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Abstract—In this paper we examine how can be combined the
Linear Parameter Varying (LPV) modeling technique with the
Linear Matrix Inequality (LMI) based controller and observer
design methodology in order to control the tumor growth via anti-
angiogenic inhibition. We introduce the important physiological
knowledge regard to the control problem together with the design
procedure. We used a recently developed minimal model which
describes the tumor growth dynamics beside anti-angiogenic
inhibition and we transformed this model into the difference
based qLPV model. After, LMI based controller and observer
were designed by pole clustering LMIs and we realized the
control structure. Our aim was to develop a control environment
which is – however – advanced, but it can be easily used and
provides good performance from the designing properties and
the robustization possibilities points of view, respectively. As our
results showed, the framework provides appropriate results for
tumor control.

Index Terms—Linear Matrix Inequality, Liner Parameter
Varying, LPV-LMI-based control, Anti-angiogenic therapy, Tu-
mor growth control

I. INTRODUCTION

Different type of cancer cells can be occurred in the human
body due to somatic mutations, which may caused by external
effects (eg. radiation, chemical materials, diseases) or internal
effects (eg. natural point mutations, error of DNA replicating
mechanisms). If the mutant cells are not eliminated by the
programmed apoptosis and/or the immune system, than the
cell proliferation starts and a concourse is formed by cancer
cells [1]. At the beginning of the tumor growth progression
the concourse is supplied by the local nutrients and oxygen
through diffusion. The growth continuing until its size reach
a limit where the nutrition via diffusion becomes insufficient
for supply the further growing (this appeared when the mu-
tant cells grow over than the distance of diffusion, namely,
150 µm. To bypass this problem, the tumor starts to build
up its own blood vessels which connects it to the central
circulatory system and provides appropriate nutrition. From
the tumor growth point of view, the important process to form

Gy. Eigner was supported by the ÚNKP-16-3/IV. New National Excellence
Program of the Ministry of Human Capacities. This project has received
funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
No 679681)

new blood vessels is the angiogenesis, while the supporting
vasculature is evolving from preexisting microvasulature [2].
The process of angiogenesis is regulated by different pro- and
anti-angiogen factors. The vascular endothelial growth factor
(VEGF) is a crucial pro-angiogen factor, which stimulates
the endothelial cell proliferation, in other words, animates the
reproduction of endothelial cells which form the blood vessels
[3], [4]. In this way, the hamper of angiogenesis through the
inhibition of the VEGF is an important therapeutic target.
Thus, anti-VEGF agents, effectors and VEGF inhibitors can
be used as supplementary therapy beside regular treatments
[5]. However, to determine the appropriate administration of
the anti-angiogenic inhibitors is still questionable and widely
researched by the scientific community [3].

An advanced way for the inhibition of the VEGF and other
factors is the Targeted Molecular Therapies (TMT), which
became one of the most important directions among the cancer
treatments in the recent decades [4]. In case of TMT, drugs
or other substances are used to block or eliminate specific
molecules involved into the growth, progression and spread
of the cancer. Several TMTs exist, for example the apopto-
sis inducers, signal transmission inhibitors, gene expression
modulators and anti-angiogenic therapies [5]. Beside killing
the cancer cells by hamper of the gene expression or enforce
to destroy itself by apoptosis, the inhibition of angiogenesis
can be an effective way to decrease or maintain the volume of
the tumor. However, the anti-angiogenic therapy cannot totally
eliminate the cancer concourse, but it can ”tame” the tumor.
The main benefit compared to other type of treatments are the
anti-angiogenic TMTs cause less side effects and lower load
for the human body – since, in healthy adults, the angiogenesis
is infrequent and the most vivid angiogenic processes are
connected to the tumor growth.

Mostly, the anti-angiogenic treatments can be used as
complementer remedy beside regular treatments such as
chemotherapy or radiotherapy. Although, the usage of them as
monotherapy is an intensively researched area, promising great
outcomes, however, the amount of needed drugs is critical
and hard to determine [6]. In the daily clinical practice three
drug administration protocols occur: the bolus doses therapy
(BDT), the metronomic low dose therapy (MLDT) and the
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continuous infusion therapy (CIT). The BDT protocol operates
with the maximum tolerable doses at scheduled time and
between them no injections are used. The main benefit is
that the injected drugs – thank to the high concentration –
acts rapidly, although, side-effects appear more likely than
other protocols. Significant drawbacks are that because the
applied drugs do not reach the desolation all of the cancer
cells, the remaining cells may rebuild the tumor concourse
under the longer periods between when injections are not
applied. Moreover, there is a risk that because of their fast
evolution and proliferation the tumor cells become resistant to
the given drug [7]. MLDT does provide particular solution
against the problems of BDT. In this case, the anti-tumor
drugs are delivered in minimal dosage. The administration is
based on given schedule over longer period and it is adjusted
to maximize the effectiveness [8]. In the recent times, the
application of CIT came to the fore because animal- and in-
silico-experiments showed that this treatment can be the most
effective one among the current anti-cancer therapies [9]–[11].
Although, to use the CIT in daily practice highly advanced
biomedical modeling and controller design tools are needed
which are able to deal with the challenges regard to this field
(eg. example intra- and inter-patient variability, nonlinearities,
etc.).

In the recent years, several advanced control engineering so-
lutions appeared to handle the mentioned issues. One of them
is the Linear Parameter Varying theorems which does allow
to hide the nonlinearities and uncertainties into the structure
of the LPV model and apply linear controller design methods
[12], [13]. LPV theorems can be combined with the so-called
Linear Matrix Inequality based methods at which the controller
design can be formulated as an optimization problem with
convex objective functions and LMI constraints [14]. The
recently developed Robust Fixed Point Theorem (RFPT) based
controller design also can be used for physiological related
controls [15], [16]. [17] reported the successfully adaptation
of the LMI-based Robust Nonlinear Model Predictive Control
(RNMPC) in case of tumor control. Tensor Product (TP) based
modeling and control is also suitable for biological problems
[18], [19].

In this study, we focused to the LPV-LMI methods and
we developed a LMI-based controller and observer for given
tumor control problem. In our previous research we have
approached the controller design problems in other ways. In
this way to compare our current achievements with other
solutions will be the part of our further work.

The paper is structured, as follows. First, the used tumor
growth model is introduced. After, the controller and observer
design are detailed. In Sec. IV, the results are presented which
is followed by our conclusions.

II. THE MINIMAL MODEL

In this study we applied the minimal model developed by
Drexler et al [20]. The model describes the dynamics of the

tumor’s volume growth beside anti-angiogenic inhibition.

ẋ(t) = ax(t)− bx(t)y(t)
ẏ(t) = −cy(t) + u(t)

, (1)

where x(t) mm3 is the tumor volume (and the output of
the model), y(t) mg/kg is the inhibitor serum level and u(t)
mg/kg/day is the input of the model (inhibitor intake). The
used model parameters and their values were the following:
a = 0.27 1/day (the tumor growth rate), b = 0.0074 kg/mg/day
(the inhibition rate) and c = log(2)/3.9 1/day (the clearance of
the inhibitor). The handling of the model is quite challenging
despite that is has only two states. The main issues are its
instability (without external inhibitor the x(t) increases with
a and the nonlinear connection between the states).

III. CONTROLLER AND OBSERVER DESIGN

A. LMI Regions by Pole Clustering

Convex constraints can be defined as LMIs concerning to
the controller and observer designing procedures. That means,
LMI-based design is possible through numerical optimization
of convex objective (cost) functions alongside given LMI
constraints to reach predefined satisfactory criteria. If the
LMI constraints include Lyapunov-, Ricatti-, or other theorems
control related design becomes possible [14].

The general form of a LMI is the following:

F (x) := F0 +

m∑
i=1

xiFi > 0 , (2)

where x ∈ Rm, Fi = F>i ∈ Rn×n and i = 1, ..,m. The
inequality in means (2) that F (x) is positive definite, thus,
z>F (x)z > 0 ∀ z ∈ Rn [21].

Following the findings of Chilali and Gahinet [22], [23] it is
possible to determine such LMI constraints based on the Lya-
punov theorems which allow the pole placement of the closed
loop system into a desired convex region. This technique is the
so-called pole clustering by LMI which suitable for controller
and observer design and can be combined with other – mostly
robust control related – LMIs efficiently. In the following, we
introduce the definition of LMI regions, moreover, we present
the important LMIs from this study point of view.

Definition 1. In the complex plane a subset D is called as
LMI region if there exist the α = [αij ] ∈ Rm×m symmetric
matrix and β = [βij ] ∈ Rm×m matrix that the criteria below
is satisfied [23]:

D := {z ∈ C : fD(z) = α+ βz + β>z̄ < 0} . (3)

Definition 2. Let D a subregion on the left (negative) complex
half-plane. A dynamical system ẋ(t) = Ax(t) is called D-
stable if all its poles lie inside the region D [23].

Theorem 1. A matrix A is D-stable if and only if there exists
a symmetric positive definite X > 0 matrix that the criteria
below is satisfied (proof can be found in [23]):

MD(A,X) := α⊗X + β ⊗AX + (β ⊗AX)> < 0 , (4)
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where ⊗ means the Kronecker-product.

The connection between fD(z) from (3) and MD(A,X)
from (4) is the following substitution: (1, z, z̄) ↔
(X,AX,XA>) [22], [23].

In this work we considered the following LMIs, which rep-
resent vertical strips and imaginary bounding in the complex
left half plane and encapsulates the poles of given system.

Definition 3. Vertical strips [23]: The real part of the poles of
the matrix A lies between h1 and h2 (D region), thus −h1 <
Re(λ(A)) < −h2 < 0 if there exist a symmetric X > 0
matrix such that

AX + (AX)> + 2h1X > 0, AX + (AX)> + 2h2X < 0 .
(5)

Definition 4. Imaginary bounding [23]: The imaginary part of
the poles of the matrix A lie between −δ and δ (D region),
thus −δ < Im(λ(A)) < δ if there exist a symmetric X > 0
matrix such that[

−δX (AX)> −AX
AX − (AX)> −δX

]
< 0 . (6)

The (3)-(6) equations can represent closed loop cases as
well.

According to [23]–[25] it is possible to design such state
feedback controller and K feedback gain, which enforces
that all of the closed loop poles of the controlled dynamical
system ẋ(t) = Ax(t) + Bu(t) = (A + BK)x(t), u(t) =
Kx(t) lie in the predefined D-region (D-stable). Due to this
substitution should be applied in (3)-(6): (AX, (AX)> ↔
(AX + BR), (AX + BR)>), where R is a matrix variable
and K can be calculated as K := RX−1.

The same is true in case of observer design as well.
Accordingly to [25], the state feedback observer design is
possible and L observer gain can be calculated which enforces
that all of the closed loop poles of the dynamical observer
˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t) − Cx̂) = (A + BK −
LC)x̂(t)+Ly(t), u(t) = Kx̂(t) lie in the predefined D-region
(D-stable). Due to this substitution should be applied in (3)-
(6): (AX, (AX)> ↔ (AX − RC), (AX − RC)>), where R
is a matrix variable and L can be calculated as L := X−1R.

The aforementioned methods can be extended to LPV case
as follows [23].

ẋ(t) = A(p(t))x(t) +B(p(t))u(t)

(A,B) ∈

{ (
N∑
i=1

p(t)iAi,

N∑
i=1

p(t)iBi

)
:

N∑
i=1

p(t)i = 1, p(t)i ≥ 0

}
< 0

, (7)

where p(t) is the parameter vector of the LPV system (p(t)
includes the selected scheduling variables from the system
which causes nonlinearities) and A(p(t)), B(p(t)) are affine
matrix-valued functions of p(t). The parameter vector p(t) ∈
Ω ∈ RN , where Ω = [p1,min, p1,max] × [p2,min, p2,max] ×
... × [pN,min, pN,max] ∈ RN formalizes a limited hypercube

in the N -dimensional hyperspace defined by the extremes of
the scheduling variables. Accordingly to [23] the (4) should
be modified for controller and observer design, respectively:

MD(Ai +BiK,X) :=
α⊗X + β ⊗ (AiX +BiR) + (β ⊗ (AiX +BiR))> < 0
MD(Ai − LCi, X) :=
α⊗X + β ⊗ (AiX −RCi) + (β ⊗ (AX −RCi))

> < 0

.

(8)
Consequently, via (8) it is possible to design a general K
feedback and L observer gains, respectively. These gains are
able to control and observe the original nonlinear system via
LPV framework if p(t) is inside the Ω parameter domain.

B. Applied qLPV Model

We applied difference based qLPV model – which means
we transformed the original model to a qLPV variant which
models the error dynamics, thus the deviation of the states of
the model from a given ”enforced” equilibrium. Due to the
lack of natural equilibrium, only the use of an enforced one
is possible. The new states in this case will be the deviation
from this equilibrium, namely, ∆x(t) and ∆y(t).

The qLPV model has to be controllable and observable on
the whole Ω parameter domain. Due to the model properties
only p(t) := pi(t) = y(t) can be selected as scheduling
variable, otherwise the controllability and observability criteria
is not satisfied everywhere on Ω – if x(t) is selected as pi(t)
then the rank of the controlability and observability matrices
will be lower than 2 at the extremes of x(t). The selected
model equilibrium is xe = 0.1, ye = a/b and ue = cye. (It
can be seen in (9) that if xe is zero than the controllability
and observability criteria is not satisfied. Further, xe = 0 is
not necessary from physiological reasons, since the target is to
decrease the volume of the tumor, not to eliminate it. In this
manner, we selected xe = 0.1 as enforced equilibrium which
should be reached by the state over time. It has to be noted,
the xe is independent from the equilibria of other states which
is clear from (1) – that means, xe can be arbitrarily selected,
but ye and ue are determined by the model’s structure).

The transformed difference based qLPV model with the
introduced new states is the following:

∆ẋ(t) = ẋ(t)− 0 =
ax(t)− bx(t)y(t)− [axe − bxeye] + 0 =
a(x(t)− xe)− bx(t)y(t) + bxeye+

+bxey(t)− bxey(t) =
(a− by(t))(x(t)− xe)− bxe(y(t)− ye) =
(a− by(t))∆x(t)− bxe∆y(t)

∆ẏ(t) = ẏ(t)− 0 = −cy(t) + u(t)− [−cye + ue] =
−c(y(t)− ye) + (u(t)− ue) = −c∆y(t) + ∆u(t)(

∆ẋ(t)
∆ẏ(t)

)
=

[
(a− by(t)) −bxe

0 −c

](
∆x(t)
∆y(t)

)
+

[
0
1

]
∆u(t)

.

(9)

C. Controller and Observer Design

Due to the applied (9) the aim of the control is to enforce
that the states of the model become equal to the selected
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model equilibrium. The parameter domain was: p(t) = y(t) =
[ymin, ymax] = [0, 200].

To design the controller we applied the (5) and (6) on the
basis of (8) and solve the LMI feasibility problem beside h1 =
1, h2 = 10 and δ = 5:

Subjects : X,R

X > 0

(AiX +BiR) + (AiX +BiR)> + 2h1X < 0

(AiX +BiR) + (AiX +BiR)> + 2h2X > 0[
−δX
(AiX +BiR)− (AiX +BiR)>

(AiX +BiR)> − (AiX +BiR)

−δX

]
< 0

.

(10)
In order to solve the LMIs under MATLAB environment
the YALMIP [26] framework and the MOSEK [27] convex
optimization tool were used.

The occurred K = RX−1 feedback gain was K =
[6.3802,−0.0033]. We tested the compliance of K – namely,
that all of the eigenvalues λ(A+BK) lie in the D region or
not. We examined λ(A + BK) at p(k) = pmin : (pmax −
pmin)/N : pmax, where k step size was k = (pmax −
pmin)/N , N = 50, which resolution is fine enough to filter
any violations. The result was satisfying (Fig. 1), namely, all
of the λ(A+BK) lied in the predefined D region.

Real Axis
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

I
m
a
g
in
a
r
y
A
x
is

-5

0

5

Closed Loop P oles λ(A + BK)

Figure 1. λ(A+BK) poles of the closed system inside the D region

The observer can be designed in the same manner. Al-
though, we modified the previous process and applied only
(5) on the basis of (8) and solve the LMI feasibility problem
beside h1 = 1, h2 = 50. We omitted the imaginary boundary
LMI, because we experienced that it does not improve the
reached results, just increase the numerical inaccuracy.

Subjects : X,R
X > 0

(AiX −RCi) + (AiX −RCi)
> + 2h1X < 0

(AiX −RCi) + (AiX −RCi)
> + 2h2X > 0

. (11)

The occurred L = X−1R observer gain was L =
[25.0300,−0.0007]>. We used the same test as in the previous
case: λ(A+BK−LC) at p(k) = pmin : (pmax− pmin)/N :
pmax, where k step size was k = (pmax−pmin)/N , N = 50.
The result was satisfying as it can be seen on Fig. 2, namely,

not just all of the λ(A+BK −LC) lied in the predefined D
region, but also the poles were faster than the controller case
without complex parts.

Real Axis
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m
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-2
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2

Closed Loop P oles λ((A + BK) − LC)

Figure 2. λ(A+BK−LC) poles of the closed observer inside the D region

After the K and L occurred, the realization of the control
loop became possible, as it is represented on Fig. 3. In order to
avoid the physiologically irrelevant control signals (extraction
of inhibitor is not possible), we applied saturation regard to
u(t), namely, u(t) cannot be lower than 0.

Original 

model

LPV 

Controller

LPV

Observer y(t) = y(t) - yd

u(t) = u(t) + ud
y(t)

u(t)
x(t)

e(t)r(t)

Figure 3. Closed Control Loop

IV. RESULTS

In clinical practice, the therapy starts after the tumor volume
reaches the observability border, thus the higher initial value
for the tumor volume is reasonable. According to physiological
reasons, we applied high initial value for the tumor volume
x(0) = 10000 mm3 and zero initial value for the serum
inhibitor level y(0) = 0 mg/kg (which represents the beginning
of the therapy).

Due to the properties of state feedback control, the ap-
plication of constant reference signal cause issues when the
initial values are high. To bypass this problem and provide
appropriate reference, we used a smoothly decreasing refer-
ence signal for xref (t), which was generated by the function
from (12). Similar to the difference based state, compensation
was applied on it as well.

xref (t) = −tanh(ct)x(0) + x(0) + xe , (12)

where c is a given tuning parameter and not the parameter of
the model.

During the simulations we examined the efficiency of the
control beside rapidly and slowly decreasing reference signals
which can be tuned by c (higher c responsible for fast
decreasing).

We simulated 100 days in all cases, since, from application
point of view (and physiological reasons) the first 100 days
are the most critical period [1].
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Beside xref (t) reference signal, the yref was considered as
constant yref = 0.

The applied initial values of the states of the observer were
different than the system’s initial values. Since the observer is
difference based, the applied initial values were: ∆xobs(0) =
x(0)− xe + 30 and ∆yobs(0) = y(0)− ye + 1, where the 30
and 1 were arbitrarily selected to model the imprecise initial
measurement.

Time [day]
0 20 40 60 80 100

x
r
e
f
(t
)
[m

m
3
]

0

5000

10000

15000

c = 0.1 c = 0.075 c = 0.04

Figure 4. Used reference signal xref (t) – in this case c is a given tuning
parameter and not the parameter of the model

Figure 5 represents the vary of the states and input signal
over the simulated time horizon. It can be seen that the
properties of the xref (t) determines the behavior of the model.

The x(t) reached the predefined xe over the simulated time
horizon regardless the reference signal, although the decay is
affected by the c tuning parameter.

As it was mentioned above, the model has instable behavior
and required continuous control in order to compensate the
instability. According to this circumstance, y(t) did not reach
the reference value as it was expected – the controller com-
pensating via the control signal in order to avoid the increase
of x(t). The c tuning parameter significantly determines the
vary of the state.

The applied control signal u(t) is different accordingly to
the c tuning parameter. Thus, there is a difference between
the states provided by the observer and the initial values of
the reference signals, the controller injects inhibitor at the
beginning of the therapy. The degree of difference is influenced
by the c tuning parameter, thus in case of higher c – eg. c = 0.1
–, the controller injects higher amount of inhibitor, further, the
later actions become earlier than other cases, when c is lower.

Further, the vary of p(t) had been investigated. Since, p(t) =
y(t) in the given case, p(t)(= Ω) = [0, 200]. Fig. 5 shows that
there is no domain violation by p(t) over the simulation period.

The observation error is shown by Fig. 6. As it can see,
there is a high observation error (x(t)−xobs(t)) in case of the
tumor volume at the beginning of the simulation. Over time,
the observation error decreases and fluctuating in the small
environment of zero. Although, the situation is different in
case of the second state (y(t) − yobs(t)), at which the initial
observation error is smaller, but it aggregates over time and
only in case of c = 0.04 converged to zero over the simulated
time horizon, which reflects the previous findings concerning
to the intake demands. However, over longer simulation period
it converged to zero in all three cases. This behavior of the
observer was expected due to the LMI rules (the controller
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)
[m

m
3
]
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c = 0.1 c = 0.075 c = 0.04
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g
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g
/d
a
y
]
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Figure 5. Vary of the sates and input of the original nonlinear model beside
different xref (t) reference signals

and observer has similar rules, although the controller based
on more rules than the observer) and the fast observer poles
(the higher distance of the poles of the observer in case of any
p(t) than the closed controlled system). These facts cause that
the observer worked proper in all cases. Probably, the velocity
of converging can be increased if the poles are farther from
zero – this option will be investigated in our future work.
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0 20 40 60 80 100

x
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−
x̂
(t
)
[m

m
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-200

0

200
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Time [day]
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y
(t
)
−
ŷ
(t
)
[m

g
/k

g
]

-20

0

20

Figure 6. Observation error over the simulated time horizon

V. CONCLUSION

In this study we investigated the applicability of LPV-LMI-
based controller design in case of a difference based qLPV
model originated from a nonlinear minimal model of tumor
growth. We developed such a state feedback kind controller
and observer, which is able to handle the original system via
the LPV framework if the LPV’s parameter vector p(t) is
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inside the predefined Ω parameter domain. According to the
results, the developed controller and observer structure is able
to deal with the control task and the tumor volume decreased
in the expected way. Although, due to the properties of the
original model – causes that the continuous inhibitor intake is
needed – and because of the applied smaller observer gain –
causes slower convergence – the observation error decreases
slower at y(t) state. Probably, the effect of the second issue
can be improved with faster observer poles, which will be
investigated in our future work.
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