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Abstract—Novel (semi-)automated systems are rapidly being
introduced into modern road vehicles, but anticipating possibly
critical human-machine interaction issues is difficult, because the
human driver’s behavior is as of yet still poorly understood. This
paper aims to improve our understanding and models of driver
steering behavior on winding roads, using Frequency-Response
Function (FRF) measurements of drivers’ feedforward, heading
feedback, and lateral position feedback dynamics. The steering
behavior data were collected in a human-in-the-loop simulator
experiment, in which drivers followed the road centerline at
constant forward velocity, while being perturbed laterally by
wind-gust disturbances. All three measured FRFs can be cap-
tured with a multiloop, single preview-point driver model, which
has only five parameters. These parameters provide unmatched
understanding of – otherwise lumped – driver internal steering
processes, quantifying how and what portion of the previewed
centerline trajectory is used for control, and how lateral position
and heading feedback are weighed. The gained insights may help
to reduce driver-automation interaction issues in modern road
vehicles, to quantify between-driver steering variations, adapta-
tion and learning, and to design human-like and individualized
automatic and shared steering controllers.

I. INTRODUCTION

Road vehicles are rapidly being equipped with more Ad-

vanced Driver Assistance Systems (ADAS) and even autopilots

for (temporary) autonomous control. It is difficult to anticipate

how human drivers of such vehicles, as well as other road

users, will interact with the novel automation systems. To

better understand potential human-machine interaction issues

in tomorrow’s vehicles, a profound understanding of human

driver behavior is desirable.

Considering the task of steering, drivers are known to rely

heavily on visual feedback [1]. It has been suggested that

drivers use patterns of the optical flow for control [2]–[5],

“near” and “far” regions in the visual field [6], [7], and

the road’s curvature or tangent point [8]. Moreover, control-

theory has shown that drivers combine feedforward control

to follow the road’s curves, with feedback control to stabilize

the vehicle [9]–[13]. Nonetheless, neither driver feedforward

nor feedback steering behavior are as of yet fully understood,

and not due to a lack of testable theories or models [12],

[13]. Feedforward steering behavior has been modeled using

either one, two, or many points of the previewed trajectory as

input (e.g., see [9], [10], [14]–[16]). Driver feedback behavior,

besides indispensable lateral-position outer-loop control, has

been modeled either as a linear or model-based prediction

process, or as an inner-loop based on vehicle heading or path

angle [17], [18].

In order to better understand driver steering, and favor

one model or theory over another, we need measurements

of the driver’s control dynamics, such as Frequency-Response

Function (FRF) data [19]. McRuer et al. [20] based their sem-

inal crossover model for single-loop compensatory tracking

tasks on FRF measurements. McRuer and his colleagues [9],

[18] have in fact extended the original crossover model with

a heading-angle inner-loop response to capture driver FRF

data for the task of suppressing (wind-gust) disturbances on

straight roads. More recently, multiloop FRF estimates proved

indispensable for understanding and modeling the human’s

feedforward and feedback control responses in tracking tasks

with preview [21], [22].

This paper aims to improve our understanding and models

of driver steering behavior on winding roads using similar

FRF measurements. Steering data were gathered in a human-

in-the-loop simulator driving experiment, in which subjects

tracked the road’s centerline (to limit variability in behavior),

while simultaneously suppressing wind-gust disturbances. For

the first time, the dynamics of three driver responses are

estimated, namely their feedforward, or preview response, as

well as their heading and lateral position feedback responses.

Moreover, we propose a novel driver steering model that

combines well-validated, existing models for compensatory

tracking (the crossover model [20]), straight road driving [18],

and single-loop preview tracking tasks [21], [22]. We will

show that the proposed multiloop model does not only capture

all three estimated driver FRFs and the driver’s steering output,

but additionally does so with physically interpretable model

parameters.

II. CONTROL-THEORY OF DRIVER STEERING

A. Control Task

The considered driving task is illustrated in Fig. 1. The

driver is to track the road’s centerline (i.e., the target trajectory

yc), while simultaneously suppressing wind-gust disturbances

(yd laterally and ψd on heading). The driver thus effectively

minimizes the lateral position error ye = yc − y, with y the

vehicle’s lateral position. To do so, drivers rotate the steering

wheel (angle δ ), based on perceived optical cues visible

through the vehicle’s front windshield.
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Fig. 1. Schematic of the driver in a steering task. Control-theoretic models
typically lump the perspective geometry and driver blocks, ignoring driver
optical cue selection.

B. Control-Theoretic Driver Model

1) Single-Loop Compensatory Tracking: Fig. 2 shows the

proposed quasi-linear model for driving along winding roads.

The model’s central element, or inner loop, is equivalent to the

simplified precision model for the human’s compensatory error

response H
comp
o [20]. This model contains an equalization gain

Ke⋆ , equalization lead time-constant TL,e⋆ , and response time

delay τe⋆ . An additional model for the driver’s neuromuscular

activation dynamics is sometimes included in H
comp
o [20], [21],

but is left out here for simplicity.

2) Straight Road Driving: In driving tasks more than one

feedback variable is generally available, yielding a multiloop

control task. Drivers most likely use the vehicle’s heading as

input to the compensatory inner-loop [9], [18], as shown in

Fig. 2. Nonetheless, other quantities such as the vehicle’s path

angle also yield satisfactorily inner-loop characteristics [17],

and could be used (intermittently) by human drivers. The

inner-loop closure provides the lead equalization required

to obtain a stable integrator magnitude slope around the

open-loop crossover frequency [11], [17], [20]. Consequently,

drivers can close the lateral position outer-loop using propor-

tional control, see Fig. 2; the gain K
ψ
y characterizes drivers’

relative weighing of heading and lateral position feedback.

3) Preview Processing: Human use of preview information

was modeled with a pre-filter Ho f
( jω) that outputs a single

processed target position y⋆c(t) [21], [22], see Fig. 2. τ f is

the farthest point ahead on the target trajectory that is used

by the human for control and Tl, f is the time constant of

the low-pass smoothing filter. Due to the low-pass filter, the

processed trajectory is identical to the original trajectory at low

frequencies, but attenuated at high frequencies, such that the

road’s tighter corners are cut. The human’s level of pursuit

control is characterized by gain K f ; K f < 1 indicates that

drivers prioritize vehicle stabilization (feedback) over tracking

of the target trajectory (feedforward) [22]. When K f=1 m/m

and τ f=Tl, f=0 s, the processed target y⋆c equals the actual

lateral position of the road’s centerline and the model reduces

to the model for straight road driving, see Fig. 2.

III. SYSTEM IDENTIFICATION

To measure the driver’s multiloop response dynamics, we

apply two distinct system identification techniques. First, three

FRFs are estimated to obtain nonparametric estimates of the

driver’s multiloop control dynamics. Second, the proposed

multiloop driver model is fit to the data, yielding estimates of

the model parameters. The model is validated by comparing

both the modeled and measured steering output, and the

modeled and measured (FRFs) control dynamics in Bode plots.

A. Parallel Three-Channel Model Structure

To measure FRFs of the driver’s heading feedback, lateral

position feedback, and target feedforward response dynamics,

Hoψ ( jω), Hoy( jω), and Hoyc
( jω), respectively, we adopt the

parallel model structure in Fig. 3. We do not imply that drivers

are internally organized as such; this structure is only used

as a convenient tool for measuring driver multiloop steering

dynamics. As indicated by the corresponding yellow, green,

and pink blocks in Figs. 2 and 3, the estimated FRF dynamics

are related to the proposed multiloop model as follows:

Hoψ ( jω) = Hcomp
o ( jω), (1)

Hoy( jω) = Kψ
y Hcomp

o ( jω), (2)

Hoyc
( jω) = Ho f

( jω)Kψ
y Hcomp

o ( jω). (3)

For example, an FRF estimate of the Hoy block with flat

magnitude would reflect gain dynamics, or a driver response

proportional to lateral position y; alternatively, differentiator

dynamics would indicate a response to ẏ, or the vehicle path

angle. Note that the Hoψ block drops from the model in single-

loop display tracking tasks (e.g., [20], [21]), or when drivers

fail to mechanize an inner loop, for example due to a lack of

rotational cues while driving in dense fog. Equivalently, the

Hoyc
block disappears in compensatory, straight road driving

tasks (i.e., yc = 0).

B. Road Trajectory and Wind-Gust Disturbances

FRFs of the Hoyc
, Hoy , and Hoψ blocks can be obtained

only when the three external external excitation signals, yc,

yd , and ψd , Fig. 3 are uncorrelated [23]. Common practice

in manual control experiments is to use random-appearing

multisine signals [18], [19], [21]–[24]. Here, we design the

road’s trajectory to be the sum of 10 sinusoids: yc(a) =

∑10
i=1 A[i]sin(ω[i]a+φ [i]), with amplitude A[i], frequency ω[i],

and phase φ [i] of the i-th sinusoid, and a the along-track

distance [14]. The heading and lateral position disturbances are

defined identically, see Table I for their parameters. Mutually

exclusive input frequencies ωyc , ωψd
, and ωyd

are selected

such that the three forcing functions are uncorrelated. All

frequencies ω[i] are integer multiples k of the fundamental

frequency ( 2π
1389

= 0.0045 rad/m) that corresponds to the

1389 m long measurement part of the track. A reasonably

low-frequency driving task was obtained by attenuating the
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amplitudes A[i] at higher frequencies, see Table I. The phases

φ [i] were randomized in accordance with the method in [24].

Five different phase realizations were used for yc to prevent

subjects from memorizing parts of the road’s trajectory.

C. System Identification Techniques

Exploiting the uncorrelated external signals as instrumental

variables, FRF measurements of Hoyc
( jω), Hoψ ( jω), and

Hoy( jω) can be obtained directly at the multisine input fre-

quencies ωyc , ωψd
and ωyd

, see [22], [23] for details. An esti-

mate of the proposed model’s parameter vector Θ̂ (see Fig. 2)

is obtained by minimizing the least-squares error between

the measured (δ ) and modeled (δ̂ ) steering wheel rotations

in the frequency-domain, with δ̂ ( jω) = Hoyc
( jω)Yc( jω)−

Hoψ ( jω)ψ( jω)− Hoy( jω)Y ( jω), see Fig. 3. The Variance

Accounted For (VAF) is used as measure for the model

quality-of-fit [22]; the maximum VAF is 100% and reflects

a model that perfectly replicates the measured control output.

IV. DRIVING EXPERIMENT

A. Independent Variables

The experiment had two independent variables. First, driv-

ing on straight (yc=0) and winding roads (yc 6=0) was com-

pared, yielding a compensatory (C) disturbance-rejection task,

and a pursuit (P) task that combines target-tracking with

disturbance-rejection, respectively. Second, both tasks were

performed both with a fixed (F) viewing direction, in which

the vehicle does not rotate but moves only laterally, and with

a naturally rotating (R) view that is always aligned with the

Fig. 4. The SIMONA research simulator, outside and inside.

vehicle’s heading ψ . The fixed viewing direction provides sub-

jects with information of vehicle lateral position and path, but

lacks heading cues. These fixed-view tasks are identical to the

well-understood, single-loop compensatory [20] and preview

display tracking tasks [22]. The rotating view additionally

conveys heading information, identical to normal driving tasks.

The full factorial of the two independent variables was tested,

yielding four experimental conditions, abbreviated as CF, CR,

PF, and PR.

B. Apparatus

The experiment was performed in the SIMONA Research

Simulator (SRS) at TU Delft, Fig. 4, of which the left

side was equipped with a customized passenger-car steering

wheel. Visuals were presented on the simulator’s collimated

projection system, which provided subjects with a 180×40

deg field of view, see Fig. 4. The vehicle moved at constant

forward velocity (U0 =13.89 m/s =50 km/h), and the inner-

(ψ) and outer-loop (y) vehicle dynamics, G
ψ
δ

and G
y
ψ , Fig. 3,

are approximated as pure integrators, identical as in [10]. The

steering wheel gain was set to 1.33 (deg/s)/deg.



TABLE I
AMPLITUDES, FREQUENCIES AND INITIAL PHASES OF THE TARGET AND DISTURBANCE FORCING FUNCTION SIGNALS.

road center-line, yc disturbance, yd disturbance, ψd

RMS(yc) = 13.1 m, RMS(ψc) = 15 deg RMS(yd ) = 0.3 m, RMS(β ) = 1.27 deg RMS(ψd ) = 2.2 deg

i k ω A φ1 φ2 φ3 φ4 φ5 k ω A φ k ω A φ
- - rad/m m rad rad rad rad rad - rad/m m rad - rad/m deg rad

1 3 0.01 17.70 2.92 5.05 4.00 2.66 0.80 5 0.02 0.29 5.98 7 0.03 2.20 5.04
2 9 0.04 5.02 1.49 2.99 5.12 2.71 1.08 11 0.05 0.24 4.04 13 0.06 1.74 6.22
3 15 0.07 2.33 4.85 5.23 3.73 1.36 0.53 19 0.09 0.16 3.05 23 0.10 1.08 4.17
4 27 0.12 0.73 4.26 2.98 0.17 4.08 3.88 31 0.14 0.09 6.11 35 0.16 0.63 4.40
5 39 0.18 0.30 6.20 5.00 2.02 5.10 2.74 43 0.19 0.06 0.99 47 0.21 0.41 4.97
6 53 0.24 0.14 1.61 2.11 2.51 2.98 3.93 59 0.27 0.04 0.01 65 0.29 0.25 4.97
7 71 0.32 0.07 0.83 0.32 3.93 4.92 3.58 77 0.35 0.02 1.78 85 0.38 0.16 4.10
8 93 0.42 0.03 1.31 1.03 1.49 5.97 5.21 101 0.46 0.02 2.28 111 0.50 0.11 5.90
9 121 0.55 0.02 0.35 4.45 5.88 3.08 4.14 131 0.59 0.01 0.41 143 0.65 0.08 5.48

10 155 0.70 0.01 4.21 5.96 0.62 5.75 5.69 169 0.76 0.01 2.41 183 0.83 0.07 0.73

C. Participants, Instructions, and Procedures

Eight motivated volunteers participated in the experiment,

all students or staff from TU Delft. All subjects signed for

informed consent prior to the experiment, and were instructed

to follow the displayed centerline as accurately as possible.

Subjects were seated on the left side of the simulator, with

fastened seat belt. First, a single run of each condition was

performed to familiarize subjects with the steering wheel,

the vehicle dynamics, and the display. Then, the four exper-

imental conditions were performed in an order randomized

according to a balanced Latin-square design. A condition was

performed at least until tracking performance (RMS(ye)) and

control activity (RMS(δ )) were approximately constant in five

consecutive runs, which were then used for further analysis.

A single run was 1806 m, but included 278 m run-in and

139 m run-out; only the steering data in the remaining 1389

m measurement portion of the track were used for analysis.

During the experiment, time traces of the applied steering

wheel rotations δ and vehicle lateral position y and heading

ψ were recorded at 100 Hz.

V. RESULTS

A. Multiloop FRF Estimates

1) Heading Response: The heading FRF Hoψ ( jω) (red

markers in Fig. 5), estimated from experimental data in the

rotating-view PR task, is a relatively smooth function of

frequency, and variations between the five measurement runs

are small (i.e., reasonably small errorbars). In contrast, the

estimated FRF components in the fixed-view PF task (blue

markers) have a much lower magnitude and considerable

variation between runs, while the estimated phases are an

inconsistent function of frequency. The FRF estimates in

the fixed-view tasks in general appear to reflect pure noise

and therefore suggest that no consistent heading response

was active, whereas the FRF estimates in rotating-view tasks

provide strong evidence that subjects indeed consistently used

heading feedback for controlling their vehicle.

2) Multiloop Feedback Dynamics: Fig. 5 shows that

Hoy( jω) in fixed-view tasks (PF, blue markers) approximates

gain dynamics at low frequencies, and differentiator dynamics

at high frequencies, with notable phase lead for frequencies

up to 4 rad/s. This indicates responses proportional to the ve-

hicle’s lateral position and velocity (i.e., path angle). Thereby,

the double-integrator lateral position vehicle dynamics are

equalized to an integrator open-loop in the crossover region,

yielding a stable system even without a heading-loop closure.

In rotating-view tasks (PR, red markers), the required stabi-

lizing lead is instead obtained from the heading-loop closure.

Both Hoψ ( jω) and Hoy( jω) approximate gain dynamics up to

frequencies well beyond crossover, indicating inner- and outer-

loop responses proportional to the vehicle’s heading angle and

lateral position, respectively. The slight increase in magnitude

at the highest frequencies may indicate lead, that is, relatively

weak responses proportional to path angle and heading rate,

or oscillatory behavior due to drivers’ neuromuscular system

dynamics.

3) Feedforward Dynamics: In both fixed- and rotating-

view tasks, the magnitude of the feedforward response FRF

approximates gain dynamics, see Fig. 5. This suggests that

subjects responded to the lateral position of the centerline,

and not its heading or curvature. Increasing phase lead is

visible at higher frequencies, corresponding to the behavior

of a negative time delay, or a look-ahead time (i.e., τ f in

Fig. 2) [21]. The FRF estimates of Hoyc
( jω) are relatively

noisy at the very highest frequencies, because the available

preview allows subjects to recognize and ignored much of

these fast oscillations of the centerline trajectory, leading to

a low signal-to-noise ratio (not shown).

B. Model Fits

1) Quality-of-Fit: The model matches the measured steer-

ing wheel angles δ well in all four conditions, as indicated by

an average VAF over the eight subjects above 90% (Table II).

Moreover, besides capturing the driver’s output, Fig. 5 shows

that the proposed model also captures the driver’s multiloop
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consistent heading response was active. Estimates of Hoy ( jω) and Hoψ ( jω)
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control dynamics. The shape of the FRF estimates of the

driver’s lateral position feedback, heading feedback, and feed-

forward response dynamics are all captured by the model.

Only at the very lowest and highest input frequencies there is

a small discrepancy between the model and the FRFs, because

several FRF components are poorly estimated (large errorbars)

and because no element for the driver’s neuromuscular system

dynamics was included in the model.

2) Parameter Estimates: Subjects strongly adapt their

equalization dynamics between tasks, see Ke⋆ and TL,e⋆ in

Table II. Tasks with viewing rotations (CR and PR), where

equalizing lead is obtained from the heading-loop closure,

evoke markedly less explicit lead equalization (lower TL,e⋆),

but a substantially higher control gain Ke⋆ as compared to

fixed-view tasks (CF and PF). Similarly, TL,e⋆ decreased while

Ke⋆ increases from straight to winding road tasks. The response

delay τe⋆ is slightly higher in rotating-view tasks, Table II. A

similar increase in visual response delay has been observed

TABLE II
ESTIMATED MODEL PARAMETERS, AVERAGE OVER EIGHT SUBJECTS AND

STANDARD DEVIATIONS.

straight CF straight CR curved PF curved PR

VAF, % 92.3±3.33 94.6±1.24 91.2±1.91 94.2±1.10

Ke⋆ , rad/rad 0.11±0.03 1.19±0.40 0.14±0.02 2.06±0.18
TL,e⋆ , s 1.44±0.40 0.40±0.12 0.90±0.13 0.19±0.02
τe⋆ , s 0.33±0.03 0.35±0.02 0.30±0.02 0.34±0.02

K
ψ
y , rad/m - 0.18±0.04 - 0.12±0.01

K f , m/m - - 0.99±0.01 1.00±0.00
Tl, f , s - - 0.86±0.07 0.26±0.13
τ f , s - - 1.06±0.05 0.89±0.11

when motion feedback is made available in compensatory

tracking tasks [25]; likely, there is no incentive for subjects

to put effort into reducing their delay due to the increased

stability provided by the additional heading loop closure.

Subjects’ relative weighting of lateral position and heading

feedback, K
ψ
y , is slightly higher on straight roads as compared

to winding roads, see Table II. This indicates that subjects

minimize lateral position errors more aggressively. The target

weighting gain K f approximates unity, both in tasks with

and without viewing rotations, such that K f could in fact be

dropped from the proposed model. The farthest point on the

previewed trajectory used for control, characterized by τ f , is

approximately 1.1 s in fixed-view tasks, which matches well

with measurements in preview tracking experiments [22]. τ f

is slightly lower in rotating-view tasks, around 0.9 s, which

is partly because a shorter portion of the previewed trajectory

is used for smoothing (lower Tl, f ). The lower Tl, f in rotating-

view tasks further suggests that subjects cut less corners and

follow more of the centerline’s higher frequencies.

VI. DISCUSSION

The proposed multiloop model does not only capture

drivers’ steering output well (high VAFs), but it is the first

driver model that has been shown to also match drivers’

multiloop control dynamics (feedforward on the previewed

target, and vehicle heading and lateral position feedback).

In addition, the model directly extends McRuer’s seminal

crossover model [20], the most widely accepted and applied

model of manual control to date. After dropping K f , which

was identified to be unity, the multiloop model can describe

driver steering with only six parameters. Each of these param-

eters has a direct physical interpretation in terms of drivers’

compensatory control behavior (Ke⋆ , TL,e⋆ , τe⋆), their use of

preview information (τ f , Tl, f ), and their relative priority for

heading or lateral position feedback (K
ψ
y ). Moreover, McRuer

and his colleagues [17], [18] have explained how K
ψ
y can

be interpreted as a look-ahead time, given by 1

U0K
ψ
y

. This

look-ahead time is on average 0.62 s (SD = 0.08) for our

eight subjects in the full driving task (PR). Compensating

τ f for the phase lag introduced by the low-pass smoothing

filter, τ f − Tl, f , surprisingly yields almost the same result,

namely 0.63 s (SD = 0.08). This suggests that drivers base



their feedback and feedforward control behavior on optical

cues that are located approximately equally far ahead of the

vehicle in the visual scene. We aim to further investigate the

physical interpretation and the implications of this striking

observation in our future work. Tentatively, driver behavior

may thus even be captured with only five model parameters,

without sacrificing any of our model’s descriptive ability.

The measured feedforward FRF (Hoyc
) could be captured

well with our single preview-point driver model. This strongly

suggests that drivers do not mechanize a second response

based on a different point along the previewed centerline

trajectory, as opposed to human controllers in single-loop

preview tracking tasks [21], [22]. The implications of this

result are profound, suggesting that previously proposed, more

complex two-point [15], [16] or multipoint [14] driver models

may not be required to capture driver steering behavior. Note

that our measurements do not contradict empirical evidence

that drivers use both a “near” and a “far” region of the visual

field [6], on which the two-point steering models in [15],

[16] are based. The driver’s smoothing of the previewed

target (characterized by Tl, f ) requires that a substantial portion

(or two distinct points) of the centerline is visible, while

the generation of high-frequency lead (TL,e⋆) may depend on

observing optical flow patterns throughout the entire visual

field [2], [4]. In other words, although drivers may rely on

multiple, spatially separated optical cues for steering, their

behavior can still be modeled using a single previewed target

point as input. The proposed multiloop model further promises

to provide understanding of driver control adaptation to task

variables such as the vehicle dynamics, preview time, and

road width and curvature, similar as provided by the crossover

model for compensatory tracking tasks in the 1960s [20].

VII. CONCLUSIONS

This paper presented new human-in-the-loop experimental

data, collected to improve our understanding of driver steering

behavior on winding roads. For the very first time, three

frequency-response function estimates of drivers’ multiloop

steering dynamics were obtained, providing unique evidence

that drivers, besides lateral-position outer-loop control, rely

on heading feedback to close a stabilizing inner-loop, and use

preview of the centerline trajectory ahead for feedforward con-

trol. A multiloop, single preview-point driver model – directly

extending the crossover model – captures this behavior. The

proposed model’s physically interpretable parameters provide

unmatched understanding of, otherwise lumped, driver internal

steering processes, quantifying the portion of the previewed

centerline that is used for control, and how lateral position

and heading feedback are weighed. The gained insights will

potentially contribute to a better understanding of driver-

automation interaction issues in modern road vehicles, and to

the systematic design of human-like driver support systems.
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