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Abstract—It is necessary for a mobile robot to be able to
efficiently plan a path from its starting, or current, location to a
desired goal location. This is a trivial task when the environment
is static. However, the operational environment of the robot is
rarely static, and it often has many moving obstacles. The robot
may encounter one, or many, of these unknown and unpredictable
moving obstacles. The robot will need to decide how to proceed
when one of these obstacles is obstructing it’s path. A method of
dynamic replanning using RRT* is presented. The robot will
modify it’s current plan when an unknown random moving
obstacle obstructs the path. Various experimental results show
the effectiveness of the proposed method.

I. INTRODUCTION

Path planning has been one of the most researched problems
in the area of robotics. The primary goal of any path planning
algorithm is to provide a collision free path from a start state
to an end state within the configuration space of the robot.
Probabilistic planning algorithms, such as the Probabilistic
Roadmap Method (PRM) [1] and the Rapidly-exploring Ran-
dom Tree (RRT) [2], provide a quick solution at the expense of
optimality. Since its introduction the RRT algorithm has been
one of the most popular probabilistic planning algorithms. The
RRT is a fast, simple algorithm that incrementally generates
a tree in the configuration space until the goal is found.

The RRT has a significant limitation in finding an asymptot-
ically optimal path, and has been shown to never converge to
an asymptotically optimal solution [3] [4]. There is extensive
research on the subject of improving the performance of the
RRT. Simple improvements such as the Bi-Directional RRT
and the Rapidly-exploring Random Forest (RRF) improve the
search coverage and speed at which a single-query solution is
found. The Anytime RRT [5] provides a significant improve-
ment in cost-based planning. The RRT* algorithm provides a
significant improvement in the optimality of the RRT and has
been shown to provide an asymptotically sub-optimal solution
[3].

Since the introduction of the RRT* algorithm, research has
expanded to discover new ways to improve upon the algorithm.
Research includes adding heuristics [6] [7] or bounds [8] to
the algorithm in order to maintain the convergence of the
algorithm but reduce the execution time. Additional research
attempts to guide the algorithm through intelligent sampling

[9], or guided sampling through an artificial potential field
[10].

In many scenarios the operational environment is rarely
static. The path from a single query will often be obstructed
during execution. For that reason the topic of replanning is
very important to robotic path planning. It is not feasible to
discard an entire search tree and start over. One method is
to store waypoints and regrow trees called the ERRT [11].
Another method (DRRT) is to place the root of the tree at the
goal location, so that only a small number of branches may
be lost or invalidated when replanning [12]. The Multipartite
RRT maintains a set of subtrees that may be pruned and
reconnected, along with previous states to guide regrowth.
It is essentially a combination of DRRT and ERRT [13].
More recently the RRT* algorithm has been incorporated
into replanning. RRTX is an algorithm that uses RRT* to
continuously update the path during execution [14]. The RRTX

is able to compensate for instantaneous changes in the static
environment which is outside the scope of this work.

The contribution of this paper is the method using the
RRT* algorithm for replanning in a dynamic environment with
random, unpredictable moving obstacles. Also included is the
comparison of RRT and RRT* algorithms in a complex 2-D
environment.

The remainder of this paper is organized as follows: Section
II provides an overview of the RRT* algorithm. Section III will
present the replanning method using RRT* in a dynamic envi-
ronment. Section IV contains the results from all simulations.
Section V presents the conclusions and future work.

II. ROBOT PATH PLANNING USING THE RRT*

The RRT* algorithm provides a significant improvement
in the quality of the paths discovered in the configuration
space over it’s predecessor the RRT. The quality of the path is
determined by the cost associated with moving from the start
location to the end location. While RRT* does produce higher
quality paths, the algorithm does have a longer execution time.
The longer execution time of RRT* is due to the algorithm
making many additional calls to the local planner in order to
continuously improve the discovered paths. RRT* operates in
a very similar way as RRT. The algorithm builds a tree using
random samples from the configuration space of the robot and
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Algorithm 1: T = (V,E)←RRT*(qinit)

1 T ←InitializeTree()
2 T ←InsertNode(∅,qinit,T )
3 for k ← 1 to N do
4 qrand ←RandomSample(k)
5 qnearest ←NearestNeighbor(qrand,Qnear,T )
6 qmin ←ChooseParent(qrand,Qnear,qnearest, ∆q)
7 T ←InsertNode(qmin, qrand, T )
8 T ←Rewire(T , Qnear, qmin, qrand)
9 end

Algorithm 2: qmin ←ChooseParent(qrand,Qnear,qnearest,∆q)

1 qmin ← qnearest
2 cmin ←Cost(qnearest) + c(qrand)
3 for qnear ∈ Qnear do
4 qpath ←Steer(qnear, qrand, ∆q)
5 if ObstacleFree(qpath) then
6 cnew ←Cost(qnear) + c(qpath)
7 if cnew < cmin then
8 cmin ← cnew
9 qmin ← qnear

10 end
11 end
12 end
13 return qmin

connects new samples to the tree as they are discovered. There
are two primary differences between RRT and RRT*. The first
difference is in the method that new edges are added to the
tree. The second difference is an added step to change the tree
in order to reduce path cost using the newly added vertex.
Each of these differences contributes to the improvement of
discovered paths over time and is reason RRT* will converge
to an asymptotically sub-optimal solution.

When a random vertex is added to the tree, the RRT will
select the nearest neighbor as the parent for this new vertex
and edge. RRT* will select the best neighbor as the parent
for the new vertex. While finding the nearest neighbor, RRT*
considers all the nodes within a neighborhood of the random
sample. RRT* will then examine the cost associated with
connecting to each of these nodes. The node yielding the
lowest cost to reach the random sample will be selected as
the parent, and the vertex and edge are added accordingly.

The RRT* algorithm begins in the same way as the RRT.
However, when selecting the nearest neighbor the algorithm
also selects the set of nodes, Qnear, in the tree that are in
the neighborhood of the random sample qrand. Line 6 of
Algorithm 3 is the first major difference between RRT* and the
RRT. Instead of selecting the nearest neighbor to the random
sample, the ChooseParent() function will select the best
parent from the neighborhood of nodes.

Algorithm 4 describes the ChooseParent() function. This
function maintains the node with the lowest total cost for
reaching qrand. At line 1 of Algorithm 4 the nearest neighbor,

Algorithm 3: T ←Rewire(T , Qnear, qmin, qrand)

1 for qnear ∈ Qnear do
2 qpath ←Steer(qrand, qnear)
3 if ObstacleFree(qpath) and Cost(qrand) + c(qpath) <

Cost(qnear) then
4 T ←ReConnect(qrand, qnear, T )
5 end
6 end
7 return T

qnearest, is considered the minimum cost neighbor, or qmin.
On line 2 the cost associated with reaching the new random
sample qrand by using qnearest as the parent is stored as
the current best cost, or cmin. The algorithm then searches
the set of nodes in the neighborhood of qrand. The Steer()
function on line 4 of Algorithm 4 will return a path from
the nearby node, qnear to qrand. If this path is obstacle free
and has a lower cost than the current minimum cost, then the
nearby node becomes the best neighbor, qmin and this cost
becomes the best cost cmin (lines 7-9 of Algorithm 4). When
all nearby nodes have been examined the function returns the
best neighbor. The new random node is inserted into the tree
using qmin as the parent. The next step is the second major
difference between the RRT* and the RRT algorithms. Line 8
of Algorithm 3 calls the Rewire() function.

The Rewire() function, described in Algorithm 5, changes
the tree structure based on the newly inserted node qrand. This
function again uses the nearby neighborhood of nodes, Qnear,
as candidates for rewiring. The Rewire() function uses the
Steer() function to get the path, except this time the path
will start from the new node, qrand and go to the nearby node
qnear. If this path is obstacle free and the total cost of this
path is lower than the current cost to reach qnear (line 3 of
Algorithm 5). Then the new node qrand is a better parent
than the current parent of qnear. The tree is then rewired to
remove the edge to the current parent of qnear, and add an
edge to make qrand the parent of qnear. This is done using
the ReConnect() function on line 4 of Algorithm 5.

The functions ChooseParent() and Rewire() change the
structure of the search tree when compared to the RRT
algorithm. The tree generated by the RRT has branches that
move in all directions. The tree generated by the RRT*
algorithm rarely has branches that move back in the direction
of the parent. The ChooseParent() function ensures edges
are created and always moving away from the start location.
The Rewire() function changes the internal structure of
the tree to ensure internal vertices do not add unnecessary
steps on any discovered path. The ChooseParent() and
Rewire() functions guarantee the paths discovered will be
asymptotically sub-optimal because these functions are always
minimizing the costs to reach each node within the tree.

III. DYNAMIC REPLANNING

A. Overview

A real world environment is not static, and it is full of
moving obstacles. These obstacles are often moving in unpre-



Algorithm 4: ExecutePath()

1 SetObsDestination(numObs)
2 SetObsVelocities(numObs)
3 SetRobotDestination()
4 SetRobotVelocity()
5 while robotLocation! = GOAL do
6 UpdateObsLocation(numObs)
7 UpdateRobotLocation()
8 if Replan then
9 DoReplan()

10 end
11 end

dictable directions, which makes planning tasks to avoid them
difficult. When a moving obstacle is known and is following
a known trajectory, the configuration space can be modified to
account for this trajectory. When the obstacle is unknown, the
robot will need to be able to dynamically determine a course
of action in order to avoid a collision. In this section a method
of dynamic replanning is proposed in order to avoid a random
obstacle when it is detected by the robot.

B. Simulation Environment

For the following simulations the environment remains very
similar. The robot is given a configuration space from which to
build a tree using RRT* and determine the best path to reach
the goal configuration from the start configuration. In all the
experiments below, the robot was allowed a tree of varying
sizes to evaluate the performance with different node densities.
During the simulation a few random moving obstacles are
added to the environment, described in the next section. These
obstacles represent a region of the configuration space that
would be a collision if the robot were to enter.

1) Path Execution: After the initial planning process, the
robot begins to execute the optimal path found by the search
tree. The robot traverses the optimal path by selecting the
next node and required velocity vector to reach it, see lines 3
and 4 of Algorithm 6. This process is described in Algorithm
7 below. When the vertex is reached the robot changes the
velocity vector to move toward the next node. This process
continues until the robot reaches the goal node. If the robot
encounters a random moving obstacle that is obstructing the
path a replan event occurs.

C. Random Moving Obstacles

The random moving obstacles force the robot to dynami-
cally plan around the obstacle using RRT*. In order for the
obstacles to move about the environment, a graph is created to
provide the paths between the static obstacles, and the vertices
are the intersections of these paths. Upon initialization of the
simulation the obstacles are placed at random vertices. The
vertices are chosen such that the robot will have a chance
to move before encountering a random obstacle. When the
simulation begins the moving obstacles choose a random
adjacent vertex and begins moving toward that vertex, see lines

Algorithm 5: UpdateRobotLocation()

1 robotLocation← robotLocation + robotV elocity
2 if robotLocation == robotDestination then
3 robotDestination←GetNextPathLocation()
4 SetRobotVelocity()
5 end
6 while obsIndex < numObs do
7 obsDistance←GetDistance(robotLocation,...
8 ObsLocation(obsIndex))
9 if obsDistance < robotRange then

10 obspath ←Steer(robotLocation, obsLocation)
11 if ObstacleFree(obspath) then
12 if IsPathBlocked(obsIndex) then
13 Replan←TRUE
14 end
15 SetObsVisible(obsIndex)
16 end
17 end
18 end

1 and 2 of Algorithm 6. When the vertex is reached a new
random vertex is chosen and the obstacle moves in the new
direction, line 6 of Algorithm 6.

1) Random Obstacle Detection: Robots operating in a real
world scenario will have sensors, such as a LIDAR, to detect
both static and dynamic obstacles. Sensors are not included
in this simulation. Instead a detection range is placed on
the robot. The simulation controls whether or not a moving
obstacle is within the detection range of the robot (lines 7 and
8 of Algorithm 7). If a moving obstacle is within range the
Steer() function is used, by the simulation, to determine if
any static obstacles are blocking the robot’s line of sight to
the moving obstacle.

The obstacle must be observed for a minimum of two time
steps in order to determine the direction that the obstacle
is moving. Once the direction is observed the robot can
determine if the moving obstacle is blocking the path or not,
line 11 of Algorithm 7. If the robot decides that the path is
blocked, the replanning event begins.

D. Path Replanning

Path replanning begins with the determination of whether or
not the moving obstacle is blocking the path, described in the
next section. Algorithm 8, below, lists all the steps executed
during the replanning process. The next step is to find the
location along the optimal path that is beyond the obstacle.
Next, the tree generated by RRT* is modified and expanded in
order to find a path around the obstacle. Finally, the best path
around the obstacle is chosen and the execution of this sub-
path begins. Each of these steps is described in the following
sub-sections.

1) Path Obstruction: The method for determining if the
moving obstacle is blocking the path is a series of trigono-
metric functions using a direction vector from the robot to
the moving obstacle and a comparison between the robot



Algorithm 6: T ←DoReplan()

1 InvalidateNodes()
2 GetReplanGoalLocation()
3 SetReplanSamplingLimits()
4 Rewire(T , Qall, NULL, qrobot)
5 RRT*(qrobot)
6 SetReplanPath()

velocity vector and the moving obstacle velocity vector. Since
the configuration space is 2-Dimensional, the inverse tangent
can be used to find the angles of the vectors. To obtain the
direction vector to the moving obstacle the equation is:

angledirection = atan2((Yobs − Yrobot), (Xobs −Xrobot)).
(1)

Where (Xrobot, Yrobot) is the position of the robot and
(Xobs, Yobs) is the position of the obstacle. This will return
an angle in degrees over the range (−180, 180). Similarly the
angle of the robot’s velocity vector can be obtained using the
following equation:

angleVrobot
= atan2(Vj , Vi). (2)

Where Vi and Vj are the X and Y components of the
robot velocity vector. Using the angles from (1) and (2) the
difference can be taken to see if they are similar. If the absolute
value of the difference between the two angles is less than
some threshold, then the robot is moving toward the moving
obstacle. Note, the angle difference is normalized to be in the
range(−180, 180) before the absolute value is taken. This is
done for all angle comparisons:

|angledirection − angleVrobot
| < anglethresh. (3)

If the robot is moving in the direction of the random obstacle
the velocity vectors are examined. Substituting the obstacle
velocity into (2) above the angle of the obstacle velocity can
be obtained. Next, the differences between the velocity vectors
is found:

angleVdiff
= |angleVrobot

− angleVobs
|. (4)

There are three possibilities from this point. If the angle
difference between the velocity vectors is less than the angle
threshold, then the robot and the obstacle are moving in a
similar direction. Second, if the angle difference between the
velocity vectors is greather than 180 − anglethresh, then the
robot and the obstacle are approximately moving toward each
other. Last, if the angle difference falls outside of these ranges
the moving obstacle and the robot are moving in different
directions.

For the first case: The robot will simply follow the obstacle,
until the obstacle changes direction, or the path takes the robot
away from the obstacle. The robot will then choose from
one of the other conditions. For the second case: The robot
quickly activates a replan event to get out of the way. The
random obstacle may move out of the way on its own, but
there is no way of predicting that will occur. Finally, if the

robot and the obstacle are moving in different directions, the
robot ignores the obstacle unless it gets too close. This third
condition catches the event that the robot moves out from
a corner and a random obstacle is detected very close by.
This event is best summed up with the following example:
When two people approach a hallway intersection they will
run into each other if they continue on their current course, it
is only when they see each other that they can adjust to avoid
a collision.

2) Select Replan Goal Location: The second step in the
replan event, line 2 in Algorithm 8, is to find a location that
will navigate the robot around the random obstacle. First, any
nodes that are in collision with a random moving obstacle
are invalidated, not deleted. The only exception is the goal
location of the optimal path. After this step an assumption had
to be made to simplify and speed up the rest of the replanning
process. The assumption is that the robot is currently following
the best path in order to reach the goal location and should
return to this path after the moving obstacle is avoided. Using
this assumption only the nodes along the optimal path are
examined. Nodes that are farther from the robot than the
random obstacle are candidate nodes. The node on the optimal
path that is immediately following the node that is closest to
the obstacle, without colliding, will be the replan goal location.

3) Modify Search Tree: The third step is to modify the
original search tree in order to find a way around the moving
obstacle. First a node is added to the tree at the robot’s current
location. Using the distance to the replan goal node as a
metric, a sampling area is established, line 3 in Algorithm 8.
Then, using Rewire(), every node within the sampling area
is rewired such that the robot’s current location becomes the
parent of that node. New nodes are then sampled within this
area and added to the tree using RRT*. Since there are already
many nodes in the tree only a small number will need to be
added. However, the number of nearest neighbors used during
the ChooseParent() function and the Rewire() function is
increased. This increase allows each new node to direct the
existing tree toward the replan goal location.

4) Sub-path Selection and Execution: When the search tree
modification is complete the best path to the replan goal
location is found. Path execution will begin again as it did
at the beginning of the simulation. When the robot reaches
the replan goal location, the execution of the original optimal
path resumes. If the robot encounters another moving obstacle
and determines the path is obstructed again. The replanning
is repeated, however the replan goal location will always be a
node on the original optimal path.

IV. RESULTS

A. The Simulation Environment

The environment for all of the experiments is a complex
2-Dimensional environment that will also serve as the con-
figuration space for the robot. The environment is complex
due to the number of obstacles and several narrow passages.
There are also several sub-optimal paths where the algorithm
may get stuck. For each experiment the path cost is measured



in Euclidean distance. The environment is also intended to
mimic a potential real world situation where there would be
streets or sidewalks and open areas such as parks and plazas.
In the RRT* results presented below, the algorithm is allowed
a maximum of 5000 nodes. The optimal path length is 98.48
units.

B. RRT* Results

The RRT* evaluation was conducted in the following way:
There is not a growth factor for extending the tree and the
tree is goal oriented. The expecation as the tree grows will
be long branches. These branches are often inefficient, the
RRT* Rewire() function will remove these long inefficient
branches as the algorithm executes in favor of shorter, lower
cost branches. The algorithm also has a maximum number of
nearest neighbors, or neighborhood size that is configurable to
the algorithm. This implementation of RRT* has a maximum
number of nearest neighbors equal to 1% of the total number
of nodes.

Fig. 2c shows the result of the search tree using the RRT*
algorithm. The best path length found is 103.96 units.

C. Dynamic Replanning Results

The simulation results shown below demonstrate the robot’s
ability to plan a path around the moving obstacle and reach
the goal. Using RRT* during the replanning step allows an
efficient path to be found to avoid the moving obstacle and
continue on the original optimal path. Since the obstacles
move randomly, it is possible for the robot to execute the
optimal path and never be obstucted by a moving obstacle.
Only examples where the robot did encounter these obstacles
are shown.

The first set of results use a search tree containing 2000
nodes. Upon completion of the search tree the moving obsta-
cles are placed randomly within the configuration space, and
the simulation begins. Fig. 1a shows the search tree found by
the robot upon reaching 2000 nodes.

When executing this path the robot encounters two random
obstacles near the center of the configuration space. One ob-
stacle moves across the path and obstructs the robot. The robot
triggers a replanning event at this time. Fig. 1b shows when
the robot encountered the moving obstacles and replanned to
avoid them. A second obstacle is nearby and can be seen by
the robot and must be considered when replanning. Following
the replanning steps in Algorithm 8, the robot will select a goal
location, then modify the search tree to avoid the obstruction.

Fig. 1c shows the full modified search tree. There is an
obvious empty region of the configuration space where the
moving obstacles are located. The abscence of branches within
this area shows the robot has considered this space as obstacle
space, rather than free space. Note, the nodes in this region are
not removed, they are considered invalid. If the robot should
need to replan again, and this area is free of any moving
obstacles, these nodes would be available.

When the robot reaches the replanning goal location the
original path can resume. Fig. 1d shows the completed path,

along with the final positions of the random moving obstacles.
The magenta line shows the path followed by the robot. The
sections in blue are unexecuted portions of the original path.

The second set of results is similar to the first, with one
exception. The random moving obstacle initial positions were
selected in order to increase the probability the robot would
encounter one, or many, while executing the path. Fig. 2a
shows the starting locations of the moving obstacles. The robot
was obstructed three times during the execution of the path and
successfully planned around the moving obstacle each time.
Fig. 2b shows the final positions of moving obstacles and the
path followed by the robot.

The final set of results is a simulation with a search tree
containing 5000 nodes and 3 obstacles moving at random
in the configuration space. The three moving obstacles in
this simulation were placed similarly to those in the second
simulation. In this simulation the robot encounters a moving
obstacle very early in the execution of the path. The robot
finds a path around the moving obstacle and completes the
path. Fig. 2d shows the final positions of the obstacles and
the executed path.

V. CONCLUSION AND FUTURE WORK

The replanning method presented performs well and is
a good first step toward a more robust method of replan-
ning when unknown randomly moving obstacles obstruct the
robot’s path. Future work will research a floating replan goal
location to minimize the total remaining cost to the query
goal. Minimizing the modifications to the original search tree
is another area of improvement. This method has only been
implemented in a 2-Dimensional configuration space. The
algorithm must be expanded and modified to operate in higher
dimension configuration spaces. The simulations up to this
point have been with small numbers of moving obstacles,
further research is needed to determine how the algorithm
performs when there are many random moving obstacles.
Additional research is pursuing multi-robot systems. Efficient
path planning and replanning will benefit: cooperative sensing
systems [15], [16], formation control systems [17]–[21] , and
target tracking and observation [22].
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