -> ABBBB
bmp[n3][A]+B -> ABAAB
bmp[n3][E]+B -> ABEEB 

bmp[n3][C]+C -> ABACC
bmp[n3][A]+C -> ABAAC
bmp[n3][D]+C -> ABEDC

bmp[n3][D]+D -> ABEDD
bmp[n3][C]+D -> ABACD
bmp[n3][E]+D -> ABEED

bmp[n3][E]+E -> ABEEE
bmp[n3][B]+E -> ABBBE
bmp[n3][D]+E -> ABEDE

n5…E
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Step4.5:find the minimum 
cwpd. Its corresponding cell in 
BMP table is the correct BMP 
for this cell
p0: [A, n1, n2, n3, n4]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n3
cwpd[n3][A] cwpd[n3][B] cwpd[n3][C] cwpd[n3][D] cwpd[n3][E]

n4
cwpd[n3][A]+dab4 -> cwpd[n4][A]
cwpd[n3][B]+dab4
cwpd[n3][C]+dac4

cwpd[n3][B]+dab4
cwpd[n3][A]+dab4
cwpd[n3][E]+dbe4 -> cwpd[n4][B]

cwpd[n3][C]+dac4
cwpd[n3][A]+dac4 -> cwpd[n4][C]
cwpd[n3][D]+dcd4

cwpd[n3][D]+dde4
cwpd[n3][C]+dcd4
cwpd[n3][E]+dde4 -> cwpd[n4][D]

cwpd[n3][E]+dbe4
cwpd[n3][B]+dbe4-> cwpd[n4][E]
cwpd[n3][D]+dde4

n5…E

BMP A B C D E

n3
ABAA -> bmp[n3][A] ABBB -> bmp[n3][B] ABAC -> bmp[n3][C] ABED -> bmp[n3][D] ABEE -> bmp[n3][E]

n4

bmp[n3][A]+A -> ABAAA -> 
bmp[n4][A]
bmp[n3][B]+A -> ABBBA
bmp[n3][C]+A -> ABCAA

bmp[n3][B]+B -> ABBBB
bmp[n3][A]+B -> ABAAB
bmp[n3][E]+B -> ABEEB -> 
bmp[n4][B]

bmp[n3][C]+C -> ABACC
bmp[n3][A]+C -> ABAAC -> 
bmp[n4][C]
bmp[n3][D]+C -> ABEDC

bmp[n3][D]+D -> ABEDD
bmp[n3][C]+D -> ABACD
bmp[n3][E]+D -> ABEED -> 
bmp[n4][D]

bmp[n3][E]+E -> ABEEE
bmp[n3][B]+E -> ABBBE-> 
bmp[n4][E]
bmp[n3][D]+E -> ABEDE

n5…E
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Step5: find all possible 
BMPs and calculate 
CWPDs in n5
p0: [A, n1, n2, n3, n4, n5]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n4
cwpd[n4][A] cwpd[n4][B] cwpd[n4][C] cwpd[n4][D] cwpd[n4][E]

n5
cwpd[n4][A]+dab5
cwpd[n4][B]+dab5
cwpd[n4][C]+dac5

cwpd[n4][B]+dbe5
cwpd[n4][A]+dab5
cwpd[n4][E]+dbe5

cwpd[n4][C]+dac5
cwpd[n4][A]+dac5
cwpd[n4][D]+dcd5

cwpd[n4][D]+dde5
cwpd[n4][C]+dcd5
cwpd[n4][E]+dde5

cwpd[n4][E]+dbe5
cwpd[n4][B]+dbe5
cwpd[n4][D]+dde5

n6…E

BMP A B C D E

n4
ABAAA -> bmp[n4][A] ABEEB -> bmp[n4][B] ABAAC -> bmp[n4][C] ABEED -> bmp[n4][D] ABBBE-> bmp[n4][E]

n5
bmp[n4][A]+A -> ABAAAA
bmp[n4][B]+A -> ABEEBA
bmp[n4][C]+A -> ABAACA

bmp[n4][B]+B -> ABEEBB
bmp[n4][A]+B -> ABAAAB
bmp[n4][E]+B -> ABBBEB

bmp[n4][C]+C -> ABAACC
bmp[n4][A]+C -> ABAAAC
bmp[n4][D]+C -> ABEEDC

bmp[n4][D]+D -> ABEEDD
bmp[n4][C]+D -> ABAACD
bmp[n4][E]+D -> ABBBED

bmp[n4][E]+E -> ABBBEE
bmp[n4][B]+E -> ABEEBE
bmp[n4][D]+E -> ABEEDE

n6…E
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Step5.5: find the minimum 
cwpd. Its corresponding cell in 
BMP table is the correct BMP 
for this cell
p0: [A, n1, n2, n3, n4, n5]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n4
cwpd[n4][A] cwpd[n4][B] cwpd[n4][C] cwpd[n4][D] cwpd[n4][E]

n5
cwpd[n4][A]+dab5
cwpd[n4][B]+dab5-> cwpd[n5][A]
cwpd[n4][C]+dac5

cwpd[n4][B]+dbe5
cwpd[n4][A]+dab5
cwpd[n4][E]+dbe5 -> cwpd[n5][B]

cwpd[n4][C]+dac5
cwpd[n4][A]+dac5 -> cwpd[n5][C]
cwpd[n4][D]+dcd5

cwpd[n4][D]+dde5
cwpd[n4][C]+dcd5
cwpd[n4][E]+dde5 -> cwpd[n5][D]

cwpd[n4][E]+dbe5 -> cwpd[n5][E]
cwpd[n4][B]+dbe5
cwpd[n4][D]+dde5

n6…E

BMP A B C D E

n4
ABAAA -> bmp[n4][A] ABEEB -> bmp[n4][B] ABAAC -> bmp[n4][C] ABEED -> bmp[n4][D] ABBBE-> bmp[n4][E]

n5

bmp[n4][A]+A -> ABAAAA
bmp[n4][B]+A -> ABEEBA-> 
bmp[n5][A]
bmp[n4][C]+A -> ABAACA

bmp[n4][B]+B -> ABEEBB
bmp[n4][A]+B -> ABAAAB
bmp[n4][E]+B -> ABBBEB -> 
bmp[n5][B]

bmp[n4][C]+C -> ABAACC
bmp[n4][A]+C -> ABAAAC -> 
bmp[n5][C]
bmp[n4][D]+C -> ABEEDC

bmp[n4][D]+D -> ABEEDD
bmp[n4][C]+D -> ABAACD
bmp[n4][E]+D -> ABBBED -> 
bmp[n5][D]

bmp[n4][E]+E -> ABBBEE -> 
bmp[n5][E]
bmp[n4][B]+E -> ABEEBE
bmp[n4][D]+E -> ABEEDE

n6…E
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Step6: find all possible BMPs 
and calculate CWPDs in n6
p0: [A, n1, n2, n3, n4, n5, n6]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n5
cwpd[n5][A] cwpd[n5][B] cwpd[n5][C] cwpd[n5][D] cwpd[n5][E]

n6
cwpd[n5][A]+dab6
cwpd[n5][B]+dab6
cwpd[n5][C]+dac6

cwpd[n5][B]+dbe6
cwpd[n5][A]+dab6
cwpd[n5][E]+dbe6

cwpd[n5][C]+dac6
cwpd[n5][A]+dac6
cwpd[n5][D]+dcd6

cwpd[n5][D]+dde6
cwpd[n5][C]+dcd6
cwpd[n5][E]+dde6 

cwpd[n5][E]+dbe6 
cwpd[n5][B]+dbe6
cwpd[n5][D]+dde6

E

BMP A B C D E

n5
ABEEBA-> bmp[n5][A] ABBBEB -> bmp[n5][B] ABAAAC -> bmp[n5][C] ABBBED -> bmp[n5][D] ABBBEE -> bmp[n5][E]

n6
bmp[n5][A]+A -> ABEEBAA
bmp[n5][B]+A -> ABBBEBA
bmp[n5][C]+A -> ABAAACA

bmp[n5][B]+B -> ABBBEBB
bmp[n5][A]+B -> ABEEBAB
bmp[n5][E]+B -> ABBBEEB

bmp[n5][C]+C -> ABAAACC
bmp[n5][A]+C -> ABEEBAC
bmp[n5][D]+C -> ABBBEDC

bmp[n5][D]+D -> ABBBEDD
bmp[n5][C]+D -> ABAAACD
bmp[n5][E]+D -> ABBBEED

bmp[n5][E]+E -> ABBBEEE 
bmp[n5][B]+E -> ABBBEBE
bmp[n5][D]+E -> ABBBEDE

E
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Step6.5: find the minimum 
cwpd. Its corresponding cell in 
BMP table is the correct BMP 
for this cell
p0: [A, n1, n2, n3, n4, n5, n6]

*dab2:  the distance from 𝑛2 to edge 𝑒𝑎𝑏

CWPD A B C D E

n5
cwpd[n5][A] cwpd[n5][B] cwpd[n5][C] cwpd[n5][D] cwpd[n5][E]

n6
cwpd[n5][A]+dab6
cwpd[n5][B]+dab6-> cwpd[n6][A]
cwpd[n5][C]+dac6

cwpd[n5][B]+dbe6
cwpd[n5][A]+dab6
cwpd[n5][E]+dbe6 -> cwpd[n6][B]

cwpd[n5][C]+dac6
cwpd[n5][A]+dac6
cwpd[n5][D]+dcd6 -> cwpd[n6][C]

cwpd[n5][D]+dde6
cwpd[n5][C]+dcd6
cwpd[n5][E]+dde6 -> cwpd[n6][D]

cwpd[n5][E]+dbe6 -> cwpd[n6][E]
cwpd[n5][B]+dbe6
cwpd[n5][D]+dde6

E

BMP A B C D E

n5
ABEEBA-> bmp[n5][A] ABBBEB -> bmp[n5][B] ABAAAC -> bmp[n5][C] ABBBED -> bmp[n5][D] ABBBEE -> bmp[n5][E]

n6

bmp[n5][A]+A -> ABEEBAA
bmp[n5][B]+A -> ABBBEBA-> 
bmp[n6][A]
bmp[n5][C]+A -> ABAAACA

bmp[n5][B]+B -> ABBBEBB
bmp[n5][A]+B -> ABEEBAB
bmp[n5][E]+B -> ABBBEEB -> 
bmp[n6][B]

bmp[n5][C]+C -> ABAAACC
bmp[n5][A]+C -> ABEEBAC
bmp[n5][D]+C -> ABBBEDC-> 
bmp[n6][C]

bmp[n5][D]+D -> ABBBEDD
bmp[n5][C]+D -> ABAAACD
bmp[n5][E]+D -> ABBBEED-> 
bmp[n6][D]

bmp[n5][E]+E -> ABBBEEE -> 
bmp[n6][E]
bmp[n5][B]+E -> ABBBEBE
bmp[n5][D]+E -> ABBBEDE

E
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Step7:find all possible BMPs and 
calculate CWPDs in E
p0: [A, n1, n2, n3, n4, n5, n6, E]

*dabe:  the distance from E to edge 𝑒𝑎𝑏

*dbee = ddee = 0

The result in green cell will 
be the final BMP

CWPD A B C D E

n6
cwpd[n6][A] cwpd[n6][B] cwpd[n6][C] cwpd[n6][D] cwpd[n6][E]

E
cwpd[n6][A]+dabe
cwpd[n6][B]+dabe
cwpd[n6][C]+dace

cwpd[n6][B]+dbee
cwpd[n6][A]+dabe
cwpd[n6][E]+dabe

cwpd[n6][C]+dcde
cwpd[n6][A]+dace
cwpd[n6][D]+dcde

cwpd[n6][D]+ddee
cwpd[n6][C]+dcde
cwpd[n6][E]+ddee

cwpd[n6][E]+dbee
cwpd[n6][B]+dbee
cwpd[n6][D]+ddee

BMP A B C D E

n6
ABBBEBA-> bmp[n6][A] ABBBEEB -> bmp[n6][B] ABBBEDC-> bmp[n6][C] ABBBEED-> bmp[n6][D] ABBBEEE -> bmp[n6][E]

E
bmp[n6][A]+A -> ABBBEBAA
bmp[n6][B]+A -> ABBBEEBA
bmp[n6][C]+A -> ABBBEDCA

bmp[n6][B]+B -> ABBBEEBB 
bmp[n6][A]+B -> ABBBEBAB
bmp[n6][E]+B -> ABBBEBAB

bmp[n6][C]+C -> ABBBEDCC
bmp[n6][A]+C -> ABBBEBAC
bmp[n6][D]+C -> ABBBEEDC

bmp[n6][D]+D -> ABBBEEDD
bmp[n6][C]+D -> ABBBEDCD
bmp[n6][E]+D -> ABBBEEED

bmp[n6][E]+E -> ABBBEEEE 
bmp[n6][B]+E -> ABBBEEBE
bmp[n6][D]+E -> ABBBEEDE
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Step7.5:find the minimum cwpd. 
Its corresponding cell in BMP table 
is the correct BMP for this cell
p0: [A, n1, n2, n3, n4, n5, n6, E]

*dabe:  the distance from E to edge 𝑒𝑎𝑏

*dbee = ddee = 0

The result in green is 
[ABBBEEE] which is equivalent 
to [ABE]

CWPD A B C D E

n6
cwpd[n6][A] cwpd[n6][B] cwpd[n6][C] cwpd[n6][D] cwpd[n6][E]

E
cwpd[n6][A]+dabe
cwpd[n6][B]+dabe-> cwpd[E][A]
cwpd[n6][C]+dace

cwpd[n6][B]+dbee -> cwpd[E][B]
cwpd[n6][A]+dabe
cwpd[n6][E]+dabe

cwpd[n6][C]+dcde
cwpd[n6][A]+dace
cwpd[n6][D]+dcde -> cwpd[E][C]

cwpd[n6][D]+ddee
cwpd[n6][C]+dcde
cwpd[n6][E]+ddee -> cwpd[E][D]

cwpd[n6][E]+dbee -> cwpd[E][E]
cwpd[n6][B]+dbee
cwpd[n6][D]+ddee

BMP A B C D E

n6
ABBBEBA-> bmp[n6][A] ABBBEEB -> bmp[n6][B] ABBBEDC-> bmp[n6][C] ABBBEED-> bmp[n6][D] ABBBEEE -> bmp[n6][E]

E

bmp[n6][A]+A -> ABBBEBAA
bmp[n6][B]+A -> ABBBEEBA-> 
bmp[E][A]
bmp[n6][C]+A -> ABBBEDCA

bmp[n6][B]+B -> ABBBEEBB -> 
bmp[E][B]
bmp[n6][A]+B -> ABBBEBAB
bmp[n6][E]+B -> ABBBEBAB

bmp[n6][C]+C -> ABBBEDCC
bmp[n6][A]+C -> ABBBEBAC
bmp[n6][D]+C -> ABBBEEDC-> 
bmp[E][C]

bmp[n6][D]+D -> ABBBEEDD
bmp[n6][C]+D -> ABBBEDCD
bmp[n6][E]+D -> ABBBEEED-> 
bmp[E][D]

bmp[n6][E]+E -> ABBBEEEE -> 
bmp[E][E]
bmp[n6][B]+E -> ABBBEEBE
bmp[n6][D]+E -> ABBBEEDE
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Final BMP Table

BMP A B C D E

A A

n1
AA AB AC

n2

bmp[n1][A]+A -> AAA
bmp[n1][B]+A -> ABA ->bmp[n2][A]
bmp[n1][C]+A -> ACA

bmp[n1][B]+B -> ABB ->bmp[n2][B]
bmp[n1][A]+B -> AAB

bmp[n1][C]+C -> ACC ->bmp[n2][C]
bmp[n1][A]+C -> AAC

bmp[n1][C]+D-> ACD ->bmp[n2][D] bmp[n1][B]+D -> ABE ->bmp[n2][E]

n3

bmp[n2][A]+A -> ABAA -> bmp[n3][A]
bmp[n2][B]+A -> ABBA
bmp[n2][C]+A -> ACCA

bmp[n2][B]+B -> ABBB -> bmp[n3][B] 
bmp[n2][A]+B -> ABAB
bmp[n2][E]+B -> ABEB

bmp[n2][C]+C -> ACCC
bmp[n2][A]+C -> ABAC -> bmp[n3][C]
bmp[n2][D]+C -> ACDC

bmp[n2][D]+D -> ACDD
bmp[n2][C]+D -> ACCD
bmp[n2][E]+D -> ABED -> bmp[n3][D]

bmp[n2][E]+E -> ABEE -> bmp[n3][E]
bmp[n2][B]+E -> ABBE
bmp[n2][D]+E -> ACDE

n4

bmp[n3][A]+A -> ABAAA -> bmp[n4][A]
bmp[n3][B]+A -> ABBBA
bmp[n3][C]+A -> ABCAA

bmp[n3][B]+B -> ABBBB
bmp[n3][A]+B -> ABAAB
bmp[n3][E]+B -> ABEEB -> bmp[n4][B]

bmp[n3][C]+C -> ABACC
bmp[n3][A]+C -> ABAAC -> bmp[n4][C]
bmp[n3][D]+C -> ABEDC

bmp[n3][D]+D -> ABEDD
bmp[n3][C]+D -> ABACD
bmp[n3][E]+D -> ABEED -> bmp[n4][D]

bmp[n3][E]+E -> ABEEE
bmp[n3][B]+E -> ABBBE-> bmp[n4][E]
bmp[n3][D]+E -> ABEDE

n5

bmp[n4][A]+A -> ABAAAA
bmp[n4][B]+A -> ABEEBA-> bmp[n5][A]
bmp[n4][C]+A -> ABAACA

bmp[n4][B]+B -> ABEEBB
bmp[n4][A]+B -> ABAAAB
bmp[n4][E]+B -> ABBBEB -> bmp[n5][B]

bmp[n4][C]+C -> ABAACC
bmp[n4][A]+C -> ABAAAC -> 
bmp[n5][C]
bmp[n4][D]+C -> ABEEDC

bmp[n4][D]+D -> ABEEDD
bmp[n4][C]+D -> ABAACD
bmp[n4][E]+D -> ABBBED -> 
bmp[n5][D]

bmp[n4][E]+E -> ABBBEE -> bmp[n5][E]
bmp[n4][B]+E -> ABEEBE
bmp[n4][D]+E -> ABEEDE

n6

bmp[n5][A]+A -> ABEEBAA
bmp[n5][B]+A -> ABBBEBA-> 
bmp[n6][A]
bmp[n5][C]+A -> ABAAACA

bmp[n5][B]+B -> ABBBEBB
bmp[n5][A]+B -> ABEEBAB
bmp[n5][E]+B -> ABBBEEB -> 
bmp[n6][B]

bmp[n5][C]+C -> ABAAACC
bmp[n5][A]+C -> ABEEBAC
bmp[n5][D]+C -> ABBBEDC-> 
bmp[n6][C]

bmp[n5][D]+D -> ABBBEDD
bmp[n5][C]+D -> ABAAACD
bmp[n5][E]+D -> ABBBEED-> 
bmp[n6][D]

bmp[n5][E]+E -> ABBBEEE -> 
bmp[n6][E]
bmp[n5][B]+E -> ABBBEBE
bmp[n5][D]+E -> ABBBEDE

E

bmp[n6][A]+A -> ABBBEBAA
bmp[n6][B]+A -> ABBBEEBA-> 
bmp[E][A]
bmp[n6][C]+A -> ABBBEDCA

bmp[n6][B]+B -> ABBBEEBB -> 
bmp[E][B]
bmp[n6][A]+B -> ABBBEBAB
bmp[n6][E]+B -> ABBBEBAB

bmp[n6][C]+C -> ABBBEDCC
bmp[n6][A]+C -> ABBBEBAC
bmp[n6][D]+C -> ABBBEEDC-> 
bmp[E][C]

bmp[n6][D]+D -> ABBBEEDD
bmp[n6][C]+D -> ABBBEDCD
bmp[n6][E]+D -> ABBBEEED-> 
bmp[E][D]

bmp[n6][E]+E -> ABBBEEEE -> 
bmp[E][E]
bmp[n6][B]+E -> ABBBEEBE
bmp[n6][D]+E -> ABBBEEDE
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Final CWPD Table

CWPD A B C D E

A 0

n1 daa1 dab1 dac1

n2

cwpd[n1][A]+daa2
cwpd[n1][B]+dab2 -> cwpd[n2][A]
cwpd[n1][C]+dac2

cwpd[n1][B]+dab2-> cwpd[n2][B]
cwpd[n1][A]+dab2

cwpd[n1][C]+dac2-> cwpd[n2][C]
cwpd[n1][A]+dac2

cwpd[n1][C]+dcd2-> cwpd[n2][D] cwpd[n1][B]+dbe2->cwpd[n2][E]

n3

cwpd[n2][A]+dab3 -> cwpd[n3][A]
cwpd[n2][B]+dab3
cwpd[n2][C]+dac3

cwpd[n2][B]+dab3 -> cwpd[n3][B] 
cwpd[n2][A]+dab3
cwpd[n2][E]+dbe3

cwpd[n2][C]+dac3
cwpd[n2][A]+dac3 -> cwpd[n3][C]
cwpd[n2][D]+dcd3

cwpd[n2][D]+dcd3
cwpd[n2][C]+dcd3
cwpd[n2][E]+dde3 -> cwpd[n3][D]

cwpd[n2][E]+dbe3 -> cwpd[n3][E]
cwpd[n2][B]+dbe3
cwpd[n2][D]+dde3

n4

cwpd[n3][A]+dab4 -> cwpd[n4][A]
cwpd[n3][B]+dab4
cwpd[n3][C]+dac4

cwpd[n3][B]+dab4
cwpd[n3][A]+dab4
cwpd[n3][E]+dbe4 -> cwpd[n4][B]

cwpd[n3][C]+dac4
cwpd[n3][A]+dac4 -> cwpd[n4][C]
cwpd[n3][D]+dcd4

cwpd[n3][D]+dde4
cwpd[n3][C]+dcd4
cwpd[n3][E]+dde4 -> cwpd[n4][D]

cwpd[n3][E]+dbe4
cwpd[n3][B]+dbe4-> cwpd[n4][E]
cwpd[n3][D]+dde4

n5

cwpd[n4][A]+dab5
cwpd[n4][B]+dab5-> cwpd[n5][A]
cwpd[n4][C]+dac5

cwpd[n4][B]+dbe5
cwpd[n4][A]+dab5
cwpd[n4][E]+dbe5 -> cwpd[n5][B]

cwpd[n4][C]+dac5
cwpd[n4][A]+dac5 -> cwpd[n5][C]
cwpd[n4][D]+dcd5

cwpd[n4][D]+dde5
cwpd[n4][C]+dcd5
cwpd[n4][E]+dde5 -> cwpd[n5][D]

cwpd[n4][E]+dbe5 -> cwpd[n5][E]
cwpd[n4][B]+dbe5
cwpd[n4][D]+dde5

n6

cwpd[n5][A]+dab6
cwpd[n5][B]+dab6-> cwpd[n6][A]
cwpd[n5][C]+dac6

cwpd[n5][B]+dbe6
cwpd[n5][A]+dab6
cwpd[n5][E]+dbe6 -> cwpd[n6][B]

cwpd[n5][C]+dac6
cwpd[n5][A]+dac6
cwpd[n5][D]+dcd6 -> cwpd[n6][C]

cwpd[n5][D]+dde6
cwpd[n5][C]+dcd6
cwpd[n5][E]+dde6 -> cwpd[n6][D]

cwpd[n5][E]+dbe6 -> cwpd[n6][E]
cwpd[n5][B]+dbe6
cwpd[n5][D]+dde6

E

cwpd[n6][A]+dabe
cwpd[n6][B]+dabe-> cwpd[E][A]
cwpd[n6][C]+dace

cwpd[n6][B]+dbee -> cwpd[E][B]
cwpd[n6][A]+dabe
cwpd[n6][E]+dabe

cwpd[n6][C]+dcde
cwpd[n6][A]+dace
cwpd[n6][D]+dcde -> cwpd[E][C]

cwpd[n6][D]+ddee
cwpd[n6][C]+dcde
cwpd[n6][E]+ddee -> cwpd[E][D]

cwpd[n6][E]+dbee -> cwpd[E][E]
cwpd[n6][B]+dbee
cwpd[n6][D]+ddee

 


