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A Human-like Steering Model
Sensitive to Uncertainty in the Environment

Sarvesh Kolekar, Joost de Winter, David Abbink
Faculty of Mechanical, Maritime and Materials Engineering

Delft University of Technology - Netherlands
Email: s.b.kolekar@tudelft.nl

Abstract—The interaction between a human driver and an
automated driving system may improve when the automation
is designed in such a way that it behaves in a human-like
manner. This paper introduces a human-like steering model,
in which the driver adapts to the risk due to uncertainty in
the environment. Current steering models take a risk-neutral
approach, while the fields of economics and sensorimotor control
suggest that humans exhibit risk-sensitive behavior. The proposed
model uses a risk-sensitive optimal feedback control structure to
predict steering behavior. The paper studies the effect of the risk-
sensitivity parameter and compares the prediction of the risk-
neutral and risk-sensitive controllers in a simulated abstraction
of two scenarios: (a) driving while being subjected to lateral
wind gusts and (b) overtaking an unpredictably swerving car.
The simulation results show that the risk-sensitive model adapts
to the uncertainty in the environment. Experimental data will be
needed to validate the predictions of our model.

I. INTRODUCTION

Automobile manufacturers and tech companies are investing
heavily to make autonomous driving a reality. Trust appears
to be an important construct that is predictive of whether
consumers will want to ride an automated car, e.g., [1]. Hence,
understanding how human trust in automated vehicles can be
improved has become an important question. At the same time,
we need to avoid designs that would lead to over-reliance on
automated driving systems, as this is dangerous [2]. Studies
show that by anthropomorphizing the technology with human-
like characteristics, trust in automation can be improved [3][4].
Human centered automation which uses a model of the human
operator as a template to automate tasks, could improve
human-automation interaction [5]. The work in this paper takes
inspiration from the above mentioned studies and attempts to
capture human steering behavior for its use in making the
control of (semi)automated vehicles anthropomorphic.

An important characteristic of human driver behavior is
the adaptability to different driving situations. For example,
there is ample evidence that drivers reduce speed in more
complex traffic scenarios [6]. Additionally, most drivers will be
familiar with the experience of driving towards the lane center
in a filled parking lot, because of the unpredictability of the
pedestrians’ movements, a phenomenon which was recently
quantified in a driving simulator study [7]. Similar is the
experience of adopting a large safety margin to an erratically
swerving car while overtaking it (Fig. 1). Such adaptations
do not depend merely on the likelihood of the presence of the
object but also on the statistical properties of its motion. In the

fields of robot motion planning this is known as uncertainty in
environment predictability [8]. In this paper we aim to capture
human steering behavior in the presence of such an uncertain
environment.

The modeling of driver steering behavior has received much
attention [9]. A large portion of the models in literature are
deterministic, meaning that they do not include noise from any
source [10][11][12]. Stochastic models incorporate noise that
may arise due to an uncertain environment (e.g., bumpy road,
wind gusts), sensors and/or actuators, and describe human
driving behavior in the presence of variability. There are
relatively few stochastic driver models and some of them
incorporate additive noise in the predictions of a deterministic
driver model [13][14]. These models do not study the effect of
disturbances on human behavior, but study how uncertainty in
predicting human behavior affects driver assistance systems.
Other models incorporate the uncertainty into the parameters
of the driver’s internal model [15][16]. These stochastic mod-
els have provided important insights into the spread of driving
behavior, but predicted that the average behavior does not
change with the amount of uncertainty.

Fig. 1. Illustration of the effect of environment uncertainty: The expected
difference in desired safety margin when overtaking a vehicle that drives
steadily (left), compared to one that is erratically swerving (right).

In short, existing steering models do not account for human-
like adaptation to uncertainty in environment predictability
(Fig. 1). The field of economics has extensively studied the
risk sensitive behavior exhibited by humans while making
decisions about lotteries, investments, valuations of assets,
etc [17][18]. In these studies subjects had to make discrete
decisions. Using a reaching task, Nagengast et al. showed that
human sensorimotor control, which is concerned with continu-
ous tasks, is sensitive to risk as well [19]. They observed that,
as the amount of uncertainty in the process was increased,
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subjects adapted by increasing their effort. Medina et al.
used a risk-sensitive controller to provide assistive feedback,
that adapted to uncertainties in its predictions of the human
operator’s actions, in a teleoperation task [20].

In driving, there have been some applications of risk-
sensitive controllers. Saito and Raksincharoensak implemented
a risk-sensitive controller that decelerated the car in antic-
ipation of an unexpected obstacle appearing suddenly from
a poorly visibile area [21]. Dunning et al. (2015) studied
human response to risk in a simulated driving task and found
that while driving on a road that was flanked by water (high
danger) on one side and grass (low danger) on the other, lateral
positions of the vehicle were biased towards the grass region
[22]. That paper elegantly showed that humans are risk aware
controllers but did not provide a steering model.

In conclusion, conventional steering models in the literature
predict that average human steering behavior does not change
with the amount of noise. This is either because these models
do not consider the noise at all (deterministic models) or
because they minimize the expected value of a cost function.
According to the certainty equivalence principle, the optimal
control solution obtained by minimizing the expected value of
a quadratic cost of a linear system subjected to additive noise is
the same as that obtained in the absence of noise. For example,
the gains of a LQR (Linear Quadratic Regulator) are the same
as those of a LQG (Linear Quadratic Gaussian) controller.
However, research in the field of economics and sensorimotor
control provides evidence for risk-sensitive human behavior.

Our goal in this paper is to use insights from economics
and sensorimotor control to formulate a risk-sensitive steering
model that incorporates the ability to adapt to uncertainty in
the environment.

II. APPROACH

To incorporate the dependence of controller gains on vari-
ance of noise, in addition to the expected value, higher
’moments’ (e.g., variance) of the cost function need to be
included. Directly including these higher moments increases
the non-linearity of the problem. Jacobson (1973) suggested
an approach in which he minimized the expected value of the
exponent of the cost function (1), and indirectly incorporated
higher moments of the cost function [23].

J = argmin
π

E{exp [σL (π)]} (1)

• J = Cost function minimized by Jacobson
• E is the expected value operator
• σ is a real valued parameter
• π is the control policy
• L (π) is quadratic cost function (random variable)

The Taylor expansion of the log of cost J shows that this cost
incorporates higher moments of the cost function (2). L ∗ is
the cost incurred by optimal policy.

log [J] = E [L ∗]+
σ

2
Var [L ∗]+ ... (2)

In this paper we will be using Jacobson’s approach to design
a human driver model that adapts its gains in response to the
level of uncertainty.

It is important not to confuse variance of cost with variance
of trajectories, as the risk-neutral controller does minimize the
variance of its (input and output) trajectories by minimizing
the expected value of the cost function as shown in (3), where
tr() is the trace operator.

E [L ] = E

[
k+n

∑
i=k

xi
T Qixi +ui

T Riui

]
= tr (QiΣx)+µ

T
x Qiµx︸ ︷︷ ︸

variance and mean o f states

+ tr (RiΣu)+µ
T
u Qiµu︸ ︷︷ ︸

variance and mean o f input
(3)

The risk-sensitive controller, in addition to minimizing the
variance of its trajectories, takes into account the variance of
cost itself (2).

A. Mathematical formulation

We assume that the vehicle is traveling at a constant speed
V while being subjected to an uncertain environment. Here we
use the linear dynamic bicycle model, with steering angle u
as the input and ε as a gaussian additive noise on the states.

xk+1 = Akxk +Bkuk +Gkεk (4)

xk =


ek
ėk
ψk
ψ̇k
1

 Bk =


0

a15∆t
0

a25∆t
0

 Gk =


∆t
0
0
0
0

 εk ∼ N(0,s2)

Ak =


1 ∆t 0 0 0
0 1+a11∆t a12∆t a13∆t a14ρkV ∆t
0 0 1 ∆t 0
0 a21∆t a22∆t 1+a23∆t a24ρkV ∆t
0 0 0 0 1


(5)

a11 =
−2C1 −2C2

mV
a12 =

2C1 +2C2
m

a13 =
−2C1a+2C2b

mV

a14 =
−2C1a+2C2b

mV
−V a15 =

2C1

rm
a21 =

−2C1a+2C2b
IzV

a22 =
2C1 −2C2b

Iz
a23 =

−2C1a2 −2C2b2

IzV
a25 =

2C1a
rIz

a24 =
−2C1a2 −2C2b2

Iz
(6)

• CG is the center of gravity
• e is the lateral deviation of vehicle’s CG from the lane

center [m]
• ψ is the difference between vehicle heading and road

heading (ψcar −ψroad) [rad]
• u is the steering angle [rad]
• ε is the additive process noise (e.g., wind gust) [m]
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• s is the standard deviation of ε [m]
• C1,C2 are the front and rear tire lateral stiffness, respec-

tively [N/rad]
• a,b are the distances of front and rear axles from vehicle’s

CG, respectively [m]
• m is the mass of the vehicle [kg]
• Iz is the moment of inertia of the vehicle about yaw axis
[kgm2]

• V is the longitudinal vehicle speed [m/s]
• ρ is the road curvature

( 1
road radius

)
, left turn → positive,

right turn → negative, straight road 0 [m−1]
• ∆t is the time step [s]
• r is the steering ratio (steering angle : tire rotation) [−]

The steering model uses road preview up to a distance of
dp [m], in the form of road curvature ρ , from multiple points
which are ds [m] apart (Fig. 2).

Preview dp 

ds 

Current position 

k k+1 k+n 

Preview dp 

ds 

Current position 

k k+1 k+n k+n+1 

∆t 

Fig. 2. Black solid lines indicate the lane boundaries, and the grey dashed
line marks the lane center. (Left) Road curvature information (ρk → ρk+n) is
previewed by the model for n upcoming time steps (k → k + n), and used
to calculate the optimal control policies π(k → k + n). Here ds = V ∆t and
dp = V n∆t. (Right) After 1 time step, in which only the control policy for
π(k) was implemented, the calculations are repeated to obtain the optimal
policy π(k+1 → k+n+1).

Algorithm 1 Implementation of the risk-sensitive controller
Input: Ak, Bk, Gk, Qk, Rk, Pk, σ

Output: Kk (implement only K1)
Initialization : Wn=Qn
for k = n−1 to 1 do

W̃k+1 = Wk+1 + σWk+1Gk
(
Pk −σGk

T Wk+1Gk
)−1

Gk
T Wk+1

Wk =Qk+Ak
T
[
W̃k+1 −Wk+1Bk

(
Rk +Bk

T W̃k+1Bk
)−1

Bk
T W̃k+1

]
Ak

Kk =
(
Rk +BkW̃k+1Bk

)−1 Bk
T W̃k+1Ak

end for

The optimal control policy is calculated by minimizing the
cost in (1), where L is quadratic in nature and given by
(7). Qk and Rk are positive semi-definite and positive definite
matrices, respectively.

L =
k+n

∑
i=k

xi
T Qixi +ui

T Riui (7)

σ is the real valued risk-sensitivity parameter. As can be
seen from (2), σ = 0 ignores the effect of variance of cost
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Fig. 3. Effect of risk-sensitivity (σ ): Three different levels of σ are used
to show the risk-averse (σ = 2.5 and 1) and risk-taking (σ =−2.5) behavior.
Top-left: Input to the model is road curvature. Bottom-left: Lateral deviation
from lane center is shown on a road with effective width (widthroad −widthcar)
of 1m using, solid lines (average steering behavior) and bands around them
(±1 standard deviation). Top-right: K1,K2,K3, and K4 are the gains of the
controller (corresponding to ek, ėk,ψk, ψ̇k , the 4 states of the system (5)).
Bottom-right: Standard deviation of lateral deviation from lane center is
highest for the risk-taking driver, while it decreases as the driver becomes
more risk-averse.

and hence makes the controller risk-neutral. Only non-zero
values of σ can be chosen for a risk-sensitive controller.
Fig. 3 shows the simulation results when three different σ

values (-2.5,1, and 2.5) were used (while keeping all other
parameters unchanged; Table I). The proposed steering model
drove on a road whose curvature is given in the top-left plot
of Fig. 3. As the value of σ increases from -2.5 to 2.5,
the driver becomes more risk-averse and the controller gains
increase. This indicates that the driver puts in more effort
and the trajectories become ’tighter’, while exhibiting lower
variance in the trajectory (bottom-right plot). In essence, the
driver considers the variability to be detrimental to his/her
performance and hence puts in more effort to reduce risk.
On the other hand, the driver represented by σ=-2.5 exhibits
a risk-taking behavior by lowering his/her gains, resulting in
a ’loose’ trajectory. This driver considers the variability to
be working in his/her favor and hence reduces his/her gains
and relaxes. We propose that this σ parameter can represent a
driver specific behavior that accounts for an individual’s risk
versus reward trade-off. We can classify controllers based on
the value of σ in the following way:

1) σ = 0 : Risk-neutral
2) σ 6= 0 : Risk-sensitive

a) σ > 0 : Risk-averse
b) σ < 0 : Risk-taking

III. SIMULATION RESULTS

In this section the predictions of the risk-neutral and risk-
sensitive controllers are compared by simulating abstractions
of two scenarios, namely: (a) driving while being subjected to
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Fig. 4. Effect of level of noise (wind gust): The predictions from a risk-
neutral (σ = 0) and a risk-sensitive (σ = 1) controller are shown in column
1 and 2, respectively. Row 1: Input to the model is road curvature and is the
same for both controllers. Row 2: In the plots for lateral deviation from lane
center, the solid lines indicate the average steering behavior, while the bands
around them represent the (±1) standard deviation. Row 3: K1,K2,K3, and
K4 are the gains of the controller (corresponding to ek, ėk,ψk, ψ̇k , the 4 states
of the system (5)).

lateral wind gusts, and (b) overtaking an unexpectedly swerv-
ing vehicle. The simulation parameter values are provided in
Table I.

A. Risk-neutral versus risk-sensitive (Effect of wind gusts)

In this scenario (Fig. 4) each controller drove on a curved
road while the vehicle was subjected to two levels of lateral
wind gusts:

• Low noise with s = 0.05m
• High noise with s = 0.15m

where s is the standard deviation of the effect of wind gust on
the lateral deviation of the vehicle. As seen from Fig. 4, the
risk-neutral (σ = 0) controller changes, neither its trajectory
(lateral deviation) nor its gains. On the other hand, the risk-
sensitive controller adapts to the different levels of noise. In
this simulation we considered a risk-averse (σ = 1) type of
risk-sensitive controller. This risk-sensitive controller increases
its gains for the higher noise condition and also follows a
’tighter’ trajectory while negotiating the curve. Hence, the risk-
sensitive model predicts that humans will adapt their behavior
by increasing their gains, in response to higher noise levels.
Experimental evidence for such increase in gains for a risk-
averse behavior has also been found in point-to-point reaching
tasks in sensorimotor tasks [19].
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Fig. 5. Effect of level of noise (noisy obstacle): The predictions from a risk-
neutral (σ = 0) and a risk-sensitive (σ = 1) controller are shown in column
1 and 2, respectively. Row 1: Both controllers are driving on a straight road
(ρ = 0). Row 2: In the risk-neutral case (left) trajectories for noisy and static
obstacles are identical and hence overlap. The risk-sensitive controller (right)
leaves a larger space for the noisy obstacle, as compared to the static obstacle.
Row 3: K1,K2,K3, and K4 are the gains of the controller (corresponding to
ek, ėk,ψk, ψ̇k , the 4 states of the system (5)).

B. Risk-neutral versus risk-sensitive (noisy obstacle)

This scenario (Fig. 5) simulates an abstraction of the ex-
ample given in Fig. 1, where the two controllers drive on a
straight road while encountering 2 different obstacles. Both
the obstacles are stationary in their longitudinal position, but
the uncertainty in their lateral position (s) varies:

• Static obstacle with s = 0.001m
• Noisy obstacle with s = 0.15m

In this case as well, the risk-sensitive controller simulated is
risk-averse (σ = 1). This risk-sensitive controller increases its
gains and leaves the noisy obstacle more space as compared to
the static obstacle, while overtaking it. In comparison, the risk-
neutral controller does not treat the two obstacles differently.

IV. DISCUSSION

To improve trust in automation, it may be necessary to
impart automated systems with anthropomorphic features. The
human-like adaptation examined in this paper is the risk-
sensitivity of steering behavior to uncertainty in the environ-
ment. The difference in predictions of the risk-neutral and
risk-sensitive controllers can be clearly seen in the simulation
studies presented in section III. In the risk-sensitive case, the
difference in the trajectories (of low and high noise conditions)
is dependent on the values of the parameters, especially σ . For
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TABLE I
PARAMETER VALUES

Parameters C1=C2 a=b m Iz r dp ds R V q s σ 
Units N/rad m kg kgm2 - m m - m/s - m - 
Effect of σ  (Fig. 3) 

30
00

0 

1.
4 

16
00

 

31
36

  

15
 

40
 

1 1 

20 0.2 0.1 2.5,1,-2.5 
Wind gusts (Fig. 4) 20 0.2 0.05,0.15 1 
Obstacles   (Fig. 5) 8.33 0.3 0.001, 0.15 1 
Effect of Q (Fig. 6) 20 0.2, 0.4 0.1 1 
Effect of ρ  (Fig. 7) 20 0.2 0.1 1 

 State cost matrix: Q(1,1) = q and Q(rest) = 0. Uncertainty: s is the standard deviation of the lateral position. Time step: ∆t = ds/V . Road curvature ρ is
provided in figures corresponding to the condition.

example, in the noisy obstacle scenario (subsection III-B) the
maximum lateral distance between the trajectories for a static
obstacle (s = 1mm) and a noisy obstacle (s = 15cm) is ≈ 5cm,
which is quite small.

This simulation was performed with σ = 1, which was
chosen as a common parameter value in the two scenarios
(subsections III-A and III-B), for ease of comparison. From
the simulations presented in Fig. 3 it can be inferred that
a larger value of σ will result in larger differences in the
trajectories of low and high noise conditions. A realistic value
of σ that represents a human driver should be estimated using
experimental data.

σ acts as a weighting factor between the expected value
of the cost and the variance of the cost. One possible way
to estimate the value of σ for an individual driver would be
to ask him/her to drive in conditions with different levels of
expected cost, and different levels of variance in cost. Such
an empirical study will possibly give us an estimate of the
risk-sensitivity of drivers.

Both the simulations presented in section III are abstrac-
tions of real-life scenarios, which are based on a number
of assumptions. Firstly, it is assumed that the driver can
perfectly estimate the uncertainty in the environment and that
this estimation by-passes the visual and cognitive processes.
Secondly, the wind gusts are assumed to affect the vehicle
only in its lateral deviation, without affecting its longitudinal
motion while traveling on a curved road. The wind gusts are
represented using an additive gaussian noise with zero mean,
and hence do not have a preferred direction.

This study is limited by the fact that the simulations were
performed using a linear vehicle dynamics model at a constant
longitudinal speed. Also, the model adapts to risk arising only
from uncertainty in the environment and not from the type of
environment. For example, the controller perceives a wooden
box with a variability of 15cm in its lateral position equivalent
to a pedestrian of the same dimensions and uncertainty.

The proposed steering model could be applied in automated
cars in order to adopt ’human-like’ trajectories while over-
taking. A lack of such adaptive behavior was a concern for
some Tesla users [24]. Another possible application could
be to convey the level of risk to the driver, using haptic
shared control [25]. The field of robotics has made significant
advances in the area of path planning in the presence of an
uncertain environment. But the uniqueness of our work is its

aim of mimicking human-like steering behavior. Whether the
proposed model holds true, needs to be tested empirically.

V. CONCLUSION

• Steering models in the literature take a risk-neutral ap-
proach. That is, existing models do not adapt to the level
of uncertainty in the environment.

• In this study we propose the approach of minimizing both,
the expected value, and the variance of the cost. This
results in a risk-sensitive steering model that adapts to
the level of uncertainty in the environment.

• The risk sensitivity parameter (σ ) may be used to indi-
vidualize the risk-perception of different drivers.

• The risk-sensitive optimal feedback controller proposed
in this paper adapts itself to the uncertainty in the
environment, as demonstrated for two scenarios : (a)
driving while being subjected to lateral wind gusts and
(b) overtaking an unpredictably swerving vehicle.
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APPENDIX

Two parameters (state cost matrix in Fig. 6 and road
curvature in Fig. 7) which have the same effect in risk-neutral
and risk-sensitive controllers are shown.
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Fig. 6. Effect of state cost matrix (Q): As the value of Q(1,1) = q increases,
the lateral deviations from the lane center are punished more. Top-left: Road
curvature as a function of longitudinal distance covered is the input to the
model. Bottom-left: For a higher value of q the ’curve-cutting’ is reduced.
Top-right: K1,K2,K3, and K4 are the gains of the controller corresponding
to the states ek, ėk,ψk, ψ̇k (5). As the state cost increases, the gains increase.
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value of q increases.
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Fig. 7. Effect of road curvature (ρ): Top-left: Two different road curvatures
are used as input to the model. As the curvature increases, the curve becomes
sharper. Bottom-left: Sharper the curve, more is the curve cutting behavior
Top-right: K1,K2,K3, and K4 are the gains of the controller corresponding
to the states ek, ėk,ψk, ψ̇k . Gains remain unchanged for the two curvature,
predicting that the human will not increase or decrease his/her effort due to
a change in road curvature. Bottom-right: The standard deviation of lateral
deviation also remains the same for both the curves.
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