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Decentralization has been widely applied in Q-learning [8], 
which is one of the most well-known model-free-techniques for 
learning in unknown environment [9-13], especially when the 
systems are naturally distributed [14, 15]. In Q-learning, the 
learning agent maintains the optimal values for all state-action 
entries in its Q-table. In each state, the learning agent chooses 
the action by the highest Q-table entry for the state. After each 
visit, the learning agent updates the former state-action Q-value 
by the new state’s reward and highest Q-value. Most of the 
decentralized Q-learning approaches adapt the partial 
communication idea: each subsystem manages its own 
communication and updates its own Q-table. Although 
decentralized Q-learning has been well-established, there are 
still two open questions in this approach. First, how well does 
decentralized Q-learning tackle the slow rate of converging 
weakness in Q-learning [16]? Second, how do we apply multi-
model-switching in decentralized Q-learning, which has not 
been thoroughly explored?  

In this paper, from the multi-model-switching idea, we 
propose the selective decentralization approach in Q-learning. 
We apply selective decentralization in several learning and 
control problems in which the systems are unknown and the 
learning agents aim to optimally stabilize the systems using Q-
learning. The learning agents know the possible decentralization 
schemes among them, which is bounded by the Bell’s number 
theory [17]. In our learning and control problems, we design the 
state-reward function with linearity property such that the 
central state-reward value is equivalent to the sum of all sub-
state rewards. From this argument, we choose the cumulative 
gained Q-value to decide the best communication scheme. In 
addition, we provide comparison on converging speed between 
selectively decentralized Q-learning and centralized Q-learning, 
which is often absent in many other decentralized Q-learning 
literatures. Since, the relationship between the decentralized Q-
table and the centralized Q-table is difficult for theoretical 
analysis for this question, most of our results only serve as 
confirmation studies. 

II. METHOD

A. Problem statement
In this paper, we are interested in the systems in the general

form 

x(t+1) = f ( x(t), u(t) ) (1) 
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I. INTRODUCTION

To tackle major issues in large scale systems learning, 
decentralization has been one of the major topics in learning and 
adaptive control. Decentralization employs the possible domain-
knowledge to decouple the entire system’s state variables into 
subsystems, assigns a learning agent for each subsystem and 
applies the learning algorithms on each subsystem. Compared to 
centralization, decentralization is less susceptible to uncertain 
system parameters [1], may adapt to the structure change in the 
system, [2], overcomes the curse of dimensionality and may 
improve the converging speed. Although decentralization is a 
promising approach, it may suffer from instability because of the 
interconnection among subsystems [1, 3]. To overcome the 
stability issue, two major solutions: partial communication and 
multi-model-switching, have been proposed to integrate 
subsystem interaction into the learning algorithms. In partial 
communication, each subsystem is responsible to select the 
other subsystems to communicate with, depending on the 
subsystem’s state variable and other circumstances [4]. In multi-
model-switching, given a number of known communication 
schemes, a central coordinator is responsible to switch the 
communication scheme depending on certain circumstances [5-
7]. 
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where x ∈ ℜn is the joint state vector, u ∈ ℜm is the joint action 
(also called control) vector, f : ℜn+m → ℜn is a general nonlinear 
unknown function. We assume that f has the stable equilibrium 
point f (0, 0) = 0. The main objective is to learn the sequence of 
action units u(t) to stabilize x 

x(t) → 0, u(t) → 0 as t → ∞ (2) 

In order to apply Q-learning, we need to discretize the system 
(1). Therefore, to simplify the discretization, we assume that the 
system (1) has the following properties: 

- Each dimension of x is symmetrically bounded by [-χ, χ],
where χ  > 0 is a known boundary for x. 

- Each dimension of u is symmetrically bounded by [-µ, µ],
where µ > 0 is a known boundary for u. 

To apply selectively decentralized Q-learning, we restate the 
following assumptions for system (1), as showed in [18]. First, 
the system could be decoupled in to K subsystems, where each 
subsystem could be assigned to an independent learning agent. 
Each subsystem knows which components of x and u belonging 
to it. Second, since f is unknown, each subsystem k does not 
know the relationship between the current sub-state xk(t) and 
previous sub-state/sub-action [xk(t-1), uk(t-1)]. Each subsystem 
does not know the interconnection among itself and the other 
subsystems. 

We proposed the selective decentralization idea in [18] for 
model-based system control. Briefly, the key theme in selective 
decentralization is the joint structures in which the subsets of 
agents fully cooperate to learn the optimal actions. The number 
of possible decentralized schemes for k subsystems is Bk (the kth 
Bell’s number), which grows super-exponentially. We design a 
central coordinator unit to decide which decentralization 
structure could provide the best learning performance. In each 
scheme, there are L ≤ K groups such that each group contains 
one or more subsystems/agents communicating to execute Q-
learning. In a group, inside agents do not communicate with any 
outside agents. 

B. System discretization and reward function
Let M be the number of intervals in each dimension of x and

u for which we uniformly divide the dimension into small grids.
Therefore, the entire state space is divided into M  n small hyper
cubes with edge θx = 2χ/M. The control space is divided into
M m small hyper cubes with edge θu = 2µ/M. All points inside a
hyper cube are discretely represented by the center of the hyper
cube. Points on the border between two hyper cubes are
represented by the center of the ‘left’ hypercube.
Mathematically, the discretization process is described by the
following formulas

𝐱𝐱[𝑖𝑖] → 𝜃𝜃𝑥𝑥 + χ 𝑀𝑀⁄ ∀ 𝑖𝑖∈[1,𝑛𝑛] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐱𝐱[𝑖𝑖] ∈ [𝜃𝜃𝑥𝑥,𝜃𝜃𝑥𝑥 + 2 χ 𝑀𝑀⁄ ) (3) 
𝐮𝐮[𝑖𝑖] → 𝜃𝜃𝑢𝑢 + 𝜇𝜇 𝑀𝑀⁄ ∀ 𝑖𝑖∈[1,𝑚𝑚] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐮𝐮[𝑖𝑖]∈ [𝜃𝜃𝑢𝑢,𝜃𝜃𝑢𝑢 + 2 𝜇𝜇 𝑀𝑀⁄ ) (4) 

where θx ∈ {-χ, -χ + 2χ/M, -χ + 4χ/M, ..., χ- 2χ/M } and θu ∈ 
{-µ, -µ + 2µ/M, -µ + 4µ/M, ..., µ- 2µ/M }, which are the ‘left’ 
boundaries in the hyper cubes. We denote xdis and udis as the 
discrete space and control vector of x and u, correspondingly. 

With the discretization process in (3) and (4), it is easy to see 
that when M is odd, the zero vector 0 is one of the discrete 

space/control vectors. Given this condition, we define the state 
reward function q(x) as 

𝑞𝑞(𝐱𝐱) = ∑ 𝑞𝑞(𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , where 𝑞𝑞(𝑖𝑖) = �−𝐱𝐱dis(𝑖𝑖)

2 if 𝐱𝐱dis(𝑖𝑖)  ≠ 0
𝑟𝑟 if 𝐱𝐱dis(𝑖𝑖) = 0 (5) 

where r > 0 is a small bonus factor when the discrete xdis is 0, or 
x is within the hypercube containing the equilibrium point. Since 
our main objective is to stabilize (1), with reward function (5), 
the learning problem aims to maximize 

𝐽𝐽(𝐱𝐱) = ∑ 𝛾𝛾𝑡𝑡𝑞𝑞�𝐱𝐱(𝑡𝑡)�∞
𝑡𝑡=0  (6) 

where 0 < γ < 1 is the discount factor. The learning problem (3-
6) is similar to a classical exploration problem in [19], where
there is only one terminated state with positive reward and all of
the other states show negative reward. It is important to note that
the choice of M and q(x) could be flexible. The necessary
condition is that the discrete reward should be higher for the
states which are closer to the stable point.

C. Selectively decentralized Q-learning
First, we rewrite (5) and (6) for subsystem as follow. Let n1,

n2, …nK be the dimensionality of the K subsystems. Certainly, 
n1 + n2 + … + nK = n. Let {i1}, {i2}, … {iK} be the set of indexes 
of x and u belonging to these subsystems. In subsystem k, we 
denote x{iK} and u{iK} as the sub-state and sub-action vectors. 
Thus, (5) becomes 

𝑞𝑞�𝐱𝐱({𝑖𝑖𝑘𝑘})� = � 𝑞𝑞(𝑖𝑖)
∀𝑖𝑖∈{𝑖𝑖𝑘𝑘}

, 

where 𝑞𝑞(𝑖𝑖) = �−𝐱𝐱dis(𝑖𝑖)
2 if 𝐱𝐱dis(𝑖𝑖)  ≠ 0

𝑟𝑟 if 𝐱𝐱dis(𝑖𝑖) = 0 (7) 

In each subsystem, at each iteration, the Q-learning is executed 
according to [19] 

𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1),𝐮𝐮dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)] 
=  (1 − 𝛼𝛼)𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1),𝐮𝐮dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)] + 

𝛼𝛼 �𝑞𝑞�𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡 − 1)� + 𝛾𝛾 max
𝐮𝐮′dis{𝑖𝑖𝑘𝑘}

𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘}(𝑡𝑡),𝐮𝐮′dis{𝑖𝑖𝑘𝑘}]�(8) 

where 𝑄𝑄[𝐱𝐱dis{𝑖𝑖𝑘𝑘},𝐮𝐮dis{𝑖𝑖𝑘𝑘}] denotes the Q table in subsystem k 
and 0 < α < 1 is the learning rate. 

Suppose that the decentralization scheme b partitions the 
entire system into L disjoint components c1, c2, …, cL with 
dimensionality n1, n2, …, nL . Each component contains one or 
more subsystems. For any component cl, let {Il} = ∪ {ik} be the 
union of indexes from all subsystems k belonging to cl. In this 
component, the Q-learning is executed according to (7) and (8) 
with index set {Il}. 

Since the number of possible decentralization schemes in a 
K-subsystem is BK [17], the main question in selective
decentralization is which scheme b is the ‘best’. In this work, we 
select the scheme b returning the highest cumulative gained Q
value, which is

Ω(𝑏𝑏) = ∑ 𝛼𝛼�
𝑞𝑞�𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1)� +

𝛾𝛾 max
𝐮𝐮′dis{𝐼𝐼𝑙𝑙}

𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡),𝐮𝐮′dis{𝐼𝐼𝑙𝑙}] −

𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1),𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡 − 1)]
�𝐿𝐿

𝑙𝑙=1  (9) 



 Let w be the window index covering the time from t = (w-1) Ω 
+ 1 to t = wΩ. In this window, we choose the same
decentralization scheme to decide the optimal action u’dis for 
max
𝐮𝐮′dis

𝑄𝑄[𝐱𝐱dis(𝑡𝑡),𝐮𝐮′dis]. Larger window size implies less scheme 
switching. Pseudo code of procedure QLearning_Window 
shows more details on how we execute selectively decentralized 
Q-learning in each window.

Procedure QLearning_window (w) 
Persistent input: Q tables in all B(K) decentralization schemes 

 S: array to store the cumulative gained Q value 
 b: best decentralization scheme 

 if w = 1 
 Initialize all Q tables as 0 in all decentralization schemes 

(10) 
 Choose a random decentralization scheme as b 
 Reset S to 0 
  for t from (w-1) Ω + 1 to wΩ 

 // use b to compute the action 
 for all components l in b 

 Compute 𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡) as 
max

𝐮𝐮′dis{𝐼𝐼𝑙𝑙}
𝑄𝑄[𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡),𝐮𝐮′dis{𝐼𝐼𝑙𝑙}] (11) 

 Assembly 𝐮𝐮dis(𝑡𝑡)from all 𝐮𝐮dis{𝐼𝐼𝑙𝑙}(𝑡𝑡) 
 // update the cumulative Q-value gained 

 for all decentralization schemes β 
 S[β] = S[β] + Ω(β) 

        Update Q tables according to (8), with 𝐮𝐮dis(𝑡𝑡) 
Choose b as argmax

𝛽𝛽
𝑆𝑆[𝛽𝛽] 

In (10), if there are multiple 𝐮𝐮′dis{𝐼𝐼𝑙𝑙}  returning the same 
optimal Q value for 𝐱𝐱dis{𝐼𝐼𝑙𝑙}(𝑡𝑡) , we randomly select one 
instance. We choose the cumulative gained Q-value as the 
choice of decentralization scheme because the state-reward 
function (5), (7) satisfy the first linearity assumption: For any 
decentralization b separating system (1) into L components such 
that these component are completely disjoint, the sum of 
components’ state-rewards is equal to the centralized state-
reward. 

𝑞𝑞(𝐱𝐱) = ∑ 𝑞𝑞�𝐱𝐱({𝐼𝐼𝑙𝑙})�𝐿𝐿
𝑙𝑙=1  (12) 

III. TOY EXAMPLE RESULTS

A. Converging speed of selectively decentralized Q-learning
We perform experiments on several toy examples from the

same class of system to show the superior converging speed of 
selectively decentralized Q-learning, compared to centralized Q-
learning – which is defined in (5) and (6). In these examples, we 
examine the convergence from two points of view: the closeness 
of x(t) toward 0 and the magnitude of cumulative Q-value 
increase.  

The systems used in these examples are in the format 

Fig.1. Comparison between centralized and selectively decentralized Q-learning in completely decoupled 3-subsystem.

Fig.2. Comparison between centralized and selectively decentralized Q-learning in strongly coupled (σ = 0.5) 3-subsystem. 
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x(t) = sin(Ax(t-1) + u(t-1)) (13) 

where A are n×n random Markov matrices such that all diagonal 
entries share the same value. x and u have the same 
dimensionality for the ease of decentralization. Each subsystem 
corresponds to one state/action dimension. The vector sin 
function is defined from each dimension as 

sin(𝐱𝐱) = �

sin (𝐱𝐱1)
sin (𝐱𝐱2)

⋮
sin (𝐱𝐱𝑛𝑛)

� (14) 

We define the coupling parameter σ as 

𝜎𝜎 =
∑ 𝐀𝐀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗
∑𝐀𝐀𝑖𝑖𝑖𝑖

 ∀𝑖𝑖, 𝑗𝑗 ∈ [1,𝑛𝑛] (15) 

In other words, σ is the ratio between the sum of non-diagonal 
entries in A and the sum of all entries in A. With σ = 0, A 
becomes the identity matrix or the systems are completely 
decoupled. The systems are more couple when σ increases. For 
state and action variables,  χ = µ= 0.5 and initial state vectors 
x(0) are uniformly random numbers. For discretization (3-4), we 
choose M = 5. Therefore, θx = θu = 0.2. For Q-learning 
parameters (5-8), we choose r = 0.01, α = 0.1 and γ = 0.9. We 
test system (13) with number of subsystems n = 3, 4, 5 and 6 and 
window size w = 50. For each choice of n, we repeat the 
experiments 100 times and report the average value due to the 
randomness of A and x(0). 

Figures 1-4 highlight two significant advantages of 
selectively decentralized Q-learning, compared to centralized Q-
learning. First, selectively decentralized Q-learning converges 
faster in both completely decoupled systems and strongly 
coupled systems. This fact suggests that selectively 
decentralized technique could be applied to many systems with 
wide-range of interconnection. Second, the converging time of 
selectively decentralized Q-learning grows much slower than 
the convergence time in centralized Q-learning. Due to the lack 
of space, we only draw the result when n = 3 and n = 6 to 
highlight the change in system dimensionality. As showed in 
figures 3 and 4, the centralized Q-learning does not converge 
within 100,000 iterations (or 2000 windows). Figures 5-6 show 
more details on how selectively decentralized Q-learning 
converges within the first few tens of windows. 

B. Switching among decentralization schemes
In Figure 7, we repeat all experiments in the previous section 

with w = 1 (the most frequent switching scenario) to show that 
selectively decentralized Q-learning will stop switching the 
‘best’ decentralization scheme. Here, in order to compare with 
figure 5, we draw the average number of scheme switches for 
every 50 iterations/windows (to recall, in the previous section, 
we set w = 50). Comparing figures 5 and 6, in most of the cases, 
we observe that the point when number of scheme switches drop 
to 0 is earlier than the point when the selectively decentralized 
Q-learning converges. This result may suggest that selectively
decentralized Q-learning may learn the optimal communication
policy during the optimal stabilization process.

Fig.3. Comparison between centralized and selectively decentralized Q-learning in completely decoupled 6-subsystem. 

Fig.4. Comparison between centralized and selectively decentralized Q-learning in strongly coupled (σ = 0.5) 6-subsystem. 
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IV. CONCLUSIONS

In this paper, we show the superior converging performance 
of selectively decentralized Q-learning, compared to centralized 
Q-learning, in several control problems. The results suggest that
decentralized Q-learning could be practically applied as an
alternative approach for unknown system control problems.
Real-world application of Q-learning, such as robotics and
networking, could be found in [9-15]. In these problems, the
conventional Hamilton-Jacobi-Bellman equation approach may
not provide the close-form solution in general [20-23].

Since the theoretical analysis of Q-learning, decentralized 
and distributed Q-learning mostly focuses on the existence of 

the optimal Q-value and the guarantee of reaching the optimal 
Q-value [8, 9, 24], we lack the theoretical explanation for the
drastic superior converging speed of decentralized Q-learning. 
In this section, we try to explain the superior performance of 
selectively decentralized Q-learning from two points of view. 
First, as stated in the foundation of Q-learning [8], the 
convergence of Q-learning assumes that all of the state-action 
entries in the Q-table are visited infinitely. Therefore, in order to 
converge to the optimal Q, the Q-learning systems are supposed 
to spend time to explore the Q-table. In figures 1 and 2 where 
we show the convergence of centralized Q-learning, there are 
long periods when ||x|| and accumulate Q-gained change slowly. 
These periods may correspond to the exploration phases. 
Because the number of states, actions, and state-action entries 

Fig. 5. Convergence of selectively decentralized Q-learning in the first few of tens windows when the systems are completely decoupled. 

Fig.6. Convergence of selectively decentralized Q-learning in the first few of tens windows when the systems are strongly coupled (σ = 0.5).

Fig. 7. Switching in selectively decentralized Q-learning. Left: completely decoupled systems. Right: strongly coupled (σ = 0.5) systems. 

0 10 20 30 40

window index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
average ||x||

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 10 20 30 40

window index

-0.4

-0.3

-0.2

-0.1

0

0.1
average Q gained

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 10 20 30 40

window index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
average ||x||

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 10 20 30 40

window index

-0.4

-0.3

-0.2

-0.1

0

0.1
average Q gained

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 5 10 15 20

window (with w = 50)

0

10

20

30

40

average number of switches

3 subsystems

4 subsystems

5 subsystems

6 subsystems

0 5 10 15 20

window (with w = 50)

0

10

20

30

40

50
average number of switches

3 subsystems

4 subsystems

5 subsystems

6 subsystems



grow exponentially with system dimensionality, decentralized 
Q-learning into smaller dimension may also improve the
convergence exponentially due to exponentially less search
space. Second, selectively decentralized Q-learning proposes
more search options than centralized Q-learning, which is
another factor to improve the converging speed. In centralized
Q-learning, a newly visited state has no prior information to
estimate its Q-table entries. With the same state, in selectively
decentralized Q-learning, the components of the state have
higher chance to be visited by the subsystem learner (in different 
centralized states), which may reduce the effort to compute the
optimal Q-value.

There are two major open questions in this paper. First, 
although selectively decentralized Q-learning may reduce 
exponential convergence measured by the number of data 
points/iterations, the number of decentralization schemes also 
grows exponentially with the dimensionality. Therefore, in 
practice, more refined techniques are needed to reduce the 
search of decentralization schemes. At this point, we believe that 
selectively decentralized Q-learning is practically useful 
because the best decentralization schemes stop switching after a 
few of tens windows (Figure 7). Second, we choose best 
decentralization scheme by the sum of subsystems’ gained Q-
values only because of the linearity in state-reward function, 
which is the main driver for Q-value update. However, there is 
no theoretical basis to support whether or not the different sum 
of subsystem gained Q-value in different decentralization 
scheme is comparable. There may exist more solid options for 
choosing the best decentralization scheme than cumulative 
gained Q-value. 

Another exploration this paper should take is the impact of 
Q-learning parameters, such as γ and α in equation (9), on the
overall learning performance. However, due to the limitation of
space, we decide not to present this point. The parameters used
in this paper is selected similar to well-known examples in [19].
Different experiments may require different choices of
parameters.
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