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Abstract—Drowsiness driving is one major factor of traffic 
accident. Monitoring the changes of brain signals provides an 
effective and direct way for drowsiness detection. One 3D 
convolutional neural network (3D CNN)-based forecasting 
system has been proposed to monitor electroencephalography 
(EEG) signals and predict fatigue level during driving. The 
limited weight sharing and channel-wise convolution were 
both applied to extract the significant phenomenon in various 
frequency bands of brain signals and the spatial information of 
EEG channel location, respectively. The proposed 3D CNN 
with limited weight sharing and channel-wise convolution has 
been demonstrated to predict reaction time (RT) of driving 
with low root mean square error (RMSE) through the brain 
dynamics. This proposed approach outperforms with the state-
of-the-art algorithms, such as traditional CNN, Neural 
Network (NN), and support vector regression (SVR). 
Compared with traditional CNN and Artificial Neural 
Network, the RMSE of 3D CNN-based RT prediction has 
been improved 9.5% (RMSE from 0.6322 to 0.5720) and 8% 
(RMSE from 0.6217 to 0.5720), respectively. We envision 
that this study might open a new branch between deep 
learning application in neuro-cognitive analysis and real world 
application. 
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I. INTRODUCTION  
Driving safety becomes one of major concern in our daily 

life. However, drowsiness driving is a major factor of traffic 
accident due to the increasing tiredness and stress level of the 
drivers. Some behavior-based technologies have been 
developed to predict fatigue level of drivers. In particular, 
monitoring brain signals provides an effective way to predict 
the changes of fatigue during driving [1] [2].Recently, many 
researchers leverage the deep learning algorithm to solve the 
image recognition and signal processing [5] [8]. Many 
researchers have been used deep learning methods to analyze 
electroencephalography (EEG) signals [1] [3] [4] and shown 
the improved results compared with the traditional approaches. 
Convolutional neural network (CNN) has very strong feature 
to extract spatial information in different areas, such as image 
recognition [5]. Although CNN is a powerful algorithm for 
spatial information capturing, spatial and temporal 
information of brain dynamics cannot be captured well [6] [7]. 
In video analysis, the module is designed to extract the feature 
between adjacent frames, since the frames of a video are a 
trend demonstrates a continuous movement. EEG signals have 
the similar characteristic because it is continuous, which brain 
state varies dynamically over time, and the brain states are 
related closely, especially in adjacent time frames. 

Recently, deep learning is used into EEG signals 
processing [1] [3] [4]. CNN is one of the powerful deep 

learning method for analysing spatial information because of 
its convolutional data extraction in spatial domain. Each 
convolutional layer extracts 2D input feature maps, and only 
the spatial information is considered. Compared to traditional 
CNN, 3D CNN has ability to analyse temporal and spatial 
information based on 3D filters which extract both temporal 
and spatial information. In other words, 3D CNN extracts both 
temporal and spatial information by feeding 3D input data. 
Therefore, 3D CNN has been widely used in analysing the 
data which includes spatial and temporal data, such as video 
[6] [7].The results in the previous studies showed that 3D 
CNN can reach the higher performance in video recognition 
[6] [7]. The characteristics including continuous time signal in 
EEG signals (temporal information) are similar with that in 
video. In particular, the spatial information in every single 
time window (frame) is also one important characteristic for 
drowsiness detection [9]. Therefore, applying 3D CNN to 
multi-frame EEG signals is one potential way for drowsiness 
prediction. Furthermore, channel-wise convolution and limited 
weight sharing mechanisms were both applied to enhance the 
spatial relationships of EEG signals and capture the 
phenomenon from all EEG frequency bins, respectively [8]. 
The extracted features by these two mechanisms were then the 
inputs of 3D CNN. 

In this study, we demonstrated a 3D CNN based 
monitoring system to predict reaction time (RT) during 
driving. The novel channel-wise convolution and limited 
weight sharing mechanisms also significantly improve the 
overall performance of prediction. Compared with traditional 
CNN and other machine learning algorithms including neural 
network (NN) and support vector regression (SVR), the 
proposed 3D CNN can reach the minimum root mean square 
error (RMSE). 

II. EXPERIMENTAL SETUP  

A. Data pre-proccessing 

 
Figure 1: We use the signal before event onset 6 second as baseline signal, 
and the time between event onset and response onset as reaction time. 
 



Reaction time (RT) is the duration between the onset of 
deviation and the time that participants started to drive the 
vehicle back to the original lane. To evaluate driver’s brain 
states, RT represents driver’s drowsiness and alertness during 
driving (Figure 1). Divers might be drowsy while the RT was 
high. In contrast, drivers might be alert while the RT was 
short.The brain dynamics in the baseline was extracted (as 
shown in Figure 1), and 6s data was extracted. Eighty subjects 
involved in this drowsiness driving. There were nine subjects 
abandoned because some EEG channels of these subjects were 
broken. Additionally, some trials with noise or high RT (> 10s) 
were removed manually. There are total 24,203 trials from 71 
subjected. For normalization, all RTs was divided by the 
baseline (the shortest 10% RT). In particular, the maximum 
normalized RTs were set to three. 

B. Experiment 
The experiment dataset was collected by a 360-degree 

virtual reality environment with motion platform, which 
simulates a driving environment in reality. There were 80 
healthy subjects without any history of psychological or sleep 
disorders. All the subjects were collected with a 32-channel 
EEG equipment, which includes 30 channels and 2 reference 
channels. The impedances of all EEG channels were all less 
than 5 kΩ and the sampling rate of EEG signals were 250 Hz. 
We measured human’s brain states during driving by land-
keeping task, which can measure driver’s drowsiness and 
alertness. In lane-keeping task, the participants were asked to 
drive vehicles along a lane, however, the vehicle were 
designed to deviate forward left or right lanes from their 
original lane automatically. When the participants detected the 
vehicles deviated from the lane, they were asked to drive the 
car back to the original lane through turning the steering wheel. 
In this study, one trial was defined as from the onset of 
deviation to the offset of turning the steering wheel (back to 
the original lane). There was a random 7-12s break between 
two continuous trials (as shown in Figure 1). The whole 
experiment continued 90 minutes, and there were 
approximately 400 trials. 

III. METHOD 

A. Algorithm 
 In this research, 3D convolution neural network was 

majorly applied to analyse the recorded brain activities during 
driving. To extract the spatial features and frequency features 
from EEG signals efficiently, two algorithms including 
channel-wise convolution and limited weight sharing were 
both applied to reach higher performance. 

Firstly, the structure of 3D convolutional layers and 
traditional (2D) convolutional layers are listed in Figure 2. 
Briefly, traditional CNN equips 2D filters, comprised of 2D 
weights, to convolute 2D input feature maps or input data at 2 
axis (usually spatial axis), and produce 2D output feature 
maps too. The feature maps also are compressed by 2D 
pooling layers. Finally, the feature maps are flattened to 1D 
vectors and connected to fully connected layers. In 3D CNN, 
input data and input feature maps are 3D, and the filters are 
3D cubes comprised of N X N X N weights, which can 
convolute input data or input feature maps at 3 axis (usually 

spatial and temporal axis). Following, each output feature 
maps of 3D convolutional layers are compressed by 3D 
pooling layers. Finally, the 3D feature maps are flattened to 
1D vectors and connected to fully connected layers. 

 
Figure 2: 3D convolutional layer and 2D convolutional layer, 3D 
convolutional layer extract 3D input feature maps with 3D filter, 2D 
convolutional layer extract 2D input feature maps with 2D filter 

In terms of the function of 3D CNN,  
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B. Architecture 
The 3D conv layers extract 3D input feature maps at first 

and the max-pooling layers compress input feature maps to 
reduce data’s dimensions. After three convolutional and max-
pooling layers, the output feature maps are flattened and feed 
into a 512-node fully-connected layer, which followed by an 
output layer. In every convolutional layer, we adopted 
“padding”, which pad zeros at input feature maps to make sure 
the input size and output size are equal. All configurations for 
3D CNN are listed in Table 1.The dimension of input layer is 
18 (frequency power,1-18 Hz) X 30 (EEG channel numbers) 
X 26 (6s frames) X one input feature map. We adopted a 3 
(EEG channel) X 3 (frequency) X 3 (time frame) filter in all 
three convolutional layers, in which there were 32, 64 and 128 
filters, respectively. We also adopted one 2 (EEG channel) X 
2 (frequency) X 2 (time frame) max-pooling in all three 
pooling layers. Therefore, the structure of the proposed 3D 
CNN included Input-layer (18-30-26-1) - Conv1 (3-3-3-32) - 
Maxpool1 (2-2-2) - Conv2 (3-3-3-64) - Maxpool2 (2-2-2) - 



Conv3 (3-3-3-64) - Maxpool1 (2-2-2) - Conv3 (3-3-3-128) - 
Maxpool1 (2-2-2) - Fully Connected Layer (512) – Output-
layer (1). 

Table 1 configuration of 3D CNN and 2D CNN 

 

We then adopted one 3 (EEG channel) X 3 (frequency) 
filter in all three convolutional layers, in which there were 32, 
64 and 128 filters, respectively. We also adopted 2 (EEG 
channel) X 2 (frequency) max-pooling in all three pooling 
layers. The input data of CNN are 2D and the conv layers and 
max-pooling layers are also two dimension. The structure of 
CNN is Input-layer (18-30-1) - Conv1 (3-3-32) - Maxpool1 
(2-2) - Conv2 (3-3-64) - Maxpool2 (2-2) - Conv3 (3-3-128) – 
Maxpool3 (2-2) - Fully Connected Layer (512) – Output-layer 
(1). The configuration of neural network is listed below. 
Input-layer (18-30-1) - Fully Connected Layer (512) – Output-
layer (1). 

Furthermore, we proposed a novel approach, channel-wise 
convolution. Compared to other dataset, images and videos 
analysed with CNN modules, EEG data signals have some 
unique attributes should be considered into CNN modules, for 
example EEG signals demonstrate different phenomenon 
according to the position of EEG channels. Therefore, the 
position of EEG channels should be considered into the CNN 
module to extract the full spatial information. 
 

Figure 3: Channel-wise convolution. The EEG channels are divided into three 
groups and sorted from the frontal region to posterior region. After grouping 
the EEG channels by spatial location (channel location), the designed filters 
only convolute the information in each group. 
 

There are high spatial relationships among the EEG signals 
from the adjacent EEG channels. Therefore, special filters are 
able to capture the information from the different EEG 
channels. A channel-wised convolution was applied to extract 
the spatial information according to the channel location of 

EEG equipment as shown in Figure 3. Firstly, the EEG 
channels are divided into three groups (as shown in Figure 3) 
according to their physical locations. Furthermore, the EEG 
channels in each group were sorted from the front of a scalp to 
the behind of a scalp sequentially. After doing that, a channel-
wise convolutional layer scan frequency power with adjacent 
EEG channels together, group by group. In other words, those 
groups share the same filter, however, the filters do not 
convolute the frequency power across different groups. 
Therefore, the filters can extract the information between each 
EEG channel according to their physical locations. Moreover, 
the reason why we just used 18 EEG channels in channel-wise 
convolution here, instead of 30, is that these three groups of 
EEG channels have more regular phenomenon in power 
spectrum here, compared to the rest of the EEG channels. 

In addition, we adopt a mechanism – limited weight 
sharing which is widely applied in deep learning methods 
from speech processing. Since the phenomenon of frequency 
power between different frequency bands are related to 
distinct cognitive functions, the weight of each band is 
supposed to be shared in the specific bands. The extracted 
features should also be trained individually. It means there is a 
specific filter for each frequency band to extract the features 
form the frequency information. The idea is from speech 
processing [1]. In speech processing, the bandwidth is quite 
wide and the attributes in different frequency bands are 
different. Therefore, each frequency band were trained 
individually to extract meaningful features. Since there are the 
same attributes between EEG signals and speech information, 
the limited weight sharing was also applied for EEG 
processing in the current study. There are frequencies bands 
(Delta band: 1-4 Hz, Theta band: 4-7 Hz, Alpha band: 8-15 Hz, 
Beta band: 16-30 Hz) in EEG analysis. Therefore, we adopt 
limited weight sharing in these four bands in the first 
convolutional layer as shown in Figure 4. In other words, the 
weights (filters) of one specific band are only shared inside 
this band. After applying the limited weight sharing, the band-
based filters can majorly extract the features in each frequency 
band. 

Figure 4: Limited Weight sharing in first convolutional layer.The color in 
power spectrum represents power (dB) in each frequency bin. The frequencies 
are divided into 4 bands. The weights (filters) are only shared inside a single 
band. In other words, the filters are trained individually inside their band 
without overlapping the other bands. 

Layer 3D CNN CNN 
Input layer 18-30-26-1 18-30-1 

Conv1 3-3-3-32 3-3-32 
Maxpool1 2-2-2 2-2 

Conv2 3-3-3-64 3-3-64 
Maxpool2 2-2-2 2-2 

Conv3 3-3-3-128 3-3-128 
Maxpool3 2-2-2 2-2 

Fully connected 512 512 
Output layer 1 1 



    In this study, the channel-wise convolution and the limited 
weight sharing were applied in the conv1 layer and all three 
conv layers, respectively. In particular, these two mechanisms 
were both applied in 3D CNN and traditional CNN. In the 
limited weight sharing mechanism, the frequency in conv1 
layer were grouped into four bands (band 1:1-4 Hz, band 2: 5-
7 Hz, band 3: 8-15 Hz, band 4: 16-30 Hz), and three bands in 
conv2 layer (band 1: 1-5 Hz, band 2: 6-10 Hz, band 3: 11-15 
Hz) and two bands (band 1: 1-5 Hz, band 2: 6-10 Hz) in conv3 
layer. Similarly, the channel-wise convolution mechanism was 
applied at conv1 layer, which could avoid the over restricting 
convolution in single EEG channel group (as shown in Figure 
4). 

IV. RESULTS AND DISCUSSION  
Comparing with the result (as shown in Table 2) of 3D 

CNN and CNN, the average RMSE is improved 9.5% (from 
0.6322 to 0.5720).The reason is 3D CNN is able to extract the 
temporal information by convoluting multi frames of EEG 
signals. Comparing with the results of 3D CNN, NN and SVR, 
3D CNN still achieves the better performance. Compared with 
the results of SVR, the average and standard deviation RMSE 
of 3D CNN are improving 4.2% (from 0.5973 to 0.5720) and 
10% (from 0.1636 to 0.1488), respectively. 

 
Table 2: Results of 3D CNN, CNN, NN and SVR 

RMSE 3D CNN CNN NN SVR 
Mean 0.5720 0.6322 0.6217 0.5973 

STD 0.1488 0.1752 0.1428 0.1636 
 
The performance of 3D CNN with channel-wise 

convolution and limited weight sharing is shown in Table 3. 
These two mechanisms both achieve higher performance. In 
this study, we adopt channel-wise convolution and limited 
weight sharing at conv1 layer and all three conv layers, 
respectively. These two mechanism can decrease the average 
RMSE by 1.9% (from 0.5834 to 0.5720) as comparing with 
the performance of 3D CNN. According to our results, these 
two mechanisms should be applied simultaneously to achieve 
the best performance. Otherwise, the performance is worse 
than that trained by original 3D CNN. 

 
Table 3: Results of 3D CNN with & without channel-wise 

convolution and limited weight sharing 

3D CNN With limited weight 
sharing 

Without limited 
weight sharing 

With channel-wise 
convolution 0.5720 ±0.1488 0.5924±0.1464 

Without channel-
wise convolution 0.5909±0.1441 0.5834 ±0.1449 

 
We also set two different structures of 3D CNN as shown 

in Table 4. The configurations of seven-layer 3D CNN are the 
same as those of three-layer 3D CNN. The structure of three-
layer 3D CNN is Input-layer (18-30-26-1) - Conv1 (3-3-3-32) 
- Maxpool1 (2-2-2) -) - Maxpool1 (2-2-2) - Fully Connected 

Layer (512) – Output-layer (1). In particular, the channel-wise 
convolution and limited weight sharing at conv1 layer in 
three-layer 3D CNN. The results show that seven-layer 3D 
CNN reaches better performance than three-layer 3D CNN by 
decreasing average RMSE 7.7% (from 0.5729 to 0.6210). 

 
Table 4: Results of different structures of 3D CNN 

 seven-layer 3D CNN three-layer 3D CNN 

RMSE 0.5720±0.1488 0.6210±0.1382 

V. CONCLUSIONS 
The frequency information of EEG signal is continuous 

data. Therefore, traditional CNN did not get a good result in 
this study compared to the other algorithms since traditional 
CNN might not be able to capture brain dynamic state. In this 
study, 3D CNN has ability to extract multi-frame data, which 
content temporal information among different time frame, and 
the extracted features from various time frame are essential for 
analyzing the brain signals. The phenomenon in different EEG 
frequency bands are supposed to be convoluted with different 
filters by limited weight sharing. Furthermore, channel-wise 
convolution can extract more spatial information of EEG 
signals, compared to the normal convolution. In conclusion, 
3D CNN actually captures brain dynamic state better than 
traditional CNN by decreasing RMSE from 0.6322 to 0.5834. 
Moreover, 3D CNN adopted channel-wise convolution and 
limited weight sharing together can also reach better 
performance in EEG signals, compared to original 3D CNN, 
by decreasing RMSE from 0.5834 to 0.5720. Based on the 
completive performance, we envision that deep learning might 
open a new branch between translation neuroscience and real 
world application. 
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