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Abstract—We introduce two competitive strategies into conven-
tional differential evolution (DE) to speed up its convergence by
increasing competitive pressures among individuals and evaluate
the proposals. The first strategy gives individuals with better
fitness a higher opportunity for generating more offsprings, while
conventional DE allows each parent individual to generate only
one offspring individual fairly. This strategy compares each of
poor individuals with a randomly selected individual from the
current population. If the latter becomes a winner, the latter
can generate one more offspring individual, but the former
loses an opportunity for generating its offspring. If the former
becomes a winner, no one loses this opportunity, and each of
them generates one offspring individual. The second strategy
does not compare a generated offspring individual with its parent
but the worst individual in the current population, which can
accelerate the elimination of poor individuals and keep better
individuals. We design a set of controlled experiments to evaluate
these two strategies using CEC2013 benchmark functions with
three different dimensions. The experimental results indicate that
properly enhancing competition among individuals in DE can
speed up its convergence and improve optimization performance.

Index Terms—Differential evolution, Evolutionary computa-
tion, Optimization, Acceleration convergence, Competition mech-
anism

I. INTRODUCTION

Evolutionary computation (EC) is one of meta-heuristic
optimization techniques and can solve complex optimization
problems which are hard for conventional optimization meth-
ods. There are three study perspectives in the EC community
for obtaining an efficient EC optimization capability. The
first one is to approximate the fitness landscapes of target
problems and attempt to build their structures to assist EC
search. Several methods for dealing with this aspect have been
proposed, such as a framework for managing approximate
models [1], polynomial models, kriging models and neural
networks [2] and Fourier analysis [3]. The second one is to
develop new search strategies or mechanisms for enhancing
EC optimization performance [4], [5]. The third one is to
develop new biological or nature inspired EC algorithms
with better EC optimization performance, such as particle
swarm optimization [6], differential evolution (DE) [7], bacte-
rial foraging optimization algorithm [8], artificial bee colony
algorithm [9], cuckoo search [10], fireworks algorithm [11],
bat algorithm [12], krill herd [13], chaotic evolution [14] and
many others. Our proposals in this paper are categorized in the

above second perspective, and we introduce new competitive
mechanisms into conventional DE to enhance its optimization
performance.

DE is a type of population-based optimization algorithm and
has been widely studied in the EC community. It tries to find
out the global optimum by applying a differential-based simple
mutation operation for generating offspring candidates and a
one-to-one competitive survival strategy for deciding survived
individuals, iteratively. Due to its simplicity but high efficien-
cy, many practitioners have dedicated to further improve DE
performance and achieved gratifying results [15]. Although
many novel and efficient mechanisms have been integrated into
DE, few people are concerned about competition mechanisms
to enhance its performance.

The main objective of this paper is to propose two com-
petition strategies for increasing the competition among DE
individuals, evaluate their effectiveness as well as applicability,
and introduce some topics which are open to discussion. Basic
strategy of DE is that one parent generates one individual
surviving in the next generation. This fair strategy is helpful
to keep diversity, avoid premature convergence, and converge
to the global optimum gradually. However, this advantageous
characteristic sometimes may hinder to escape from hopeless
search areas to potential areas quickly. Our proposals aim this
quick shift of population.

Following this introductory section, we briefly review DE
features and the DE improvement point in the Section II.
We explain our two proposals that consider the whole search
information of individuals in the Section III and evaluate their
optimization performance using CEC 2013 benchmark test
suite in the Section IV. Finally, we analyze and discuss some
open topics and issues arising from the evaluation results, and
conclude the current work and present some future research
in the Sections V and VI, respectively.

II. DIFFERENTIAL EVOLUTION

A. Feature and Advantage of DE

The feature of DE is to use a differential vector from
two random individuals. A differential vector (x1i − x2i)
using randomly selected two individuals is quite simple, but
this directional vector includes the distribution information of
population. Suppose to collect all mC2 differential vectors
obtained from m population size, and put their initial points



x2i (i = 1, 2, ...,m) on one point. Then, the distribution of
their terminal points x1i becomes similar to that of population.
The lengths of differential vectors become shorter according to
the convergence of population, but the distribution information
of population is still kept.

B. Improvable Issue of DE

Our research is based on the following hypothesis. In
general, better individuals are expected to locate closer to the
global optimum than poorer ones and have higher possibility
of generating better offspring. Worse individuals may search
in hopeless areas or far away from the global optimum and
need more computational resources to approach to the global
optimum than better individuals. However, canonical DE and
several DE variants have a fair policy, and provide an equal
opportunity to all parent individuals. This make each of them
generate only one offspring individual. We thought that this
fair policy may be the point where we can improve DE.

DE compares a parent with its offspring generated in the
same local area, and a winner is put in the next generation.
This hill climb selection strategy can ensure outstanding off-
spring replaces its parent so that the whole population evolves
steadily towards better areas. However, there must be the case
that the replaced parents are better than other individuals in
the current population. If poor offspring is generated by a
poor parent and is not replaced, computational resources is
used for exploring in the same local area until better offspring
is generated. This reduces convergence speed and hinders
population distribution to converge. This is not a good for
especially large-scale optimizations or high computational cost
problems. We thought that developing methods for handling
poor individuals should be a point where we can improve DE.

III. COMPETITIVE GENERATION AND SELECTION
STRATEGIES FOR DE

Our proposal for the mentioned improvements is to strength-
en survival competition. We propose two competitive strate-
gies, competitive generation strategy and competitive selec-
tion strategy, to increase the competitions among individuals
and aim to enhance speed of eliminating inferior individuals
and increase the possibility of generating more outstanding
offsprings. The first strategy, competitive generation strategy,
makes parent individuals to compete each other to obtain
opportunity to generate more offsprings. The second one,
competitive selection strategy, eliminates the worst individual
when population of the next generation is produced.

A. Competitive Generation Strategy

As the first competitive strategy, we propose a compet-
itive mechanism that gives better parent individuals higher
opportunities to generate more offspring rather than only
one offspring. We firstly mark the worst a% individuals and
compare each of them with a randomly selected individual
from the current population. If the latter is better than former,
the randomly selected parent can have one more opportunity
to generate an offspring and the marked poor parent lose

the opportunity to do that. Otherwise, we do nothing and
follow the canonical DE processing. This strategy guarantees
not to change the population size but allow better individuals
to generate more offspring and suppress poor individuals to
generate their offspring. The Fig. 1 demonstrates our proposed
strategy.

Fig. 1. Canonical DE makes each parent, pi, generate only one offspring, oi.
Proposed competitive generation strategy makes parents compete each other;
some parents can generate multiple offspring, but others may generate no
offspring.

B. Competitive Selection Strategy

This second competitive strategy handles the worst individ-
ual in a potential hopeless searching area. The competitive
selection strategy is a proposal to compare a newly generated
offspring, i.e. a trial vector, with the worst individual in the
current population and a winner is put in the next generation.
The canonical DE compares it with its parent, i.e. a target
vector. This strategy ensures that better individuals can survive
and poorer individuals are eliminated, which is expected to
improve search performance. Algorithm 1 shows the flow of
DE with our two proposed strategies.

IV. EXPERIMENTAL EVALUATIONS

We implement two proposed competitive strategies into
conventional DE and evaluate their effectiveness using 20
benchmark functions from the CEC2013 benchmark test suite
[16] with three dimensional settings, 2-D, 10-D, and 30-D.
Their types, characteristics, variable ranges, and optimal fit-
ness values are listed in the reference [16], and their landscape
characteristics include shifted, rotated, global on bounds, uni-
modal and multi-modal. The DE parameter settings in our
experiments are shown in the Table I.

TABLE I
DE ALGORITHM PARAMETER SETTING.

population size for 2-D, 10-D, and 30-D search 100
scale factor F 0.7
crossover rate 0.9
DE operations DE/rand/1/bin
stop criterion; max. # of fitness evaluations 1,000, 10,000, 40,000
for 2-D, 10-D, and 30-D search
dimension of benchmark functions, D 2, 10, and 30
# of trial runs 30

We compare four DE variants to evaluate two proposed
strategies: canonical DE, (canonical DE + competitive genera-
tion strategy), (canonical DE + competitive selection strategy),
and (canonical DE + both strategies). We run these four
DE variants using 20 benchmark functions × 3 different



Algorithm 1 DE framework with our two proposed strategies.
Step 4 describes the first strategy, and Steps 10-14 describes
the second strategy.

1: Initialize population randomly.
2: Evaluate the population.
3: while a termination condition is not satisfied do
4: Determine the number of generated offspring for each

parent individual using the first strategy (the total gen-
erated offspring is unchanged).

5: for i = 1 . . . population size m do
6: while an individual has the opportunity to generate

offspring do
7: Choose two individuals, x1i and x2i, randomly

and one base vector, basei from the best individ-
ual (DE/best) or randomly (DE/rand).

8: Calculate a mutant vector as mutanti = basei+
F ∗ (x1i − x2i), where F is a scale factor.

9: Cross the mutant vector and a target vector and
generate a trial vector.

10: if the generated offspring is better than the worst
individual then

11: Replace the worst one with the offspring.
12: else
13: Keep the population unchanged.
14: end if
15: end while
16: end for
17: end while
18: end of program.

dimensions × 30 trial run and compare their fitness values
at the stop condition, i.e., the maximum number of fitness
evaluations. We apply the Friedman test and Holm’s multiple
comparison test to these fitness values for each benchmark
function to check for significant difference among the averages
of four DE variants.

Table II shows the result of these statistical tests. Fig. 2
shows the average convergence curves of four methods with
30 trial runs on 2-D benchmark functions. Fig. 3 indicates the
average ratio of replacing parent individuals in each generation
with 30 trial runs on 2-D benchmark functions.

V. DISCUSSIONS

A. Analysis of Additional Calculations Cost

Both of two proposed strategies do not increase any extra
fitness calculations. The first strategy introduces a new param-
eter, a%, to control the proportion of individuals participating
in the competition. When the a is set to 0, it becomes the
conventional DE method. On the contrary, when a is set to
100, all individuals participate in competition. The second
strategy changes only the comparison target from a parent to
the worst individual in the current population and does not
increase computational cost.

We discuss a parameter a% in the competitive generation
strategy. If the fitness of individuals is ranked in the worst

a%, they may lose a chance of generating offspring with 1−
a% probability. The average probability that all participating
individuals generate no offspring is

∑a%∗PS
i=0 (PS−a%∗PS−

i)/PS, where PS means the population size. The poorer the
fitness of individuals is, the easier it is to lose an opportunity
of generating offspring.

B. Discussion on Competitive Generation Strategy

The first competitive generation strategy gives multiple
chances of generating offspring to better individuals, which
means that some poor individuals may become unable to
generate offspring due to a fixed population size. This feature
causes a new problem, i.e., worse individuals that lose the
chance are not replaced because of no generated offspring.
Along with generations, potential individuals become better
and better, but it becomes more and more difficult for these
worse individuals to evolve and they remain as they are.

The Fig.s 2 and 3 verify this presumption, i.e., DE with
only first strategy is not desirable. Although it ensures the
increase of better individuals, it also ensures the increase of
worse individuals remaining without evolution. This problem
is solved by combining the second competitive selection strat-
egy in the next subsection. The bigger value of the parameter,
a%, increases the number of the mentioned poor individuals,
but its smaller value reduces the speed of generating better
individuals. How to balance this confliction is a crucial issue.
We can include that applying the first competitive strategy at
every k-th generation instead of every generation to keep the
chance that poor individuals evolve; introducing a dynamic
parameter, a%, to adjust the proportion of individuals partic-
ipating in the competition according to generations.

C. Discussion on Competitive Selection Strategy

The second competitive selection strategy is to accelerate
eliminating worse individuals by comparing generated off-
spring with the worst individual. Regardless the superiority
of offspring to its parent, the offspring has an opportunity
to survive in the next generation when it is better than the
worst individual. If it replaces the worst one and the worst
one has not yet generated its own offspring, it inherits the
opportunity of the worst individual and generates a new
offspring. This strategy can accelerate individual evolution
towards to the global optimum. However, it also increases the
risk of premature convergence, because both parent individual
and its offspring in a local area remain, when the offspring is
better than the worst individual. This may reduce population
diversity. One of ideas to alleviate competitive overpressure
and premature convergence is to compare offspring with a
randomly selected individual from the worst p% individuals
rather than only the worst individual.

From the experimental results, we can conclude that the
proposed strategies, especially the second strategy, significant-
ly improve optimization performance of DE . The proposed
strategies have not shown any performance deterioration. We
can observe that these strategies make DE convergence faster
in early generations. Fig. 3 also supports this conclusion



that accelerating individual elimination can speed up DE
convergence.

We apply the Friedman test and the Holm multiple com-
parison test among canonical DE and the combinations of
proposed strategies with DE. Although DE with proposed
competitive strategies works well for majority of benchmark
functions, they do not show significant difference for f8
(Rotated Ackley’s function), f9 (Rotated Weierstrass function),
f14 (Schwefel’s function), and f15 (Rotated Schwefel’s func-
tion). It may be the reason that these functions have many local
optima. We need further analysis of these results to investigate
the exact reasons well, and develop more suitable competition
strategy for DE optimization.

TABLE II
STATISTICAL TEST RESULTS OF THE FRIEDMAN TEST AND HOLM’S

MULTIPLE COMPARISON FOR AVERAGE FITNESS VALUES OF 30 TRIAL
RUNS OF 4 METHODS. A ≫ B AND A > B MEAN THAT A IS SIGNIFICANT

BETTER THAN B WITH SIGNIFICANT LEVELS OF 1% AND 5%,
RESPECTIVELY. A ≈ B MEANS THAT THERE IS NO SIGNIFICANT

DIFFERENCE BETWEEN THEM. NUMBERS IN THE TABLE REPRESENT THAT
1: CANONICAL DE, 2: DE + PROPOSED STRATEGY 1, 3: DE + PROPOSED

STRATEGY 2, AND 4: DE + PROPOSED STRATEGIES 1 AND 2.

2-D 10-D 30-D
f1 3 ≈ 4 ≫ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2
f2 3 ≈ 4 ≫ 1 > 2 3 ≈ 4 ≫ 1 ≈ 2 4 ≈ 3 ≫ 2 ≈ 1
f3 3 ≈ 4 ≫ 1 ≈ 2 3 ≈ 4 ≫ 1 ≈ 2 3 ≈ 4 ≫ 1 ≈ 2
f4 3 ≈ 4 ≫ 1 > 2 3 ≈ 4 ≫ 1 ≈ 2 3 ≈ 2 ≈ 4 ≈ 1
f5 4 ≈ 3 ≫ 1 > 2 4 ≈ 3 ≫ 1 > 2 4 ≈ 3 ≫ 1 > 2
f6 3 ≈ 4 ≈ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2
f7 4 ≈ 3 ≫ 1 ≈ 2 3 ≈ 4 ≫ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2
f8 1 ≈ 4 ≈ 2 ≈ 3 2 ≈ 1 ≈ 3 ≈ 4 3 ≈ 4 ≈ 1 ≈ 2
f9 4 ≈ 3 ≈ 2 ≈ 1 4 ≈ 2 ≈ 1 ≈ 3 3 ≈ 4 ≈ 1 ≈ 2
f10 2 ≫ 4 ≈ 3 ≫ 1 3 ≈ 4 ≫ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2
f11 4 ≈ 3 ≈ 1 ≈ 2 4 ≈ 3 ≈ 1 ≈ 2 3 ≈ 4 ≈ 1 ≈ 2
f12 3 ≈ 4 ≈ 1 ≈ 2 4 ≈ 3 > 1 ≈ 2 3 ≈ 4 ≈ 2 ≈ 1
f13 4 ≈ 3 ≈ 1 ≈ 2 4 ≈ 3 ≈ 1 ≈ 2 4 ≈ 3 ≫ 2 ≈ 1
f14 4 ≈ 3 ≈ 2 ≈ 1 4 ≈ 3 ≈ 1 ≈ 2 4 ≈ 1 ≈ 2 ≈ 3
f15 4 ≈ 1 ≈ 3 ≈ 2 3 ≈ 1 ≈ 4 ≈ 2 3 ≈ 1 ≈ 2 ≈ 4
f16 2 ≈ 3 ≈ 4 ≈ 1 3 ≈ 2 ≈ 4 > 1 3 ≈ 2 ≈ 1 ≈ 4
f17 4 ≈ 2 ≈ 3 ≈ 1 4 ≈ 3 ≫ 1 > 2 3 ≈ 4 ≫ 1 ≈ 2
f18 3 ≈ 4 ≈ 2 ≈ 1 4 ≈ 3 ≫ 1 ≈ 2 3 ≈ 4 ≫ 1 ≈ 2
f19 4 ≈ 3 ≈ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2
f20 4 ≈ 3 ≈ 2 ≈ 1 3 ≈ 4 > 1 ≈ 2 3 ≈ 4 ≈ 2 ≈ 1

VI. CONCLUSION AND FUTURE WORKS

We proposed two strategies, the competitive generation
strategy and the selection strategy, for the DE algorithm
to increase competition among individuals and accelerate
its convergence. The controlled experiments confirmed that
proper introduction of the competition mechanism can improve
the optimization performance of canonical DE. Concretely
speaking, the competitive selection strategy is effective, which
eliminates the worst individual and generates its alternative n-
ear a better individual. However, the acceleration performance
of the competitive generation strategy that gives potential
individuals more opportunities to generate offspring is not
obvious.

In future work, we will further study the proposed competi-
tive strategies and try to obtain a balance between competition
and cooperation. Consequently, how to rationally eliminate
poor individuals and maintain the diversity of population is
also an open topic for further investigation. We will discuss
and analyse these topics.
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Fig. 2. Convergence curves of 2-D f1–f20 benchmark functions. We can observe that DE with proposed two competitive strategies can accelerate DE search.
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Fig. 3. Average ratio of replacing parent individuals for 2-D f1–f20 benchmark functions. We can observe that the ratio of replacing parent individuals of
DE with strategy 2 is higher than that of DE with strategy 1.


