
Joint RNN Model for Argument Component Boundary Detection

Minglan Li, Yang Gao, Hui Wen, Yang Du, Haijing Liu and Hao Wang
Institute of Software Chinese Academy of Sciences

University of Chinese Academy of Sciences
Email: {minglan2015, gaoyang, wenhui2015, duyang2015, haijing2015, wanghao}@iscas.ac.cn

Abstract—Argument Component Boundary Detection (ACBD)
is an important sub-task in argumentation mining; it aims
at identifying the word sequences that constitute argument
components, and is usually considered as the first sub-task in
the argumentation mining pipeline. Existing ACBD methods
heavily depend on task-specific knowledge, and require consid-
erable human efforts on feature-engineering. To tackle these
problems, in this work, we formulate ACBD as a sequence
labeling problem and propose a variety of Recurrent Neural
Network (RNN) based methods, which do not use domain
specific or handcrafted features beyond the relative position
of the sentence in the document. In particular, we propose
a novel joint RNN model that can predict whether sentences
are argumentative or not, and use the predicted results to
more precisely detect the argument component boundaries.
We evaluate our techniques on two corpora from two different
genres; results suggest that our joint RNN model obtain the
state-of-the-art performance on both datasets.

1. Introduction

Argumentation mining aims at automatically extracting
arguments from natural language texts [19]. An argument is
a basic unit people use to persuade their audiences to accept
a particular state of affairs [3], and it usually consists of
one or more argument components, for example a claim and
some premises offered in support of the claim. As a concrete
example, consider the essay excerpt below (obtained from
the essay corpus in [25]):

Example 1: Furthermore, 1©[[putting taxpayers’
money on building theaters or sports stadiums
is unfair to those who cannot use them]]. That
is the reason why 2©[[sectors such as medical
care and education deserve more governmental
support]], because 3©[[they are accessed by every
individual in our society on a daily basis]].

The above example includes three argument components
([[]] give their boundaries): one claim (in bold face) and two
premises (underlined). Premises 1© and 3© support the claim
2©. As argumentation mining reveals the discourse relations
between clauses, it can be potentially used in applications
like decision making, document summarising, essay scoring,
etc., and thus receives growing research interests in recent
years (see, e.g. [16]).

A typical argumentation mining pipeline consists of
three consecutive subtasks [24]: i) separating argument com-
ponents from non-argumentative texts, ii) classifying the
type (e.g. claim or premise or others) of argument compo-
nents; and iii) predicting the relations (e.g. support or attack)
between argument components. The first subtask is also
known as argument component boundary detection (ACBD);
it aims at finding the exact boundary of a consecutive token
subsequence that constitutes an argument component, thus
separating it from non-argumentative texts. In this work, we
focus on the ACBD subtask, because ACBD’s performance
significantly influences downstream argumentation mining
subtasks’ performances, but there exist relatively little re-
search working on ACBD.

Most existing ACBD techniques require sophisticated
hand-crafted features (e.g. syntactic, structural and lexi-
cal features) and domain-specific resources (e.g. indicator
gazetteers), resulting in their poor cross-domain applicabil-
ities. To combat these problems, in this work, we consider
ACBD as a sequence labeling task at the token level and
propose some novel neural network based ACBD methods,
so that no domain specific or hand-crafted features beyond
the relative location of sentences are used. Although neural
network based approaches have been recently used in some
related Natural Language Processing (NLP) tasks, such as
linguistic sequence labelling [9] and named entity recog-
nition (NER) [13], applying neural network to ACBD is
challenging because the length of an argument component
is much longer than that of a name/location in NER: [23]
reports that an argument component includes 24.25 words
in average, while a name/location usually consists of only
2 to 5 words. In fact, it has been reported in [14], [25]
that separating argumentative and non-argumentative texts
is often subtle even to human annotators.

In particular, our neural network models are designed
to capture two intuitions. First, since an argument compo-
nent often consists of considerable number of words, it is
essential to jointly considering multiple words’ labels so
as to detect argument components’ boundaries; hence, we
propose a bidirectional Recurrent Neural Network (RNN)
[4] with a Conditional Random Field (CRF) [11] layer above
it, as both RNN and CRF are widely recognized as effective
methods for considering contextual information. Second, we
believe that if the argumentative-or-not information of each

ar
X

iv
:1

70
5.

02
13

1v
1

 [
cs

.C
L

]
 5

 M
ay

 2
01

7

sentence1 is provided a priori, the performance of ACBD
can be substantially improved. As such, we propose a novel
joint RNN model that can predict a sentence’s argumentative
status and use the predicted status to detect boundaries.

The contributions of this work are threefold: i) we
present the first deep-learning based ACBD technique, so
that the feature-engineering demand is greatly reduced and
the technique’s cross-domain applicability is significantly
improved; ii) we propose a novel joint RNN model that can
classify the argumentative status of sentences and separating
argument components from non-argumentative texts simul-
taneously, which can significantly improve the performance
of ACBD; and iii) we test our ACBD methods on two
different text genres, and results suggest that our approach
outperforms the state-of-the-art techniques in both domains.

2. Related Work

In this section, we first review ACBD techniques, and
then review works that apply RNN to applications related
to ACBD, e.g. sequence labeling and text classification.

2.1. Boundary Detection

Most existing ACBD methods consist of two consecutive
subtasks: identifying argumentative sentences (i.e. sentences
that include some argument components) and detecting
the component boundaries [16]. Levy et al. [14] identify
context-dependent claims in Wikipedia articles by using a
cascade of classifiers. They first use logistic regression to
identify sentences containing topic-related claims (the topic
is provide a priori), and then detect the boundaries of claims
and rank the candidate boundaries, so as to identify the most
relevant claims for the topic. However, the importance of
topic information is questionable, as Lippi and Torroni [15]
achieve a similar result on the first subtask without using
the topic information. Goudas et al. [5] propose a ACBD
technique and test it on a corpus constructed from social
media texts. They first use a variety of classifiers to perform
the first subtask, and then employ a feature-rich CRF to
perform the second subtask.

Besides the two-stage model presented above, some
works consider ACBD as a sequence labeling task at token
level. Stab and Gurevych [25] employ a CRF model with
four kinds of hand-craft features (structural, syntactic, lexi-
cal and probability features) to perform ACBD on their per-
suasive essay corpus. Unlike texts in Wikipedia, persuasive
essays are organised by structurally and the percentage of
argumentative sentences are much higher (77.1% sentences
in persuasive essays include argument component). The
performance of this ACBD technique (in terms of macro
F1) is .867.

1. In this work, we assume that an argument component cannot span
across multiple sentences. This assumption is valid in most existing argu-
mentation corpora, e.g. [25].

2.2. RNN on Similar Tasks

RNN techniques, especially Long Short-Term Memory
(LSTM) [8], have recently been successfully applied to se-
quence labeling and text classification tasks in various NLP
problems. Graves et al. [6] propose a bidirectional RNN for
speech recognition, which takes the context on both sides
of each word into account. However, in sequential labeling
tasks with strong dependencies between output labels, the
performance of RNN is not ideal. To tackle this problem,
instead of modeling tagging decisions independently, Huang
et al. [9] and Lample et al. [13] apply a sequential CRF to
jointly decode labels for the whole sequence.

RNN has also be successfully used in text classifica-
tion. Lai et al. [12] propose a Recurrent Convolutional
Neural Network, which augments a max-pooling layer after
bidirectional RNN. The purpose of the pooling layer is to
capture the most important latent semantic factors in the
document. Then the softmax function is used to predict the
classification distribution. Results shows the effectiveness on
the text classification tasks.

Some RNN-based techniques are developed for the spo-
ken language understanding task, in which both text classi-
fication and sequence labeling are involved: intent detection
is a classification problem, while slot filling is a sequence
labeling problem. Liu and Lane [17] propose an attention-
based bidirectional RNN model to perform these two tasks
simultaneously; the method achieves state-of-the-art perfor-
mance on both tasks.

3. Models

We consider a sentence in the document as a sequence
of tokens/words and label the argument boundaries using the
IOB-tagset: a word is labelled as “B” if it is the first token in
an argument component, “I” if it constitutes, but not leads,
an argument component, and “O” if it is not included in
any argument components. In this section, we first review
some widely used techniques for sequence labeling , then
we present our joint RNN model, which can distinguish
argumentative and non-argumentative sentences and use this
information to detect boundaries, in Sect. 3.5.

3.1. Bi-LSTM

RNN [4] is a neural architecture designed for dealing
with sequential data. RNN takes as input a vector X = [xt]

T
1

and returns a feature vector sequence ~h = [ht]
T
1 at every

time step.2 A primary goal of RNN is to capture long-
distance dependencies. However, in many real applications,
standard RNN are often biased towards their most recent
inputs in the sequence [2] . LSTM [8] alleviates this problem
by using a memory cell and three gates (an input gate i, a
forget gate f, and an output gate o) to tradeoff between the
influence of the new input state and the previous state on

2. In this work, we let [x]T1 be the short-hand notation for vector
[x1, · · · , xT], where T ∈ N∗ is the length of the vector.

the memory cell. The computation operations of a memory
cell ct and hidden states ht (of size H), at time step t, are
as follows:

it = σ(Wixt + Uiht−1 + bi),

ft = σ(Wfxt + Ufht−1 + bf),

ot = σ(Woxt + Uoht−1 + bo),

gt = tanh(Wgxt + Ught−1 + bg),

ct = ft � ct−1 + it � gt,

ht = ot � tanh(ct),

where by is the bias vector for gate y (where y can be i,
f , o or g), σ is the element-wise sigmoid function, and �
is the element-wise multiplication operator. W ∈ RH×d,
U ∈ RH×H and b ∈ RH×1 are the network parameters.

The LSTM presented above is known as single direc-
tion LSTM, because it only considers the preceding states,
ignoring the states following the current state; thus, it fails
to consider the “future” information. Bidirectional LSTM
(Bi-LSTM) [7] is proposed to combat this problem. Bi-
LSTM includes a forward LSTM and a backward LSTM,
thus can capture both past and future information. Then the
final output of Bi-LSTM is the product of concatenating the
past and future context representations: ht = [

−→
ht ;
←−
ht], where−→

ht and
←−
ht are the forward and backward LSTM, resp.

3.2. CRF

CRF [11] is widely used in sequence labeling tasks. For
a given sequence X and its labels y, CRF gives a real-valued
score as follows:

score(X, y) =
T∑

t=2

ψ(yt−1, yt) +

T∑
t=1

φ(yt),

where φ(yt) is the unary potential for the label at position
t and ψ(yt−1, yt) is the pairwise potential of labels at t and
t − 1. The probability of y given X can be obtained from
the score:

p(y|X) =
1

Z
exp(score(X, y)). (1)

Given a new input Xnew, the goal of CRF is find a label y∗
for Xnew, whose conditional probability is maximised:

y∗ = argmax
y

(
∑
i

log(p(y|Xnew))). (2)

The process for obtaining the optimal label is termed de-
coding. For a linear chain CRF described above that only
models bigram interactions between outputs, both training
(Eq. (1)) and decoding (Eq. (2)) can be solved efficiently
by dynamic programming.

3.3. Bi-LSTM-CRF

In sequential labeling tasks where there exist strong
dependencies between neighbouring labels, the performance
of Bi-LSTM is not ideal. To tackle this problem, Huang et al.

Word
embedding

Bi-LSTM

CRF
layer

O O O B I ...

L1 L2 L3 L4 L5

R1 R2 R3 R4 R5

C1 C2 C3 C4 C5

...

...

...

...

...

I think that creativity is ...

Figure 1. The structure of Bi-LSTM-CRF network.

[9] propose the Bi-LSTM-CRF method, which augments a
CRF layer after the output of Bi-LSTM, so as to explicitly
model the dependencies between the output labels. Fig. 1
illustrates the structure of Bi-LSTM-CRF networks.

For a given input sentence X = [xt]
T
1 , h = [

−→
hL;
←−
hR] is

the output of Bi-LSTM, where
−→
hL and

←−
hR are the output

of the forward and backward LSTM, resp. The connection
layer C is used for connecting the structure features s and
the output of Bi-LSTM, namely the feature representations
h. Note that s is the relative position of the input sentence
in document, and is not shown in Fig. 1. The output of C is
a matrix of scores, denoted by P. P is of size T × k, where
k is the number of distinct tags, and Pij corresponds to the
score of the jth tag of ith word in a sentence. The score s
of a sentence X = [xt]

T
1 along with a path of tags y = [yi]

T
1

is then defined as follows:

score(X, y) =
T∑

i=0

Ayi,yi+1 +

T∑
i=1

Pi,yi ,

where A is the transition matrix, which gives the transition
scores between tags such that Ai,j is the score of a transition
from the tag i to tag j. We add two special tags at the
beginning and end of the sequence so that A is a squared
matrix of size k+2. The conditional probability for a label
sequence y given a sentence X thus can be obtained as
follows:

p(y|X) =
escore(X,y)∑

ỹ∈YX
escore(X,̃y) ,

where YX represents all possible tag sequences for a input
sentence X. The network is trained by minimizing the nega-
tive log-probability of the correct tag sequence y. Dynamic
programming techniques can be used to efficiently compute
the transition matrix A and the optimal tag sequence y∗ for
inference.

3.4. Attention based RNN for Classification

Besides in sequence labeling, RNN is also widely used
in text classification tasks. Lai et al. [12] combine the word
embeddings and representation output by Bi-LSTM as the

Bi-LSTM

...

W 1 W2

...

...

Hc

0 | 1

input sentence

word
embedding

max-pooling

r a s

h1 h2 hT-1 hT

印

WT
... WT - 1

Figure 2. an attention-based RNN network for classification

feature representation for text classification, weighting each
input word equally. However, as the importances of words
differ, such a equal-weighting strategy fails to highlight the
truly important information. The attention mechanism [21]
is proposed to tackle this problem. As the name suggests, the
attention mechanism computes a weight vector to measure
the importance of each word and aggregates those informa-
tive words to form a sentence vector. Specifically,

f(xt) = tanh(Waxt + ba),

αt =
exp(Uaf(xt))∑
i exp(U

af(xi))
,

a =
∑
t

αt · xt.

The sentence vector a is the weighted sum of the word
embeddings xt, weighted by αt. Vector a gives additional
supporting information, especially the information that re-
quires longer term dependencies; this information can hardly
be fully captured by the hidden states.

The architecture of the RNN for classification is illus-
trated in Fig 2. Remind that, Bi-LSTM can capture both the
past and the future context information and can convert the
tokens comprising each document into a feature representa-
tion h = [ht]

T
1 . Max-pooling operation is used to extract

maximum values over the time-step dimensions of h to
obtain a sentence level representation r. Then the sentence’s
argumentative status is predicted by the concatenating of
context feature r, weighted sentence vector a and structure
feature s (relative location of the sentence):

Hc = softmax(Wc[r; a; s] + bc)

where Hc is the output of softmax function, which represents
the probabilities of sentence’s argumentative status.

Bi-LSTM

...

W1 W2 ... WT-1 WT

...

...

Hc

0 | 1

input sentence

word
embedding

max-pooling

r a s

h1 h2 hT-1 hT

s s s s

p

Hs

CRF layer

p p p
...

p
...

O B I O

印

Figure 3. joint RNN network for classification and boundary detection

3.5. Joint RNN Model

The joint model for argumentative sentence classification
and sequence labeling in boundary detection is shown in Fig
3. In the proposed model, a Bi-LSTM reads the source sen-
tence in both forward and backward directions and creates
the hidden states h = [ht]

T
1 . For sentence argumentative

classification, as we mentioned in Sect. 3.4, an attention
mechanism aggregate the input words into a sentence vector
a. The max-pooling operation is applied to capture the
key components of the latent information. the sentence’s
argumentative status p is then predicted by the combination
of vector a, vector r (output by max-pooling operation) and
relative location feature s.

For sequence labeling in boundary detection, we reuse
the pre-computed hidden states h of the Bi-LSTM. At each
time-step, we combine each hidden state ht with the relative
location feature s and the sentence’s predicted argumenta-
tive status p created by the above mentioned classification
operation: h

′

t = [ht; s; p]. Then the Hs will be the scores
matrix P described in Sec. 3.3 which will be given to the
CRF layer.

Hs
t = tanh(Wsh

′

t + bs)

The sequence labeling operation is as same as Sect. 3.3.
The network of joint model is trained to find the parameters
that minimize the cross-entropy of the predicted and true
argumentative status for sentence and the negative log-
probability of the sentence’s labels jointly.

4. Experiments

We first present the argumentation corpora on which we
test our techniques in Sect. 4.1, introduce our experimental
settings in Sect. 4.2, and present and analyse the empirical
results in Sect. 4.3.

4.1. Datasets

We evaluate the neural network based ACBD techniques
on two different corpora: the persuasive essays corpus [25]
and the Wikipedia corpus [1]. The persuasive essay corpus
has three types of argument components: major claims,
claims and premises. The corpus contains 402 English es-
says on a variety of topics, consisting of 7116 sentences
and 147271 tokens (words). The Wikipedia corpus contains
315 Wikipedia articles grouped into 33 topics, and 1392
context-dependent claims have been annotated in total. A
context-dependent claim is “a general, concise statement
that directly supports or contests the given topic”, thus
claims that do not support/attack the claim are not annotated.
Note that the Wikipedia corpus is very imbalanced: only
2% sentences are argumentative (i.e. contain some argument
components).

4.2. Experiment Settings

On the persuasive essay corpus, in line with [25], we use
precision (P), recall (R) and macro-F1 as evaluation metrics,
and use the same train/test split ratio: 322 essays are used
in training, and the remaining 80 essays are used in test. On
the Wikipedia corpus, in line with [14], a predicted claim
is considered as True Positive if and only if it precisely
matches a labeled claim. For all the articles across 33 topics,
we randomly select 1/33 of all the sentences to serve as the
test set, and the remaining sentences are used in training. As
the corpus is very imbalanced, we apply a random under-
sampling on the training set so ensure that the ratio between
non-argumentative and argumentative sentences is 4:1.

In experiments on both corpora, we randomly select 10%
data in the training set to serve as the validation set. Training
occurs for 200 epochs. Only the models that perform best (in
terms of F1) on the validation set are tested on the test set.
The RNN-based methods read in texts sentence by sentence,
and each sentence is represented by concatenating all its
component words’ embeddings. All RNN are trained using
the Adam update rule [10] with initial learning rate 0.001.
We let the batch size be 50 and the attention hidden size
be 150. To mitigate overfitting, we apply both the dropout
method [22] and L2 weight regularization. We let dropout
rate be 0.5 throughout our experiments for all dropout layers
on both the input and the output vectors of Bi-LSTM.
The regularization weight of the parameters is 0.001. Some
hyper-parameter settings of the RNNs may depend on the
dataset being used. In experiments on persuasive essays, we
use Google’s word2vec [18] 300-dimensional as the pre-
trained word embeddings, and set the hidden size to 150 and
use only one hidden layer in LSTM; on Wikipedia articles,
we use glove’s 300-dimensional embeddings [20], and let
the hidden size of LSTM be 80.

4.3. Results and Discussion

The performance of different methods on the persuasive
essays are presented in Table 1. Note that the performance of

TABLE 1. BOUNDARY DETECTION ON PERSUASIVE ESSAYS.

F1 P R F1-B F1-I F1-O
CRF (stab et al. [25]) 0.867 0.873 0.861 0.809 0.934 0.857
Human Upper Bound 0.886 0.887 0.885 0.821 0.941 0.892

Bi-LSTM-CRF
(with knowing

argumentative status)
0.943 0.955 0.932 0.899 0.976 0.9546

Bi-LSTM 0.825 0.850 0.806 0.775 0.910 0.791
Bi-LSTM-CRF 0.860 0.868 0.853 0.832 0.919 0.828

Joint RNN Model 0.873 0.893 0.857 0.839 0.931 0.848

TABLE 2. CLASSIFICATION RESULTS ON WIKIPEDIA ARTICLES

Precison@200 Recall@200 F1@200
Levy et al. [14] 0.09 0.73 0.16

TK [15] 0.098 0.587 0.168
TK + Topic [15] 0.105 0.629 0.180

Precision Recall F1
Joint RNN Model 0.156 0.630 0.250

TABLE 3. BOUNDARY DETECTION ON WIKIPEDIA ARTICLES

Precison@50 Precison@20 Precison@10
Levy et al. [14] 0.120 0.160 0.200

F1 Precision Recall
Bi-LSTM 0.043 0.125 0.026

Bi-LSTM-CRF 0.142 0.100 0.242
Joint RNN Model 0.190 0.122 0.435

CRF is obtained from [25]. Bi-LSTM achieves .825 macro
F1 thanks to the context information captured by the LSTM
layer. Adding a CRF layer to Bi-LSTM can significantly
improve the performance and can achieve comparable re-
sults with the CRF method that uses a number of hand-
crafted features. The third row in Table 1 gives the perfor-
mance of Bi-LSTM-CRF with ground-truth argumentative-
or-not information for each sentence, i.e. the feature p in
Figure 3 are ground-truth labels; surprisingly, this method
even outperforms the “human upperbound” performance3

reported in [25], validating our assumption that the sen-
tences’ argumentative-or-not information is helpful for the
ACBD task. This is validated again by the outperformance
of our joint model against Bi-LSTM-CRF (row 5 and 6
in Table 1). Note that, among all methods that do not use
the ground-truth argumentative-or-not information, our joint
model achieves the highest performance.

The performances on the Wikipedia articles are pre-
sented in Table 2 and Table 3. The upper part of these two
tables give the performances of some existing ACBD meth-
ods, and we can see that the performance metrics used for
existing methods and for our RNN-based methods are differ-
ent: our RNN-based methods output a unique boundary and
component type for the input sentence, thus the performance
metric is P/R/F1; however, existing ACBD methods produce
a ranked list of candidate argument component boundries,
thus their performance metrics are, e.g., precision@200,
i.e. the probability that the true boundary is included in

3. The human upperbound performance is obtained by by averaging
the evaluation scores of all three annotator pairs on test data. Note that
sentences’ argumentative-or-not information are not used in obtaining the
human upperbound performance.

the top 200 predicted boundaries (definitions of recall@200
and F1@200 can be obtained similarly). Also note that, the
results reported in [14] are obtained from a slightly older
version of the dataset, containing only 32 topics (instead of
33) and 976 claims (instead of 1332).

From Table 2, we find that for argumentative sentence
classification, our joint model significantly outperforms all
the other techniques. From Table 3, we find that the joint
RNN model prevails over the other Bi-LSTM based models,
again confirms that the argumentative-or-not information can
further improve the boundary detection performance. Note
that, performances on Wikipedia corpus are not that high in
general. One of the reasons is that the length of the argument
component is long and the performance metrics we use are
strict. In addition, only topic-dependent claims are annotated
in the Wikipedia corpus; our RNN-based approaches do not
consider the topic information, thus identify some topic-
irrelevant claims, which are treated as False Positive. Similar
observations are also made in [15].

5. Conclusion

In this work, we present the first deep-learning based
family of algorithms for the argument component boundary
detection (ACBD) task. In particular, we propose a novel
joint model that combines an attention-based classification
RNN to predict the argumentative-or-not information and a
Bi-LSTM-CRF network to identify the exact boundary. We
empirically compare the joint model with Bi-LSTM, Bi-
LSTM-CRF and some state-of-the-art ACBD methods on
two benchmark corpora; results suggest that our joint model
outperforms all the other methods, suggesting that our joint
model can effectively use the argumentative-or-not informa-
tion to improve the boundary detection performance. As for
the future work, a natural next step is to apply deep learning
techniques to other sub-tasks of argumentation mining; in
addition, a deep-learning-based end-to-end argumentation
mining tool is also worthy of further investigation.

References

[1] Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel Hershcovich,
Ran Levy, Ruty Rinott, Dan Gutfreund, and Noam Slonim. A
benchmark dataset for automatic detection of claims and evidence
in the context of controversial topics. In Proceedings of the First
Workshop on Argumentation Mining, pages 64–68, 2014.

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. IEEE transac-
tions on neural networks, 5(2):157–166, 1994.

[3] Judith Eckle-Kohler, Roland Kluge, and Iryna Gurevych. On the
role of discourse markers for discriminating claims and premises in
argumentative discourse. In EMNLP, pages 2236–2242, 2015.

[4] Christoph Goller and Andreas Kuchler. Learning task-dependent
distributed representations by backpropagation through structure. In
Neural Networks, 1996., IEEE International Conference on, vol-
ume 1, pages 347–352. IEEE, 1996.

[5] Theodosis Goudas, Christos Louizos, Georgios Petasis, and Vangelis
Karkaletsis. Argument extraction from news, blogs, and social media.
In Hellenic Conference on Artificial Intelligence, pages 287–299.
Springer, 2014.

[6] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In Acoustics, speech
and signal processing (icassp), 2013 ieee international conference on,
pages 6645–6649. IEEE, 2013.

[7] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classifi-
cation with bidirectional lstm and other neural network architectures.
Neural Networks, 18(5):602–610, 2005.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[9] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models
for sequence tagging. arXiv preprint arXiv:1508.01991, 2015.

[10] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[11] John Lafferty, Andrew McCallum, Fernando Pereira, et al. Condi-
tional random fields: Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of the eighteenth international
conference on machine learning, ICML, volume 1, pages 282–289,
2001.

[12] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolu-
tional neural networks for text classification. In AAAI, volume 333,
pages 2267–2273, 2015.

[13] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian,
Kazuya Kawakami, and Chris Dyer. Neural architectures for named
entity recognition. arXiv preprint arXiv:1603.01360, 2016.

[14] Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aharoni, and
Noam Slonim. Context dependent claim detection. 2014.

[15] Marco Lippi and Paolo Torroni. Context-independent claim detection
for argument mining. In IJCAI, volume 15, pages 185–191, 2015.

[16] Marco Lippi and Paolo Torroni. Argumentation mining: State of the
art and emerging trends. ACM Transactions on Internet Technology
(TOIT), 16(2):10, 2016.

[17] Bing Liu and Ian Lane. Attention-based recurrent neural network
models for joint intent detection and slot filling. arXiv preprint
arXiv:1609.01454, 2016.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[19] Marie-Francine Moens. Argumentation mining: Where are we now,
where do we want to be and how do we get there? In Post-
Proceedings of the 4th and 5th Workshops of the Forum for Informa-
tion Retrieval Evaluation, page 2. ACM, 2013.

[20] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation. In EMNLP, vol-
ume 14, pages 1532–1543, 2014.

[21] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural at-
tention model for abstractive sentence summarization. arXiv preprint
arXiv:1509.00685, 2015.

[22] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[23] Christian Stab and Iryna Gurevych. Annotating argument components
and relations in persuasive essays. In COLING, pages 1501–1510,
2014.

[24] Christian Stab and Iryna Gurevych. Identifying argumentative dis-
course structures in persuasive essays. In EMNLP, pages 46–56,
2014.

[25] Christian Stab and Iryna Gurevych. Parsing argumentation structures
in persuasive essays. arXiv preprint arXiv:1604.07370, 2016.

	1 Introduction
	2 Related Work
	2.1 Boundary Detection
	2.2 RNN on Similar Tasks

	3 Models
	3.1 Bi-LSTM
	3.2 CRF
	3.3 Bi-LSTM-CRF
	3.4 Attention based RNN for Classification
	3.5 Joint RNN Model

	4 Experiments
	4.1 Datasets
	4.2 Experiment Settings
	4.3 Results and Discussion

	5 Conclusion
	References

