
Scalability and Performance of Decentralized Planning in
Flexible Transport Networks

Van Heeswijk, Wouter
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
wouter.van.heeswijk@cwi.nl

La Poutré, Han
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
han.la.poutre@cwi.nl

Abstract

This paper addresses the planning of freight dispatch in flexible transport networks
featuring multiple carriers. To deal with the computational challenges of the planning
problem, we develop an Approximate Dynamic Programming (ADP) algorithm that
utilizes neural network techniques to learn dispatch policies. We test whether dispatch
policies learned autonomously by carrier agents (based on local information) match the
quality of policies learned by a central planner (based on full network information).
Numerical experiments show that the policies yield solutions of comparable quality for
small instances, yet the decentralized approach is capable to scale to larger instances.
Finally, the ADP policies are compared to four benchmark policies, which are all
significantly outperformed.

1 Introduction

In recent years, freight transport has become increasingly difficult to organize due to higher
service standards, i.e., smaller order volumes, more frequent shipments, and faster deliver-
ies. To maintain a high transport efficiency, individual carriers (transport companies) often
must collaborate and utilize physical decoupling points (e.g., transfer hubs) to form flexible
multi-segment transport networks that facilitate the bundling and unbundling of fractional
loads. Such networks enable consolidation of transport jobs with geographically dispersed
origins and/or destinations. The transport flows are typically controlled by a central planner.
The problem of selecting the next route segment and dispatch time for individual transport
jobs is known as the dispatching problem.

A downside of centralized planning is the large amount of information that needs to
be shared by carriers. Combined with the stochastic and dynamic nature of the planning
problem, it is challenging to find good solutions within limited time. Also, the objectives of
the individual (possibly competing) carriers may diverge from those of the central planner.
In contrast, decentralized planning enables carriers to pursue their own goals and eliminates
the need to share information.

This paper addresses the dispatching problem in a fundamental network setting. Our
main contributions are as follows. We learn dispatch policies in both centralized and decen-

1

tralized settings and compare the performance of these policies, taking into account opera-
tional efficiency, timely delivery, and distance covered. Numerical experiments demonstrate
that decentralized planning achieves solutions of a quality similar to centralized planning,
while exploiting the vast computational benefits of decentralized planning. For this pur-
pose we develop an Approximate Dynamic Programming (ADP) algorithm, using neural
network techniques to learn dispatch policies based on observed values. Of particular im-
portance is the scalability of our decentralized solution to larger instances, as in centralized
planning the number of possible actions increases exponentially with the number of agents.

2 Related literature

This section concisely presents literature on various topics related to the problem studied in
this paper. In contrast to our work, most studies consider centralized planning.

First, we address the topic of flexible multi-segment transport planning. This entails
responding to new transport jobs that are revealed dynamically over time and adjusting the
planning to utilize arising consolidation opportunities. The computational challenge lies in
the vast amount of possible solutions that typically emerge in combinatorial optimization
problems. Common solution approaches are local search algorithms (e.g., Ferucci et al.
[1]) and constructive algorithms (e.g., Van Heeswijk et al. [2]).

The Delivery Dispatching Problem and the Service Network Design problem are prob-
lem classes concerned with the selection and dispatch timing of transport services. In
stochastic and dynamic settings, scenario sampling or value function approximation (which
true value depends on the underlying stochastic process) are the most common solution
methods [3]. Examples of both approaches may be found in Lium et al. [4] and Van
Heeswijk et al. [5], respectively.

As mentioned in Section 1, large transport networks are difficult to control centrally due
to the required degree of information sharing and potential misalignment of objectives. Re-
search on decentralized transport planning is limited. Mes et al. [6] heuristically compare
centralized and decentralized planning, and argue that decentralized planning may perform
at least as well as their centralized benchmark policy. Jung et al. [7] reach similar conclu-
sions, stating that their decentralized planning method approximates the performance of an
idealized centralized planning.

The final topic that we address is learning. Transport problems with stochastic and
dynamic problems can generally be modeled as Markov decision models, but these are
typically too large to solve exactly [8]. Instead of computing the optimal decision policy,
we often settle for finding near-optimal policies. Stochastic modeling frameworks such as
Approximate Dynamic Programming (ADP) are often used for this purpose, generally con-
sidering a single planner in transport settings. Based on sampled observations, the objective
is to estimate the true value function of the problem, enabling to quantify the downstream
effects of actions [9].

2

vin

v

vout

v+

v−

Figure 1: Example of network. The red vertex pair (v−, v+) represents the origin and destination for
one job, the blue vertex pair for another. Following the colored paths, the jobs might be consolidated
on the purple arc connecting v to vout.

3 Model formulation

This section presents the formal definition of the Markov decision problem that we aim to
solve. We describe the network, problem state, action definition, transition function, and
value function from the perspective of a single carrier agent that operates from a predefined
vertex. The model is solved over an infinite planning horizon T that consists of decision
epochs separated by equidistant time intervals.

3.1 Network

Let {V,A} be an undirected and strongly connected graph. Figure 1 provides an illustrative
network example with its most essential notations. The role of the vertices v ∈ V in the
model is twofold. Every vertex represents a potential origin or destination of a transport job;
a vertex pair (v−, v+) signifies the locations where the job is generated and where it should
be delivered. In addition, each vertex also represents a carrier agent that may dispatch jobs
to directly connected vertices.

The arcs a ∈ A represent transport services between two distinct vertices. Transport
units (e.g., containers) filled with one or more jobs are moved via the arcs. If the cumu-
lative job volume exceeds any positive integer number, multiple units are simultaneously
dispatched. The set Vv ⊂ V represents the set of vertices that may be reached directly from
v and vice versa. We use the notation vin ∈ Vv when referring to jobs transported from a
vertex vin to v and vout ∈ Vv for jobs transported from v to a vertex vout.

The following simplifications are made. First, the time intervals between adjacent de-
cision epochs are assumed to be sufficiently large to transport jobs between any two con-
nected vertices. Second, there are no handling times or capacity constraints at the vertices.
Third, we define homogeneous transport services, transport units with a capacity of 1, and
an unlimited number of transport units at each vertex.

3

3.2 State description

Transport jobs are randomly generated at some vertex v− ∈ V and must be transported to
some vertex v+ ∈ V \ {v−}. Each job has a volume l ∈ L, with L = { 1

k , . . . ,
k
k} and

k ∈ N≥1; a volume of 1 equals the capacity of a transport unit. The due time at or before
which the job should be delivered at v+ – expressed relative to the current decision epoch
(i.e., decreasing over time) – is denoted by t+. Let T + = [0, t+,max] ∩ N be the set of
times from which t+ may be drawn. The due time is a soft constraint, early dispatch is
rewarded however. The variable thold is used to compute rewards for timely dispatch and
indicates how long the job has been held at the current vertex v. The maximum allowed
holding time is thold,max, yielding a set of holding times T hold = [0, thold,max] ∩ N. If a
job with thold = thold,max is not dispatched, it is considered a failed job and removed from
the system; the agent incurs a penalty for this. Whenever a job arrives at a new vertex, we
reset thold to 0.

We define a job type as a unique combination of the following properties: the due time
t+, the holding time thold, the job volume l, the current vertex v, and the destination vertex
v+. Let (t+, thold, l, v, v+) be a job type and let It+,thold,l,v,v+ ∈ N be the number of jobs
of that type in the system. The state of the system for agent v is defined by

Iv = (It+,thold,l,v,v+)∀(t+,thold,l,v+)∈T +×T hold×L×V . (1)

The set of all possible states for agent v is denoted by Iv.

3.3 Action description

The actions that may be performed by carrier agent v depend on Iv; we denote a single
action by xv(Iv) and the set of feasible actions by Xv(Iv). Essentially, the carrier agent
must decide how many jobs per type to dispatch and to which vertex vout ∈ Vv they are dis-
patched. Each decision variable xt+,thold,l,v,vout,v+ represents a nonnegative integer number
of jobs of a given type to be transported via a given arc. Compared to the state variable,
the subscript vout is added to the decision variable, i.e., the outbound vertex to which the
job is assigned. Jobs are not allowed to be shipped to vertices if it increases the distance to
their destination. Furthermore, each job may be assigned to at most one outbound arc. The
action for carrier agent v given state Iv is defined as

xv(Iv) = (xt+,thold,l,v,vout,v+)∀(t+,thold,l,vout,v+)∈
T +×T hold×L×Vv×V

. (2)

3.4 Transition function

This section describes the transition function that determines the state change when moving
from one decision epoch to the next. For carrier agent v, the transition depends on the action
xv, the actions xvin ,∀vin ∈ Vv (which are not directly observable by agent v), and the set of
new jobs with origin v− = v generated according to a stochastic process. We define the lat-
ter as follows. Let Ĩt+,0,l,v,v+ ∈ N be a random variable describing the number of new jobs

4

of type (t+, 0, l, v, v+) generated during the interval separating the two adjacent decision
epochs. The random variable vectorWv = (Ĩt+,0,l,v,v+)∀(t+,l,v+)∈T +×L×V denotes the jobs
generated at v during the time interval. We use ωv to describe a potential combination of
generated jobs and Ωv as the set of all possible combinations of generated jobs. When Wv

returns an outcome ωv ∈ Ωv, we define this realization byWv(ωv). From the perspective of
agent v, the dispatch actions of adjacent agents are also a stochastic arrival process, as their
states and actions cannot be observed. This is a crucial difference with central planning, in
which the planner observes the states and actions of the complete network. To reflect the
uncertainty in arrivals, we use the random variable x̃t+,0,l,v,v+ ∈ N to denote the number of
job arrivals of a specific type stemming from vertices adjacent to v (i.e., a local observation
at v), ξv = (x̃t+,0,l,v,v+)∀(t+,l,v+)∈T +×L×V as a potential combination of job arrivals, Ξv as
the set of all possible combinations of arrivals, Xv as the random variable vector of arrivals,
and Xv(ξv) as a realization.

We split the transition function into two parts. The first part is deterministic and de-
scribes the transition from Iv to the so-called post-decision state Ipostv [8]. This transition
depends solely on the action taken by carrier agent v, describing the state before the newly
generated jobs and before arrivals from adjacent vertices. The second part is stochastic and
describes the transition from Ipostv to a new pre-decision state I ′v and requires the stochastic
realizations of job generations Wv(ωv) and job arrivals Xv(ξv). We describe the first part
of the transition function – defined by Spost – as follows:

Ipostv = Spost(Iv, xv) , (3)

s.t.

Ipost
t+,thold,l,v,vout,v+

= It+,thold,l,v,v+ −
∑

vout∈Vv

xt+,thold,l,v,vout,v+ (4)

∀(t+, thold, l, v+) ∈ T + × T hold × L× V .

We proceed with the second part of the transition function, which we denote by Sstep.
This part processes the arrivals stemming from the decisions made by the adjacent carrier
agents vin ∈ Vv – reflected by Xv – and the newly generated jobs Wv. It also adjusts the
indices t+ and thold to reflect the time step to the next decision epoch. Note that t+ cannot
get smaller than 0, but that thold is always incremented when holding a job.

I ′v = Sstep(Ipostv ,Wv(ωv), Xv(ξv)) , (5)

5

s.t.

It+,thold,l,v,v+ = (6)
Ipost
t++1,thold−1,l,v,v+

+
∑

vin∈Vv x̃t+,thold,l,vin,v,v++

Ĩt+,thold,l,v,v+ if t+ > 0 ,

Ipost
t+,thold−1,l,v,v+

+
∑

vin∈Vv x̃t+,thold,l,vin,v,v++

Ĩt+,thold,l,v,v+ if t+ = 0, thold < thold,max ,

∀(thold, t+, l, v+) ∈ T + × T hold × L× V .

3.5 Value function

Decentralized planning grants carrier agents autonomy with respect to the timing of dis-
patch and the selection of outbound arcs. The rewards should therefore be structured such
that the functionality of the transport network is preserved, implying timely deliveries and
efficient transport movements. The value function embeds three components corresponding
to these goals, namely the transport costs C(xv) ∈ R+ (a fixed distance-dependent number
per transport unit dispatched), a distance reward Rdist(xv) ∈ R+ (a number proportional
to distance reduction towards destination), and a time reward Rtime(xv) ∈ R (a reward for
quick dispatch, a penalty for holding jobs, and a penalty for failed jobs). We assign weights
wdist, wtime ∈ R+ to the two reward components.

The chosen action affects the rewards and costs incurred at subsequent decision epochs.
Based on the knowledge of the stochastic process, the carrier agent can make an informed
decision that considers the downstream effects of current actions. We use a factor γ ∈ (0, 1)
to discount future rewards.

A finite number of outcome states I ′v ∈ Iv may be reached from Iv, given action
xv and realizations Wv(ωv) and Xv(ξv). By multiplying the probability of realization
(Wv(ωv), Xv(ξv)) with the discounted value of being in state I ′v and summing over all
(ωv, ξv) ∈ Ωv × Ξv, we may compute the expected downstream value for any state-action
pair. The Bellman equation corresponding to the Markov decision model is defined by

Vv(Iv) = max
xv∈Xv(Iv)

(
wdist ·Rdist(xv) + wtime ·Rtime(xv) (7)

−C(xv) + γ
∑

(ωv ,ξv)∈Ωv×Ξv

P (Wv(ωv), Xv(ξv))Vv(I
′
v|Iv, xv, ωv, ξv)

)
,

∀Iv ∈ Iv .

The solution of the Markov decision model is a policy πv : Iv 7→ Xv; the optimal policy
for agent v may be found by recursively solving the Bellman equation for all states.

6

4 Solution method

The presented Markov decision model might theoretically be solved to optimality, but is
computationally intractable for even moderate-sized problem instances. Therefore, we
present an ADP-based solution method to solve the problem, using neural network tech-
niques to estimate the true value function.

4.1 Algorithmic strategy

Solving Equation (7) poses major computational problems. The number of states, actions,
and possible outcome states quickly becomes extremely large due to the many potential
combinations of job arrivals and -generations. In our solution method, we address this
problem as follows. Instead of computing the true value function Vv(Iv) for each state, we
compute an estimate Ṽv(Iv). To learn this estimate, we perform a finite number of itera-
tions. To avoid the need to evaluate all possible outcome states for a given state-action pair,
we transform the stochastic problem in Equation (7) to a computationally more tractable
deterministic problem. We replace the probabilistic term in the Bellman equation with a
statistical expectation V̄v(I

post
v) that is based on sampled observations. After learning the

dispatch policies, the deterministic maximization problem looks as follows:

Ṽv(Iv) = max
xv∈Xv(Iv)

(
wdist ·Rdist(xv) + wtime ·Rtime(xv) (8)

−C(xv) + γV̄v(I
post
v |Iv, xv)

)
.

The statistical expectation V̄v(I
post
v) is obtained as follows. We select a state-action pair

(Iv, xv) to compute a post-decision state Ipostv , sample a realization (Wv(ωv), Xv(ξv)) to
reach a new state I ′v, and use the value that we observe at the new state (i.e., the down-
stream costs corresponding to the state in the preceding iteration) to update the estimated
value corresponding to Ipostv . A drawback of this approach is that we must observe every
state multiple times to converge to the true values, which is computationally prohibitive.
Instead, we compute the expected value based on certain features of the post-decision state
(e.g., aggregate volumes per destination) rather than the complete state description, allow-
ing to estimate values for states that have not yet been observed. We further address this in
Section 4.2. For the algorithmic outline, it suffices to introduce a generic function U that
updates after each iteration from estimate V̄v,n−1(Ipostv) to V̄v,n(Ipostv), with n ∈ [0, N]∩N
being the iteration counter and each iteration corresponding to a discrete time step. The
update is based on an observed value v̂v,n that follows from solving Equation 8, replacing
V̄v(I

post
v) with V̄v,n−1(Ipostv).

Solving Equation 8 always returns the best action given the prevailing estimates. Par-
ticularly in the early iterations, the estimates of the downstream values may be poor. To
prevent getting stuck in a local optimum early on, we apply an epsilon-greedy exploration
strategy that selects a random action from Xv(Iv) with probability ε ∈ [0, 1] and the best

7

known action with probability 1− ε. This strategy enables both to frequently observe state-
action pairs with high rewards to better learn their value and to explore unobserved parts of
the state space.

Algorithm 1 outlines the algorithmic strategy to obtain value estimates V̄v,N (Ipostv),∀Ipostv ∈
Iv. In each iteration n ∈ [0, N], we apply the value-maximizing action xv,n (given current
estimates) on state Iv,n to obtain post-decision state Ipostv,n . To reach a new state Iv,n+1, we
randomly sample a realization of jobs Wv(ωv). The realization of job arrivals Xv(ξv) –
although stochastic from the perspective of the carrier agent – is computed based on the
actions of the adjacent agents, i.e., ξv =

∑
vin∈Vv xvin,n. Subsequently, applying xv,n+1

on Iv,n+1 yields a new observation v̂v,n+1, we use this observation to update our estimate
V̄v,n(Ipostv).

Algorithm 1 ADP algorithm to estimate post-decision values and obtain the dispatch pol-
icy (based on Powell [8]). The symbol R←− [implies a random draw from a set.

1: initialize V̄v,0(Ipostv), ∀Ipostv ∈ Iv
2: ε←[[0, 1]
3: n← [1
4: Iv,1

R←−[Iv
5: while n ≤ N do
6: εn

R←−[[0, 1]
7: if εn > ε then

8: xv,n ←[arg max
xv,n∈Xv(Iv,n)

(
wdist ·Rdist(xv,n) + wtime

·Rtime(xv,n)− C(xv,n) + γV̄v,n−1(Ipostv |Iv,n, xv,n)

)
9: else if εn ≤ ε then
10: xv,n

R←−[Xv(Iv,n)
11: end if
12: Ipostv,n ← [Spost(Iv,n, xv,n)

13: v̂v,n ← [wdist ·Rdist(xv,n) + wtime ·Rtime(xv,n)
−C(xv,n) + γV̄v,n−1(Ipostv,n)

14: V̄v,n(Ipostv)←[U
(
V̄v,n−1(Ipostv), Ipostv,n−1, v̂v,n

)
15: Wv(ωv)

R←−[Ωv

16: Xv(ξv)← [
∑

vin∈Vv
xvin,n

17: Iv,n+1 ← [Sstep(Ipostv,n ,Wv(ωv), Xv(ξv))
18: n← [n+ 1
19: end while
20: return V̄v,N (Ipostv),∀Ipostv ∈ Iv

4.2 Update function

Step 14 of Algorithm 1 performs the update U
(
V̄v,n−1(Ipostv), Ipostv,n−1, v̂v,n

)
, with U be-

ing an artificial neural network (ANN) that learns V̄v,N (Ipostv), ∀Ipostv ∈ Iv. The ANN is
composed as follows. It has an input layer based on Ipostv,n−1. The inputs are multiplied with

8

weights to provide input for a layer of hidden nodes that transforms the input. Subsequently,
the hidden layer output is multiplied with weights to compute the expected value. Based
on the difference between expected value V̄v,n−1(Ipostv,n−1) and observation v̂v,n, the ANN
weights are updated [10].

We discuss the ANN update procedure in more detail. Suppose that at iteration n − 1,
we select a certain action that yields post-decision state Ipostv,n−1. After taking an action at
iteration n, we observe a value v̂v,n that is used to improve the estimate for Ipostv,n−1. We show
how the ANN computes the statistical expectation V̄v,n−1(Ipostv,n−1). First, post-decision state
Ipostv,n−1 maps to a contracted feature vector φv = (φv,f)f∈F ∈ R|F|, with each feature f ∈ F
representing some property of the state. This way, we can estimate values for states that
have not been observed previously. In addition, the state is typically both high-dimensional
and sparse, which are undesirable properties for the input vector. At the core of the ANN
is the layer of hidden nodes Z , represented by a vector of functions σv = (σv,z)∀z∈Z
that transforms the input (i.e., the feature vector) to an expectation for the post-decision
value. Both the inputs and outputs of σv are multiplied with weight vectors; we update
these weights to fit the ANN to the observed values. We distinguish between input weights
winv,z,n−1 = (winv,z,f,n−1)∀f∈F and output weights woutv,n−1 = (woutv,z,n−1)∀z∈Z . Each hidden
node takes the inner product of the input layer and the input weight vector corresponding to
z and transforms it to an output value, i.e., σv,z : (〈winv,z,n−1, φv〉) 7→ R. Thus, σv returns
a vector of outputs. The expected value V̄v,n−1(Ipostv,n−1) is the inner product of this vec-
tor and the output weights, i.e., V̄v,n−1(Ipostv,n−1) = 〈woutv,n−1, (σv,z(〈winv,z,n−1, φv〉))∀z∈Z〉.
After computing the estimated value, the ANN compares the discounted expected value
γV̄v,n−1(Ipostv,n−1) to the new observation v̂v,n. The approximation error at n is defined by

δv,n =
1

2

(
γV̄v,n−1(Ipostv,n−1)− v̂v,n

)2
. (9)

We use a gradient descent algorithm to update the weights, with the gradient being defined

as ∇v,n =

(
∂σv,z(〈win

v,z,n−1,φv〉)
∂〈win

v,z,n−1,φv〉
〈winz,n−1, φv〉

)
∀z∈Z

. For this purpose we compute partial

errors for each σv,z , defined by δv,z,n = δv,nw
out
v,z,n. Furthermore, let η ∈ [0, 1] be the

learning rate determining how responsive the ANN is to observations deviating from the
estimate. The weights are updated as follows:

∆winv,z,f,n = ηδv,z,n
∂σv,z(〈winv,z,n−1, φv〉)
∂〈winv,z,n−1, φv〉

〈winv,z,n−1, φv〉φv,f (10)

∀(z, f) ∈ Z × F ,

∆woutv,z,n = ηδv,n
∂σv,z(〈winv,z,n−1, φv〉)
∂〈winv,z,n−1, φv〉

〈winv,z,n−1, φv〉 (11)

σv,z(〈winv,z,n−1, φv〉) ∀z ∈ Z .

9

4.3 Feature space

As pointed out in Section 4.2, we apply a contraction mapping on the state to obtain a more
dense feature vector as input for the ANN. This mapping is described here. Based on the
structure of the value function, the feature space designs tested on a related dispatching
problem [2], and extensive preliminary experiments, we construct a feature space with the
following features: (i) a constant, (ii) the cumulative job volume, (iii) the number of jobs,
(iv) the number of jobs about to incur a lateness penalty, and (v) the number of jobs about
to incur a failed job penalty.

5 Numerical experiments

This section discusses the policies used as benchmarks, the experimental design, and the
numerical results. All algorithms are coded in C++ and run on a 64-bit Linux machine with
a 4x1.60GHz CPU and 8GB memory.

5.1 Benchmark policies

Aside from comparing the centralized ADP policy (πc) and decentralized ADP policy (πdc)
between themselves, we also compare them to four policies that we use as benchmarks.
The first policy (π1) selects a random action at each epoch and serves as a baseline policy.
The second policy (π2) always dispatches available jobs directly via the shortest path to
their destination, thereby maximizing the time rewards. The second policy (π3) dispatches
jobs as late as possible (also using the shortest path), such that they arrive just in time at
the destination. When a job must be dispatched due to urgency, all jobs held for transport
via the same arc are dispatched as well, aiming to increase utilization of transport services.
The fourth policy (π4) estimates downstream costs corresponding to each action based on
sampling future states and solving them with π2. The seminal work of Bertsekas [9] refers
to this widely accepted method as a rollout algorithm and is known to be competitive to
value function approximation [11, 5].

5.2 Experimental design

We test instances of 4 different sizes, containing 3, 5, 10, and 25 agents. The vertices are
generated randomly in a square area. The maximum degree of vertices varies with the in-
stance size, e.g., the instance 5(3) indicates 5 vertices that each have up to 3 connected arcs.
We randomly generate 10 replications of each instance, for which we run 500 iterations
using πc, πdc, and the four benchmark policies. We set an instance-dependent total time
limit to compute the ADP policies (in case of decentralized planning this is the cumula-
tive time for all agents); the algorithm keeps performing learning iterations until the limit
is reached. The time limits are selected to elicit the computational effects of instance size
on both centralized and decentralized planning; in practice performance improvements are
marginal after several thousands of iterations. Based on preliminary experiments, we set

10

Centralized Decentralized
Instance Time # Iter. |X |max # Iter. |X |max

3(2) 2h 62,039 1.98E11 77,679 1.75E4

5(3) 3h 2,143 4.02E27 57,718 1.66E6

10(4) 12h 3 7.18E73 54,196 2.43E8

25(5) 24h 0 5.71E186 4,312 4.35E10

Table 1: # iterations completed within designated time and the theoretical upper bound on joint
action spaces per instance.

η = 0.001 , |Z| = 5 and ε = 0.01. For (σv,z)∀z∈Z we use so-called leaky rectified linear
units [12]. The corresponding weights are initialized using the He initialization procedure
[12].

The joint action space is described by X =
∏
v∈V Xv for centralized planning and X =⋃

v∈V Xv for decentralized planning. The computational burden for centralized planning
increases exponentially with the number of agents and linearly for decentralized planning.
However, in both cases the increase is exponential with respect to the number of adjacent
arcs.

5.3 Numerical results

For both centralized and decentralized ADP, Table 1 shows the number of learning iterations
completed within the shown run time and the theoretical upper bound of the joint action
spaces. As the action space for centralized planning grows exponentially with respect to
the number of agents, it becomes increasingly challenging to learn centralized policies for
larger instances; for the instances with 10 and 25 agents no (meaningful) policy could be
learned within time.

Figure 2 shows the average reward value achieved with each policy for all instances.
The random policy π1 yields the worst results and fails to generate positive rewards. Also
the heuristic policies π2 and π3 are significantly outperformed by both ADP policies, as
they do not consider downstream effects of decisions. The rollout algorithm π4 is more
competitive, but is still outperformed between 20% and 26% by the ADP policies. The
rollout yields downstream value estimates of lower quality, thus resulting in less effective
policies. For the instances 3(2), πc performs 3.0% better than πdc. For the 5(3) instances,
πc performs 3.2% worse than πdc; note that much less iterations can be completed to learn
πc than for πdc, negating the potential benefits of having global information. Centralized
planning does not generate any meaningful policies for instances larger than 5(3) within
reasonable time.

Figure 3 shows a breakdown of the performance of πdc relative to πc, with metrics >1
indicating an improvement. The metrics are the weighted reward, traveled transport dis-
tance, delivery time, and the number of successful (non-penalized) deliveries. Recall that
these metrics are jointly embedded in the objective function and may be influenced by alter-
ing their corresponding weights. Although weighted rewards are quite similar, autonomous

11

3 5 10 25
−2

−1

0

1

2

agents in instance

A
ve

ra
ge

re
w

ar
d

va
lu

e
πc πdc π1

π2 π3 π4

Figure 2: Performance per policy for each instance. Centralized policy πc cannot be computed
within time for the instances 10(4) and 25(5).

agents tend to dispatch jobs quicker and fail fewer jobs. The lack of information regarding
jobs located elsewhere in the network may cause agents using decentralized planning to
focus more on incurring time rewards and avoiding penalties. Finally, instances larger than
5(3) are not shown because – as mentioned earlier – πc could not be computed.

6 Conclusions

This paper presents an ADP algorithm using neural network techniques to learn dispatch
policies in flexible multi-segment transport networks. Four policies that we use as bench-
marks are consistently outperformed by our algorithm. We compare the performance of
policies that are learned either by a central planner that directs all transport flows in the
network, or individually by autonomous carrier agents. The numerical results show that
decentralized policies achieve a quality comparable to that of centralized policies, while
requiring no information exchange between agents and a significantly lower computational
effort. For larger instances, centralized planning fails to generate policies within reasonable
time, whereas decentralized planning still generates high-quality solutions. As computa-
tional time grows linearly with respect to the number of agents, it is possible to apply
decentralized planning to instances larger than tested in this paper.

12

Reward Distance Time Deliveries
0

0.5

1

1.5

2
A

ve
ra

ge
re

w
ar

d
va

lu
e

3(2)
5(3)

Figure 3: Performance of πdc relative to πc. Averages over all 3(2) and 5(3) instances respectively,
metrics >1 indicate improvement.

References

[1] F. Ferrucci and S. Bock, “A general approach for controlling vehicle en-route diver-
sions in dynamic vehicle routing problems,” Transportation Research Part B: Method-
ological, vol. 77, pp. 76–87, 2015.

[2] W. J. A. Van Heeswijk, M. R. K. Mes, J. M. J. Schutten, and W. H. M. Zijm, “Freight
consolidation in intermodal networks with reloads,” Flexible Services and Manufac-
turing Journal, pp. 1–34, 2016.

[3] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of dynamic vehicle
routing problems,” European Journal of Operational Research, vol. 225, no. 1, pp.
1–11, 2013.

[4] A.-G. Lium, T. G. Crainic, and S. W. Wallace, “A study of demand stochasticity in
service network design,” Transportation Science, vol. 43, no. 2, pp. 144–157, 2009.

[5] W. J. A. Van Heeswijk, M. R. K. Mes, and J. M. J. Schutten, “The delivery dispatching
problem with time windows for urban consolidation centers,” Transportation Science,
pp. 1–19, 2017.

[6] M. R. K. Mes, M. C. Van Der Heijden, and A. Van Harten, “Comparison of agent-
based scheduling to look-ahead heuristics for real-time transportation problems,” Eu-
ropean Journal of Operational Research, vol. 181, no. 1, pp. 59–75, 2007.

[7] H. Jung, B. Jeong, and C.-G. Lee, “An order quantity negotiation model for distributor-
driven supply chains,” International Journal of Production Economics, vol. 111, no. 1,
pp. 147–158, 2008.

13

[8] W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimension-
ality. John Wiley & Sons, 2011, vol. 2.

[9] D. P. Bertsekas, Dynamic programming and optimal control. Athena scientific Bel-
mont, MA, 2017, vol. 1, no. 4.

[10] S. S. Haykin, Neural networks and learning machines. Pearson Upper Saddle River,
NJ, USA, 2009, vol. 3.

[11] M. W. Ulmer, D. C. Mattfeld, M. Hennig, and J. C. Goodson, “A rollout algorithm
for vehicle routing with stochastic customer requests,” in Logistics Management.
Springer, 2016, pp. 217–227.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2015, pp. 1026–1034.

14

