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Abstract—We investigate the effect of dominant and 

submissive movement strategies and a movement cue in a 

human-robot cooperation scenario on perceived predictability 

and trust. Four different movement strategies in proximal 

cooperation between a robot manipulator and a human 

participant were tested in an experiment in which participants 

had to arrange small objects in a shared workspace working on 

the same product as the robot. The features of the robot motion 

were characterized by dominance or a movement cue. The robot 

modifies its motion in two ways resulting in four different 

movement strategies: either it stops when the human is in danger 

of collision (submissive) or not (dominant), and either it performs 

a backing-off movement cue or not. The participants evaluated 

the movement strategies in terms of trust and predictability in a 

questionnaire. We found that the submissive backing-off 

movement strategy significantly enhanced the users’ trust 

compared to the dominant movement strategy without movement 

cue. Other strategies showed no significant differences in trust or 

predictability. 

Keywords—Human Factors; Robotic Systems; Human-

Machine Cooperation & Systems 

I. INTRODUCTION 

Humans are increasingly surrounded with moving 

autonomous systems and robots [1]. When humans and robots 

share a common space, robot motion should be designed with 

human needs in mind. Under the term human-robot interaction 

(HRI) an important distinction between coexistence and 

cooperation has to be made [2]. In these different paradigms, 

motion has to be targeted differently, due to the variations in 

proxemics and the intended or unintended interference of the 

two partners. In human-robot-coexistence (HRCoex), human 

and robot share a (work)space during the same time. In 

human-robot-cooperation (HRCoop), human and robot share a 

(work)space during the same time and additionally aim 

towards a common goal or task [2]. For efficient and effective 

HRCoop, humans should understand the intent and trust the 

movement of the robot [3]. Movement cues have been shown 

to affect the perception of robot intent by observers [4] [5], but 

although there has been research on stylistic effects of robotic 

motion [6], their effect on human perceived trust and 

predictability has not been investigated extensively yet. 

A. Transferring predictability considerations to human-

robot-cooperation 

Predictable motion is a basis to match and guide the 

human’s expectations [7]. There are numerous considerations 

of predictability in HRCoex. Studies have shown that straight 

line movements of the robot improve human well-being and 

performance compared to curved movements [8] and are more 

intuitive and natural for the human [9]. In other studies, 

projections and auditory feedback were used to enhance 

predictability of motion [10]. In a similar context LEDs were 

used to communicate the robot’s intent [11]. However, we 

believe such modalities are less suitable to guarantee 

predictability in HRCoop considering the close proximity 

between human and robot and the higher tool-center-point 

(TCP) speeds that are reached in state of the art cooperative 

robots. For close cooperation, we believe the human is more 

likely to pay attention to the “body language” of the robot. 

Thereby we aim to investigate which robot movement strategy 

exceeds at communicating intent and awareness in collision 

avoidance.  

B. Trust in human-robot-interaction 

As a basis for interaction with the cooperative robot, 

human trust in the system needs to be established [12]. The 

concept of trust in automation is built upon reliance and 

compliance. Reliance describes the extent to which a person 

relies on the correctness of the autonomous system’s behavior. 

Compliance resembles the extent to which a person agrees to 

the instructions of an autonomous system [12]. On this 

foundation, trust in a robot describes the attitude of a person to 

be willing to be vulnerable to the actions of the robot based on 

the expectation that it will perform a particular action 

important to the user, irrespective of the ability to monitor or 

to intervene [13]. Being able to interpret the robot’s intentions 

thereby plays an important role in the development of trust 

[1]. This suggests that trust is also closely related to the 

presence or absence of predictability. The presented study 

aims to give insight whether dominant or submissive 

movement strategies or the presence or absence of a 

movement cue would result in higher users’ trust. 

C. Dominant and submissive robot movement 

Dominance can be defined as the degree to which one 

actor attempts to regulate the behavior of the other [14]. We 



call robot motion dominant when the robot continues with its 

task despite possible collision with the co-working person, 

forcing the person to avoid it, and submissive when the robot 

interrupts its movement, allowing the person to complete their 

planned movement and work on the task. In social 

interactions, dominance has been shown to correlate with 

lower trust in the robot [15]. 

D. Movement cues 

Movement cues have the potential to give human co-

workers insights into robot intention, which can improve 

human performance in terms of time to completion (TTC) [16] 

and improve trust [1]. To achieve this, the motion needs to be 

predictable. With non-humanoid robots, intent can be 

expressed by varying the trajectory of motion [17]. Knight et 

al. [4] showed how non-humanoid robots can use “expressive 

motion”, i.e. motion executed exclusively to communicate 

robot intent to onlookers. During point-to-point or reaching 

movements of an arm in a shared workspace, a short 

backwards movement when the robot gets close to the human 

is, at the very least, acknowledgement of the other party’s 

presence. We observe such a cue also in human-human 

interaction, when two persons accidentally reach for the same 

object at the same time. Users have greater trust in 

autonomous systems when it is clear that the system is aware 

of them [1]. What is not clear is if a human-inspired back off 

movement cue can communicate awareness and thereby 

enhance trust. In the presented study we designed a back off 

movement cue to investigate whether movement strategies 

including the cue would perform better in evaluations of trust 

and predictability than movement strategies without 

movement cue both in dominant and submissive motion. 

E. Hypotheses 

To target the presented problem statement, we formulated 

the hypotheses H1 and H2. 

Trust (H1) and predictability (H2) towards the system differ  

between four movement strategies. 

II. METHOD 

1) Sample: twenty-five healthy volunteers took part in this 

study (40% female). The average age of the participants was 

25.48 years ranging from 18 to 32 years (SD = 3.61). No 

participant reported any motor or sensory disorders. Fifteen 

participants had no previous experience with robots. 

2) Procedure: In this within-subject study, participants stood 

at position A in Fig. 1 while the movement of the robot was 

demonstrated without the human in its workspace. They then 

stood in position B and performed the sandwich assembly 

task, the robot remaining stationary, in order to give a baseline 

for participants’ execution of the task without HRCoop. 

Following this baseline condition, the participants performed 

their task at position B at the same time as the robot performed 

its task (Fig. 2). The participants’ task involved placing four 

(card cut-out) ingredients, salad (green), tomato (red), cheese 

(yellow) and ham (pink) on a slice of bread and then covering 

it with another slice, six times. The sandwiches were placed in 

order from left to right and top to bottom. All ingredients were 

on the table as well as a graphical instructions sheet (Fig. 1). 

The robots task was to pick three bottles of “seasoning'' (for 

logistical reasons, these were empty bottles) and pour their 

imaginary content on the sandwiches following a 

preprogrammed path (Fig. 2). Four robot movement strategies 

were investigated (Tab. 1). During those trials, the different 

movement strategies were applied in the robot collision 

avoidance software. A fifth robot movement strategy, which 

scaled velocity to zero with increasing proximity to the 

human, was tested in the trials but excluded from this paper as 

it was irrelevant to our problem statement. After each 

demonstrated strategy, the participant had to fill out the 

questionnaire described in section 4). The requirements for the 

fillings in each sandwich were changed for each movement 

strategy and the robot strategies were introduced in 

randomized order to avoid distortion from a learning effect. 

Participants were instructed to perform the task “quickly and 

precisely”. The task was made straightforward enough to be 

easily explainable, but complex enough that the subjects 

should be concentrating on their task. The movements of the 

robot end effector were minimum jerk and linear in Cartesian 

space on grounds of their ease of predictability for humans 

[9].  

 

Fig. 1 Experimental area showing the co-working robot, the sandwich 

ingredients, the bottles and the graphical instruction sheet 

 

Fig. 2 Participant and the cooperating robot, both performing the task at the 

same time 

B 



3) Robot movement strategies: The four movement strategies 

we tested are shown in Tab. I; two strategies are dominant and 

two are submissive, and in two strategies a back off movement 

is used, whereas in the other two no cue is present.  

TABLE I Classification of the movement strategies 

BD ND BS NS 

back off  no cue back off  no cue 

dominant dominant submissive submissive 

The control of the robot is shown in Fig. 3. The robot 

follows a pre-programmed trajectory, and continually checks 

whether a collision could occur with a nearby human during 

the time the robot would take to perform a stop. If a collision 

could occur, the robot state becomes “COLLISION 

POSSIBLE”. The robot still continually checks if a collision 

could occur, and as soon as it believes it is safe, the state 

becomes “COLLISION IMPOSSIBLE” again. In the two 

dominant strategies, even when the robot is in the state 

“COLLISION POSSIBLE”, it will continue moving at its 

nominal speed, whereas in submissive trajectories it will come 

to a stop along the spatial path. During the transition from 

“COLLISION IMPOSSIBLE” to “COLLISION POSSIBLE”, 

the back-off strategies perform a short (path-consistent) 

backwards movement for 1 second.  

 

Fig. 3. Robot control 

To check whether a collision is possible with the human, 

the robot 1) calculates a stopping trajectory, 2) predicts the 

sets of space that the human and robot could reach until the 

end of the stop, the Reachable Occupancies, and 3) checks if 

they intersect or not.  

The stopping trajectory of the robot is achieved by scaling 

the desired velocity to zero. The duration of the stop  and 

hence the scaling factor  is based on the vector of current 

joint velocities  and maximum permissible accelerations  

(set just under the absolute maximum to allow for error): 

 

Where the division is elementwise,  is the time during the 

stop and  at the start of the stopping trajectory. 

To calculate the reachable occupancies of human and robot, 

we take the following approach. The robot and the human are 

each represented as a set of capsules as in Fig. 4, which 

entirely enclose the parts of each. The forward kinematic 

function applied to the joint positions (read over CAN bus) 

gives us the positions of the robot capsules while an Xbox 

Kinect sensor gives us the positions of the human capsules 

through the Skeleton-recognition functionality of the 

Microsoft SDK, at a rate of 30 Hz. The reachable occupancy 

of the robot is found by obtaining the capsules during the 

middle of the robot stopping trajectory from the forward 

kinematics, and extending the radii by half the distance 

travelled along the trajectory. (This procedure was optimized 

for speed and not intended to be conservative). Methods exist 

for quickly and robustly predicting the sets in space that the 

human can occupy, e.g. [18]. Probabilistic methods such as 

Gaussian Mixture Models and Hidden Markov Models have 

also been used for human prediction. Since human prediction 

is not the focus of the paper, we use a very simple method. 

The reachable occupancy of the human is based on a 

maximum upper-body speed of 1.6 m/s from ISO standards 

[19]. Since there is latency in the sensors and in the control 

loop, the sensor data is historic. The maximum distance the 

human can be expected to move during the stopping trajectory 

is thus , where  is the cycle time (in 

our case, 2 ms) and  is the latency of the sensor (estimated at 

33 ms). To predict the human occupancy, we simply extend 

the radii of the capsules obtained from the sensor data by .  

Finally, pairwise collision-checks are performed between 

the capsules of the human occupancy and of the robot 

occupancy; if there is intersection, the decision boxes of Fig. 3 

evaluate to true, and if not, they evaluate to false. 

 

Fig. 4 Robot and human are each represented as a set of capsules for detection 

of the states “COLLISION POSSIBLE” or “COLLISION IMPOSSIBLE” 



TABLE II Exemplified path over time and speed over time diagrams to 

illustrate two of the strategy-defining parameters - path and speed – as they 

were perceived by a participant. Green and red shading display whether the 

robot was in state “COLLISION IMPOSSIBLE” or “COLLISION 

POSSIBLE” 

 Absolute robot TCP path over time 

example participant 1 

Absolute robot TCP speed over time 

example participant 1 
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With the exception of ND, none of the movement strategies 

was exactly the same in terms of position and timing over all 

the participants, since the human motion to which the robot 

reacts was unique to each participant (Tab. 2). The examples 

in Tab. 2 were selected to display typical TCP position and 

velocity profiles during the operation. The diagrams in the left 

column display the absolute path travelled by the robot TCP 

during one straight line movement in reference to the point of 

origin in Cartesian coordinates. The diagrams in the right 

column display the speed of the robot’s TCP. The TCP 

reached maximum speeds of 0.62 m/s. The robot control was 

implemented in Simulink 2015b and used on a Schunk 

LWA4P robot arm operating in interpolated position mode, 

controlled by a Speedgoat Real Time Target Machine through 

a CAN interface. 

4) Measures: A validated questionnaire was used to measure 

trust and predictability (Cronbach α = .82 for reliability on the 

predictability subscale and α = .85 for the trust subscale) [20]. 

The subscales trust and predictability are comprised of the 

items displayed in Tab. 3 which are evaluated with a 5-point 

Likert scale ranging from “strongly disagree” to “strongly 

agree” and were used for evaluation of the hypotheses H1 and 

H2. To obtain a measure of trust and predictability, the mean 

value of the responses to each question within the subscales 

was calculated. The questions were designed to evaluate the 

psychological concepts of predictability and trust utilizing a 

multiple item layout [20], [21], [22]. The α values state that 

the responses to the questions correlate on a high level and 

suggest, that the questions in each subscale measure the same 

attitude. In our case, these attitudes are predictability and trust. 

The questionnaire is visible on our website 

(http://www.lfe.mw.tum.de/en/home/). 

TABLE III Questions from the questionnaire “trust in automation” [20] 

Item Subscale 

The system state was always clear 

to me 

Predictability 

I was able to understand why things 

happened 

The system reacts unpredictably* 

It’s difficult to identify what the 

system will do next* 

I trust the system 
Trust 

I can rely on the system 

* invers statement 

III. RESULTS AND DISCUSSION 

In Tab. 4 we present the results of the questionnaire and the 

mean time to completion (TTC) of the task by the participants 

and the robot. One participant who gave no answers was 

excluded from the trust analysis. The scales for predictability 

and trust are ordinal Likert-scales ranging from 1 to 5. 

Predictability ratings showed no significant differences. A 

one-way repeated measures ANOVA was applied to analyze 

  

  

    

  



the effect of movement strategy type on mean trust evaluation 

(Wilks’ Lambda = 0.63, F (3, 21) = 4.16, p = 0.018, 

η²p = 0.37). The back off submissive movement strategy BS 

(M = 3.31, SD = 1.15) was significantly evaluated better in 

terms of trust than the no cue dominant strategy ND 

(M = 2.63, SD = 1.11) (p = 0.025). Evaluations towards other 

movement strategies differed not significantly.  

In the following section we consider the two strategies 

which showed significant differences in terms of trust. When 

exposed to movement strategy BS, human TTC (M = 59.52 s, 

SD = 18.62 s) was not significantly different compared to 

movement strategy ND (M = 60.24 s, SD = 13.57 s). However, 

the robot had to stop its movement which resulted in much 

higher robot TTC (M = 124.8 s, SD = 13.27 s) for movement 

strategy BS as opposed to strategy ND (M = 80.2 s, 

SD = 0.82 s), with an increase of M = 44.6 seconds (55,6 %). 

This means that movement strategy BS is more trustworthy, 

however, it is worse than movement strategy ND in terms of 

cooperative efficiency (time until both parties have completed 

the task).  

During both dominant movement strategies, the robot took 

a lot less time compared to the submissive movement 

strategies which is due to the fact the robot did not have to 

stop in dominant strategies, or if so, in the back off dominant 

strategy BD, only did this once and then continued with its 

task. However, the human TTC utilizing all four movement 

strategies and the baseline were not significantly different. 

This suggests an independence of dominance, and the 

movement cue on human task performance, which makes 

submissive robot movement strategies inefficient for 

cooperation, in this study. 

TABLE IV Result table of the mean values for predictability and trust and the 

time to completion of the task (TTC) of robot and participant 

Movement 

Strategy 

Predict-

ability 
Trust 

Participant 

TTC (s) 

Robot 

TTC (s) 

 M SD M SD M SD M SD 

BD - back off 

dominant 
3.23 1.29 3.01 1.37 60.84 16.24 85.08 2.14 

ND – no cue 

dominant 
3.21 1.28 2.63* 1.11 60.24 13.57 80.20 0.82 

BS – back off 

submissive 
3.17 1.24 3.31* 1.15 59.52 18.62 124.88 13.27 

NS – no cue 

submissive 
3.25 1.21 3.31 1.19 57.56 15.39 119.64 15.59 

baseline - - - - 53.96 17.04 80.20 - 

*significant difference in pairwise comparison p = 0.025 

A. User feedback 

After carrying out the tests, we asked for the users’ 

preferred movement strategy and their reasons why they liked 

or disliked strategies. We found that reactions to both 

dominance and movement cue were mixed, with strong 

opposing opinions. For example, on the subject on dominance: 

P 7: “The robot is obstructing me when it stops” 

P 13: “It gives me the feeling of a co-working robot, when it 

stops” 

P 18: “I found it irritating when the robot stopped or waited 

for me” 

P 23: “I found it best when the robot completely ignored me, 

because then one can estimate what happens next, to some 

extent” 

P 25: “It annoyed me when the robot kept on going, this could 

have lead to collisions” 

On the subject of the “back-off” movement cue: 

P 4: “Backing off was “cool” and I liked that it waited” 

P 5: [found the dominant back-off movement pattern useful 

because] “it seemed that the robot took the human into 

consideration, then continued” 

P 15: “The behavior of the robot is most natural and 

humanlike when it backs off” 

Further comments showed that, despite the robot being 

demonstrated beforehand, some participants took some time to 

get used to it, whereas others ignored the robot: 

P 14: “At first I was concerned about paying attention to the 

robot, but later I just ignored it” 

P 22: “In the beginning, I didn’t really pay attention to the 

robot” 

B. Yielding and taking priority 

Previous works claim that humans prefer to perform their 

own task and make the robot wait, rather than yielding priority 

to the robot [15], [16]. Observation of human behavior during 

submissive movement strategies showed that 22 of the 

participants chose to continue with their task when the robot 

approached the workspace and then stopped, indicating that 

they were comfortable assuming a more dominant role in the 

interaction, whereas only 3 moved their hand or body back to 

allow the robot to continue, indicating that they allowed the 

robot to dominate in the interaction.  

As shown in the previous section, subjective reaction to 

dominant movement strategies from the robot is largely a 

matter of personal preference: dominant behavior elicits 

different responses. We therefore suggest that the dominance 

of the robot’s movements should be tailored to its human 

coworker. Various approaches exist to allow the robot to adapt 

to this. The approach of [24] could help account for this. Here, 

unknown properties of the human are modeled as uncertain 

parameters for which the robot has a belief model; the robot 

updates its belief state by executing actions which probe the 

human’s parameters. In our case, these properties could be the 

preferences with respect to dominance and movement cues. 

C. Longer-term studies 

The experiment lasted 20 minutes on average. In an 

industrial setting, humans are likely to work alongside robots 

for a much longer time. The fact that there was one trial per 

movement strategy only, had negative effects on the results. 

Some comments showed that, despite the robot being 

demonstrated beforehand, some participants took time to get 

used to it, whereas others ignored the robot. A higher number 

of trials utilizing the same movement strategy could have 

resulted in more substantiated evaluations. As noted in [16], 

longer-term studies are necessary to determine whether the 



effects found in this study are weakened or strengthened by 

longer exposure to the robot and how trust and expectations 

develop over time. A long-term study will appear as part of 

follow up work. 

IV. CONCLUSION 

We investigated the effect of dominant and submissive 

movement strategies and a movement cue on perceived trust 

and predictability in close human-robot-cooperation. 

Participants found a submissive robot movement strategy with 

a "back-off" movement cue more trustworthy than a dominant 

movement strategy without movement cue, confirming 

hypothesis H1. Although previous works have correlated trust 

to predictability, we did not observe this; also we did not 

observe significant differences in predictability between robot 

movement strategies, hence hypothesis H2 was not confirmed. 

User feedback to dominance and movement cues are 

extremely variable and the same movement strategy can elicit 

very different responses. In this study we tested one 

movement cue to investigate the effect on evaluations of trust 

and predictability compared to movement strategies without 

movement cue both in dominant and submissive motion. In 

further work, also other movement cues could be designed 

with the intent to increase trust and predictability. 

Furthermore, one could vary movement cues in terms of safety 

distance to the user, robot speeds, accelerations and track 

participants’ gaze, to give quantitative insight into trust and 

predictability. 
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