1804.10166v1 [cs.DC] 26 Apr 2018

arxXiv

Big Data Analytic based on Scalable PANFIS for
RFID Localization

15t Choiru Za’in

Department of Computer Science and Information Technology

La Trobe University
Melbourne, Australia
C.Zain@]atrobe.edu.au

3" Andri Ashfahani
School of Computer Science and Engineering
Nanyang Technological University
Singapore, Singapore
andriash@e.ntu.edu.sg

5" Huang Sheng

Singapore Institute of Manufacturing Technology
Singapore, Singapore
shuang @ SIMTech.a-star.edu.au

Abstract—RFID technology has gained popularity to address
localization problem in the manufacturing shopfloor due to its
affordability and easiness in deployment. This technology is
used to track the manufacturing object location to increase the
production’s efficiency. However, the data used for localization
task is not easy to analyze because it is generated from the
non-stationary environment. It also continuously arrive over time
and yields the large-volume of data. Therefore, an advanced big
data analytic is required to overcome this problem. We propose
a distributed big data analytic framework based on PANFIS
(Scalable PANFIS), where PANFIS is an evolving algorithm
which has capability to learn data stream in the single pass
mode. Scalable PANFIS can learn big data stream by processing
many chunks/partitions of data stream. Scalable PANFIS is
also equipped with rule’ structure merging to eliminate the
redundancy among rules. Scalable PANFIS is validated by
measuring its performance against single PANFIS and other
Spark’s scalable machine learning algorithms. The result shows
that Scalable PANFIS performs running time more than 20
times faster than single PANFIS. The rule merging process in
Scalable PANFIS shows that there is no significant reduction of
accuracy in classification task with 96.67 percent of accuracy
in comparison with single PANFIS of 98.71 percent. Scalable
PANFIS also generally outperforms some Spark MLib machine
learnings to classify RFID data with the comparable speed in
running time.

Index Terms—Big data stream analytic, Rule merging strat-
egy, Scalable machine learning, Distributed evolving algorithm,
PANFIS

I. INTRODUCTION

Radio Frequency Identification (RFID) localization systems
(RFID localization) has become a popular technology in

2"d Mahardhika Pratama
School of Computer Science and Engineering
Nanyang Technological University
Singapore, Singapore
mpratama@ntu.edu.sg

4™ Eric Pardede

Department of Computer Science and Information Technology

La Trobe University
Melbourne, Australia
E.Pardede @latrobe.edu.au

manufacturing or other production base industries to optimize
the production output by providing the position/location of the
Manufacturing Objects (MOs) (e.g. workstations, tools, staffs,
and support services). In the manufacturing process, obtaining
the accurate location of the MOs is essential because this
information can represent the current Work-In-Process (WIP)
condition in the industry. The WIP becomes the basis reference
for decision making to avoid unexpected failure and in turn
will increase the production output.

RFID localization technology is considered to be chosen
among other localization technologies such as Wireless Sensor
Networks (WSNs), Ultrasound, Infrared, and Video Camera
due to its simplicity and price affordability in the deployment
process [1]]. These benefits allow industry to apply RFID
localization devices easily in many areas of the manufacturing
location in order to provide the accurate MOs to the Manu-
facturing Execution Systems (MES).

RFID localization systems consist of some devices and
components: RFID tag, RFID reader, and data processing
subsystems. RFID tag transmits beacon messages to RFID
reader. RFID reader captures the Received Signal Strength
(RSS) along with the tag ID from RFID tag. These signals
arrive continuously and they need to be processed by the MES
in the real-time mode.

Processing and analyzing MOs locations from the received
RSS in RFID localization are challenging tasks due to two
factors: 1) RSS information are not always reliable because
its value varies due to environmental changes (e.g. minor
movement); 2) RSS information arrives in the real-time mode

rapidly, which can be considered as a data stream. Thus, it will
cause the generation of large-volume of data which is stored
in the cloud/server, and this phenomenon can be considered
as a big data problem. All of these factors underlie the needs
of the advanced analytic algorithms to discover the knowledge
of a big data stream.

It has been a common practice that machine learning
algorithms are used for knowledge discovery of the data for de-
cision making purposes. Many new business requirements are
growing based on big data stream analytic services. However,
discovering big data stream knowledge for decision making is
challenging due to its 4V’s characteristics: volume, velocity,
variety, and veracity. For this reason, in RFID localization task,
an advanced big data analytic is required to enable faster and
accurate decisions in terms of determining the MOs locations
to catch up the expected production speed.

Evolving machine learning techniques have gained popu-
larity to process data stream, such as the work conducted
in [2] in web news mining classification. These techniques
aim to learn non-stationary data by learning the data in the
single pass mode, enable to update data pattern for every
incoming datum, without retraining all history data [3[]-[6].
This feature is beneficial in handling data stream to cope with
the velocity characteristic of big data. Furthermore, there are
many distributed platforms such as Hadoop [7]] and Spark [8§]]
to scale the limited resource of CPU in processing and storing
big data. With many challenging issues in big data, most of
the research directions in this area are growing towards a
development of the advanced distributed big data analytic to
discover big data stream knowledge.

Due to the increasing demand in big data knowledge
discovery, many efforts have been made on building large-
scale distributed machine learning. Some recent works have
been conducted in [9], [10]. Both frameworks incorporate
distributed processing platform to scale the machine learning
capability by dividing data stream into many chunks. However,
while the first only processes the chunk of big data in batch
mode as a standard platform for distributed learning, the latter
extends the big data analytic framework to address the velocity
characteristic of big data, enabling data chunk to be processed
as a data stream, using evolving algorithm namely PANFIS
[11]. The main property of the work in [[10] is the model
fusion, where all models generated from all data chunks are
merged into a final model. This final model represents the
current knowledge big data.

Based on the previous work in [[10]], we propose a novel big
data stream analytic based on PANFIS, a seminal evolving
neuro fuzzy system, to classify RFID big data stream for
localization task. The distributed big data stream in RFID
localization analytic framework has the following character-
istics:

1) It processes the rapid rate of RSS signals using big data
analytic framework by incorporating PANFIS, where
PANFIS processes data stream in the single pass mode,
and distributed machine learning framework using Spark
platform.

2) This framework is equipped with rule’ structure merging
and rule parameters update to cope with the changing
environment.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related researches: RFID localization systems and
a technique to capture the RFID data from sensors. Section 3
describes our proposed approach which specifically describes
the data streams’ flow processing in Spark platform. Section
4 discusses experimental setup and results in evaluating big
data analytic and section 5 will conclude the paper.

II. RFID LOCALIZATION PROBLEMS

A. RFID Localization Systems

On the manufacturing shopfloor, there are many MOs
required to be stored, received, installed, and tracked. The
conventional approach to manage MOs drawn a lot of human
resources. Thus, advanced techniques are required to identify
and track MOs location in the large manufacturing shopfloor.
Radio Frequency Identification (RFID) localization technology
is one of many technologies which has been put forward for
localization system and tracking due to its price affordability
and the easiness of deployment.

The RFID localization system consists of three main compo-
nents: RFID tag, RFID reader, and data processing subsystem.
The main functionality of an RFID tag is to send the beacon
message containing the tag ID and radio signal strength (RSS)
information. The difference between active and passive tags
lies on its power. RFID tag is categorized into two types:
active tags and passive tags. Active tag is battery powered,
which actively sending the beacon message periodically to the
RFID reader, whereas the passive tag does not have a power
source. Thus, the signal range of active tag can reached up to
300 m compared to 1 m for a passive tag. This experiment
utilizes a passive tag, which only sends a beacon message once
it receives the signal from the RFID reader.

RFID reader, as a second component in RFID localization
system, captures the signals (data) sent by the tags and
transmits it to the data processing subsystem. These signals
are then processed by using the algorithm embedded in the
data processing subsystems to do the RFID localization task.
As a result, data processing subsystem provides the accurate
MOs in the manufacturing shopfloor.

The most difficult task in the RSS processing task is
the noise attached in the RSS. In an ideal condition, MOs
location can be determined using the normal measured RSS
value. However, due to the severe interference and multi-path
effect, the RSS information becomes unreliable and keeps
changing overtime. A minor change in the environment can
cause a significant change in the RSS information. Thus, only
calculating distances from RSS observations does not solve
the localization problem. Therefore, an advanced machine
learning algorithm is employed to train the value of RSS
based on reference tags information to accurately perform
the localization task. The experiment is set up by deploying
the reference tags on the fixed and known locations. The

RSS information from reference tags are exploited to assist in
locating the MOs. Suppose there is an RFID network which
consists of n tags T = {T; : ¢ = 1,...,n} and m readers
R={R;:j=1,...,m}. The RSS observations of tag T} at
time-step ¢ is given as x;(t) = [z;1, ..., Tim]T, Where x;,, is
the RSS observation of the tag T} by reader R,,,. The position
of reference tag is denoted as class label y(t) = [y1,...,Yn)
and thus the localization can be formulated into a multi-class
classification problem. The Scalable PANFIS embedded in
data processing subsystem is then employed as the machine
learning algorithm to determine the MOs locations in the real-
time mode.

B. Capturing RFID Data From Sensor

This localization setup were conducted at SIMTech labo-
ratory, Singapore. The environment is arranged to represents
the RFID smart rack system. The system aims to improve
the production efficiency in manufacturing process by locating
the right material for production. Thus, the accurate infor-
mation of MOs location is highly required. As can be seen
in Fig. [T, one RFID reader and four RFID reference tags
along with data processing subsystem are set up. The objects
are placed at a steel storage rack with the dimensions of
1510 mm x 600 mm x 2020 mm. The rack has 5 different
shelves, each of them 360 mm apart. The rack shelf can
contain up to 6 test objects, and each of them is attached with
a passive RFID tag. The antenna is installed close to the rack
at a distance of 1000 mm from the rack. The height of the
antenna is 2200 mm above the ground and it is connected
to the RFID receiver. The receiver is then connected to a
data processing subsystem, where the localization algorithm is
executed, through the ethernet links. The number of reference
tag indicates that there are 4 classes representing the location
of the objects considered in this experiments.

The smart rack

3 D

Data processing subsystem

RFID Reader

Reference tags

Fig. 1. Data collection procedure in RFID Localization Systems

The data processing subsystem has two main components:
data acquisition component and algorithm execution com-
ponent. The Microsoft Visual C++ based PC application is
developed to acquire the RSS information from all tags data,

while the localization algorithm is executed using big data
analytic based on PANFIS. The reader is also configured to
record the RSS information for every 1 s. During 20 hours
of experiment recording, the number of 283,100 observations
are obtained, where every instance has the information of RSS
and its reference tag which represents the MOs object location.
Based on the recorded RFID data, Scalable PANFIS can learn
this data stream behavior to predict the future data.

III. DISTRIBUTED BIG DATA ANALYTIC BASED ON
PANFIS APPROACH

This section presents the details of our distributed big
data analytic based on PANFIS. The briefly overview of
PANFIS algorithm is described in the subsection Big
data analytic architecture and data processing are elaborated
in the subsection Furthermore, subsection [[II-C| will
describe the merging process of all rules generated from
PANFIS learning algorithm of every data chunk.

A. PANFIS Algorithm

PANFIS is built based on Neuro Fuzzy System (NFS),
a hybrid intelligent system, which combines Fuzzy Logic
and Artificial Neural Network. The fuzzy systems capable
to mimic human-like reasoning through the use of the fuzzy
sets and fuzzy linguistic rule, whereas the neural network
plays important role as a basis to develop algorithm to model
complex patterns and prediction problems.

In the real world applications, systems are usually as-
sembled with shifts and drifts, which cannot be handled by
the common NFSs. These NFSs usually really depend on
expert knowledge [[12]] and in turn requires tedious manual
interventions. This problem leads to a static rule base, which
unable to be adjusted once initial setting is setup to gain a
better performance. PANFIS is built to further develop the
disadvantage of common classical NFS to overcome the degree
of nonlinearity which exists in the real world systems.

PANFIS is able to assemble a complex system’s rule base
autonomously by learning system from scratch with an empty
rule base. Fuzzy rules and its parameters can be generated,
updated and pruned during the learning learning process.
Furthermore, the rule merging process is also executed during
the learning by identifying identical fuzzy rule sets to simplify
the rules complexity.

The main characteristics of PANFIS is the generation of
ellipsoids in arbitrary direction. These ellipsoids describe the
local correlation between variables. The antecedent parts of
fuzzy sets are formed by the ellipsoids connected with a new
projection. Thus, it is more interpretable for an expert/user in
comparison with the non-axis parallel model applied in [[13].

PANFIS system evolution is initialized by the generation of
rules which is driven by datum significance (DS) criterion. DS
algorithm was proposed in [14] and [15]] to identify the da-
tum’s high-potential managing troublesome data streams. This
initialization of rule growing must assures that e-completeness
criterion to ensure that rule base and the fuzzy partitions have
a sufficient coverage of the input space. During the system’s

evolution, when the new datum is covered by the current rules,
the rule parameters (focal points and radii) of the fuzzy rules
and fuzzy consequences are updated based on the new datum
attributes. For focal points and radii, original PANFIS applies
Extended Self-organizing Map (ESOM) theory by adjusting
neighboring rules. However, in this work, rule adaptation
utilizes GENEFIS [16], pClass [4], and GEN-SMART-EFS
[5]. This is due the ESOM’s drawbacks in regards to the
possibility of instability issues when the inverse covariance
matrix is ill-conditioned (e.g., due to redundant input features).
Fuzzy consequences are also adjusted by using the enhanced
recursive least square (ERLS), an extension of conventional
recursive least square (RLS). In the ENFS community, ERLS
has become the common method which is proven to support
system errors’ convergence and the update of weight vector.

The rule pruning of PANFIS is inherited from rule base
simplification technology namely generalized growing and
pruning radial basis function (GGAP-RBF) in SAFIS [13].
However, rule base simplification in SAFIS cannot be applied
in PANFIS as it is only suits to zero-order TSK fuzzy system
and the unidimensional membership function environments.
PANFIS extends this method using extended rule significance
(ERS) concept by defining the rule significant as statistical
contribution of the fuzzy rule when the number of observation
approaches to infinity. Furthermore, the statistical contribution
of the fuzzy rule over all fuzzy rules is determined by the
fuzzy rule volume over the all rules volume. If the contribution
vector value of such rules less than the threshold kerr, these
rules are regarded as outdated rules and will be discarded to
reduce the network complexity.

PANFIS also applies fuzzy set merging process to form
effective (economical and interpretable) rule base, and also
to achieve a good predictive quality. This is done due to the
identical/overlapping fuzzy sets (e.g., due to their similarity
in membership functions). This similarity can be measured
by benefiting a kernel-based metric method comparing the
center and the widths of two fuzzy sets in one joint formula
[17]. In the case of the perfect match, the two fuzzy sets are
identical, and has the degree of similarity measure equal to
1. Conversely, if the two fuzzy sets have the similarity degree
above the tolerable value Sker > 0.8 based on [17], the two
fuzzy sets could be merged.

B. Big Data Analytic Architecture and Data Flow Process in
Spark Platform

Apache Spark (Spark) is regarded as the latest frame-
work for big data analytic to support advanced in-memory
programming model. Spark ecosystem consists of two main
parts: lower-level libraries known as Spark-core and upper-
level libraries known as extension of Spark-core. Spark-core
consists of some programming interfaces such as Scala, Java,
Python, R, and SQL as an integrated Spark APIs. Upper-level
libraries consists of Spark’s MLib for machine learning pur-
poses, GraphX for graph analysis, Spark Streaming for stream
processing, and Spark SQL for structured data processing. All
of these Spark’s components enable Spark to perform scalable

distributed machine learning, graph analysis, and structured
data processing.

In this work, we utilize SparkR, an R package distributed
with Spark to provide R front-end to Spark. It enables R
to manipulate Spark DataFrames (DataFrames), a Spark data
abstraction that is fault-tolerant for in-memory cluster comput-
ing, and operates Spark functionality in R as shown in Fig. 2}
Fig. [2| shows the control flow of distributed big data analytics

in this framework.
Nodes Fast

Driver
Node
Storage

Stable
Storage as
Data Source

S
3. Performing Instructions: subsetting data,

Performing distributed machine learning using

DataFrames taken from a memory cluster 4. Execute the instruction on DataFrames

WM Partition based on driver
command
I S. Storing results
s R data frame to the
driver node -
e/

2. Creating DataFrames

)

)

Fig. 2. Data control flow and operation in Distributed Machine Learning
based on PANFIS

Memory
I —
Cluster 6. Storing
Data to

HDFS

Driver Node
processes local
data frame, which

consists of models

AT
Rule
1. Passing Rules [/(7 1-0 | 2. Generating
Final
Process
q Rules
(Coalescing
Rules)
-~

Fig. 3. The Rule Merging Scheme of processing all models into a single
model in local R data frame

The big data analytic framework consists of nodes (driver
node and some worker nodes) and the data sources (e.g,
Hadoop Distributed File System (HDFS)). In this framework,
distributed machine learning process is initialized by loading
RFID dataset from HDFS storage, which is shown at step 1
Fig. 2} The second step, the driver sends an instruction to
create the DataFrames (Spark’s data abstraction) then stores
the DataFrames in a memory cluster, a shared memory in the
cluster. DataFrames is the only data type that can be distributed
in the Spark platform. At the third step, the driver node
sends many instructions to manipulate the DataFrames. These
instructions can be repetitively created by the driver node to
manipulate DataFrames, for example, performing distributed

algorithm (PANFIS) to all worker nodes to learn the chunk of
DataFrames. Worker will process a chunk with a function (e.g.
PANFIS) applied to them and send the result (rule(s)/model) to
the driver node, which is shown at step 4 Fig. 2] At fifth step,
all models generated from the worker nodes will be converted
into local driver node memory as R data frame as a collected
models, which can be seen by user. Step 6, is an optional step,
whether driver node want to stores all models in the HDFS.
Please be noted that all the instructions created by the R front-
end is translated by JVM to be able to access Spark API to
manipulate the DataFrames.

As explained in Fig. 2} driver node receives all rules (mod-
els) generated from many worker nodes when they process all
data chunks using PANFIS algorithm. Fig. (3| depicts the data
frame of R is captured in driver node as a learning results
(a collected models). These results (rules) are then merged
become the final model for inference purpose based on the
process described in subsection

C. Rule Merging of Final Rules after All Data Chunk’s
Learning

Distributed big data analytic generates rules for every data
chunk processed in the processors/nodes. In the distributed
big data analytic architecture, processors/nodes are embedded
by machine learning algorithm, which is in this case PANFIS
algorithm. Rules generated by PANFIS represent the clusters
of the data chunk. With so many rules generated in the
system, some rules may become overlapping. Some rules
can be merged to reduce the redundancy between the rules
[18]. This merging process is essential in order to ensure
the readability and transparency and avoiding the ambiguous
rules. This rule merging scenario refers to the explanation
in [5]] without similarity criterion to extend the PANFIS rule
merging scenario. The implementation of rule-merging follows
two criterions: 1) Inspecting the 2 rules to be merged whether
they are lying nearby, touching, or even slightly overlapping;
2) Calculating the homogeneity of the adjacent rules.

The first criterion in merging process is calculating the
degree of overlapping for two clusters which measured by
Bhattacharrya distance formula [19] [20]. This criterion pro-
cess is calculated after the rules collection process in the learn-
ing phase. The overlap degree between target cluster (rule)
expressed by win and the other clusters, k = {1, ..., C}\{win}
is expressed as follow :

olap(win, k) = %(Cwin - Ck)T Zil(cwin - Ck)
det 31 (1)
+% ln(\/dct S det Z;l)

where ¥7' = (3.1 + ¥.')/2. The highest value of
statistical contribution is chosen among the clusters, which
based on the equation explained in PANFIS [11]] as the target
cluster win. The distance between two ellipsoidal clusters has
the value of O if they both are touching, greater than O in the
case of overlapping, and less than zero for disjoint situation.

The minimum threshold for clusters to be merged is 0, which

is the condition where both clusters are touching each other
in regard to the conditions stated.

The homogeneity of adjacent rules is the second criterion of
the merging process. This criterion ensures the homogeneous
shape and direction of two merged rules. This criterion also
reflects the two local data clouds. By utilizing the blow up
effect to trigger homogeneous joint regions, the homogeneity
is defined as follows:

V;nerged < p(szn + Vk) (2)

where p is input attribute’s dimension. V,erged> Vipin, and Vi
depict merged rules’ volume, winning rule, and compared rule
respectively. Rule’s volume can refer to the formula explained
in PANFIS [11]]. In conclusion, the merging criterions can be
simplified by the conditions as follow:

(Eq.(1) > thr)|Eq.(2) A3)

where thr is set to 0.8 based on empirical experience in [[17].

1) Rule merging phase’s policy: Merging process will be
conducted if two criterions are satisfied refer to the winning
rule. The winning rule refers to the rule which has more data
points than another rule N,,;;, > Nj. The updating parameters
of rule merging is executed based on the work in [[16] which
is formulated as follows:

new __
win

cnld Nold +CzldN£ld (4)

win® win

old old
Ny TN

C

Z_l (new) = S win (Ol x N 457, (old)+ NP (5)
win N NS +NR
new __ old old
Nwin _Nwin+Nk (6)
wigy = Wi W bl e NE ™
Nw'i'n,+Nk

-1
new
Where ¢ and) - (new) are the new antecedent param-

eters of the merged rule and w;,$,” is the consequent parameter
of the merged rule.

IV. EXPERIMENTAL SETUP AND RESULTS

The environmental setup in which Scalable PANFIS is
applied in the distributed framework along with the experiment
results will be described in this section. The framework
performance between PANFIS distributed framework (Scal-
able PANFIS), PANFIS, and some other machine learning
distributed frameworks are compared in order to measure the
running time and accuracy. The data used in this experiment
is RFID data, generated from real application based on sensor
in classification problem. This dataset consists of 283,100
instances with only 1 dimension of input describing the RSS
frequency of RFID to infer the location of Manufacturing
Object (MOs).

A. Experiments

NeCTAR Cloud, which provides flexible scalable computing
is used as the computing environment for this experiment. The
framework consists of 7 nodes (1 driver and 6 workers). Each
node has the specification as following: 30 GB Disk Capacity,
6GB RAM, and NeCTAR Ubuntu 16.04 LTS (Xenial) amd64
as operating system. The total cluster memory used in this
framework is 30 GB as we use 5 GB of memory for 6 worker
nodes, leaving another 1 GB for every node for other processes
in the nodes. We use spark 2.2.1 release for cluster computing
system at the time of writing. In this experiment 5 algorithms
are compared: Scalable PANFIS, PANFIS, generalize linear
regression model (GLM), Gradient Boost Tree (GBT) and
KMeans. For comparison purpose with other seminal evolving
algorithms, we also conduct the experiment against gClass
[21]], eT2Class [3], pClass [4], and eT2ELM [21]. For this
purpose, we use the the personal computer with the following
specifications: Intel(R) Core(TM) i7-6700 CPU @3.4 GHz
16GB RAM and Matlab 2017b Software specification.

These algorithms are chosen to perform the experiments
based on the following reasons:

1) PANFIS is a seminal evolving algorithm which has
capability to learn data stream in online manner. In
this case, this base algorithm is compared against the
proposed method, big data analytic based on PANFIS
(Scalable PANFIS).

2) Random Forest (RF), Generalized Linear Model (GLM),
Gradient Boost Tree (GBT), KMeans, are chosen as
part of Machine Learning Library (MLib) on sparkR as
a scalable machine learning for knowledge discovery.
Thus we use these algorithms to compare their per-
formance against scalable PANFIS. However, as their
nature are binary classifier algorithm, we apply one vs
rest strategy to be able to act as multi-class classifier.

3) gClass, eT2Class, pClass, and eT2ELM are compared
in terms of running time and accuracy to perform the
classification task as they are also classified as a seminal
evolving algorithms.

The classification scenarios will measure the running time
and the accuracy to evaluate the performance of all algorithms.
The details of the experiment results are explained in the
subsection

B. Results

This subsection details the performance of every classifier in
classifying the RFID dataset as described in subsection
The dataset is divided into two parts: 1) 200,000 of training
data and 2) 83,100 of test data for validation. We conduct the
experiment for five different algorithms: The first algorithm,
PANFIS, is executed in single CPU without distributed pro-
cessing with the specification of 30 GB Disk Capacity, 6GB
RAM, and NeCTAR Ubuntu 16.04 LTS (Xenial) amd64 as
operating system. The software used for running PANFIS is R
version 3.4.3. The second to fifth algorithm are the Scalable
PANFIS and four other MLib algorithms provided in the Spark

library, which are executed with distributed processing in the
Spark platform. We utilize SparkR to provide a lightweight
front end for using Apache Spark from R. The number of data
partition used for experiment in the distributed environment
system is 50 partitions.

The result depicted in Table [l shows that PANFIS algorithm
(single machine learning) performs significant result with
98.71 percent of accuracy in learning the RFID data. The
Scalable PANFIS, a distributed big data analytic based on
PANFIS machine learning in the Spark environment, yields
96.67 percent in accuracy, which is still comparable with
PANFIS single machine learning. The merging process as
shown in Table [[I} reduces the number of rules from 55 into
around half of 28 rules. The comparison of Scalable PANFIS
with three other algorithms provided in MLib shows that
Scalable PANFIS can handle the nonstationary data stream
with the accuracy higher than GLM, GBT, and Kmeans with
96.67, 50.03, 75.07, and 47.66 percent for Scalable PANFIS,
GLM, GBT, and KMeans respectively. Scalable PANFIS is
slightly outperformed by RF with 96.67 and 98.56 percent
for Scalable PANFIS and RF respectively. However, Scalable
PANFIS better than RF in terms of running time. Please be
noted that all of the MLib algorithms are binary classifier in
nature and are converted as multi-class classifier by applying
one vs rest strategy.

Another highlight is also depicted in the Table [I] in terms
of running time. Scalable PANFIS performs very significant
result with more than 20 times faster than PANFIS executed
in the single CPU with 104 seconds and 2130 seconds for
Scalable PANFIS and PANFIS respectively in terms of running
time.

To further evaluate the Scalable PANFIS performance, this
algorithm is benchmarked with other state-of-the-art algo-
rithms: eT2Class, eT2ELM, gClass, and pClass. Table
shows that the accuracy and the running time of other bench-
marked algorithms. This experiment is conducted in the same
computational environment. The result shows that Scalable
PANFIS has a comparable performance in terms of accuracy
with other evolving algorithms.

TABLE I
THE PERFORMANCE COMPARISON OF SCALABLE PANFIS AGAINST
SINGLE PANFIS AND OTHER MLIBS ALGORITHMS

Algorithm Accuracy (%) | Running Time (s)
PANFIS 98.71 2130
Scalable PANFIS 96.67 104
RF 98.56 149
GLM 50.03 264
GBT 75.07 272
Kmeans 47.66 88

V. CONCLUSION AND FUTURE WORKS

Scalable PANFIS is a big data analytic framework which
processes high-volume of big data by distributing data stream
into many partitions thus accelerate the learning process.

TABLE II
THE EVOLUTION NUMBER OF RULES IN THE MERGING RULE PROCESS OF
BIG DATA ANALYTIC FRAMEWORK

Number of Rule
Before Merging | After Merging
55 28

TABLE III
PERFORMANCE OF OTHER SEMINAL EVOLVING ALGORITHMS RUNNING
STANDALONE IN THE SINGLE CPU USING MATLAB ENVIRONMENT

Algorithm | Accuracy (%) | Time (s)
eT2Class 98.77 1223
eT2ELM 95.38 350

gClass 92.89 1253
pClass 98.05 604

PANFIS algorithm, the base algorithm of Scalable PANFIS
learns the data chunk in online manner. The models generated
from the learning process of many data partitions can be
merged become a single model without reducing the accuracy
performance. For the future work, we will further evaluate
the performance of Scalable PANFIS by testing this algorithm
to many other high-dimensional big data with using some
classification techniques.

VI. ACKNOWLEDGMENT

This project is fully supported by NTU start up grant and
MOE tier 1 research grant. This research is also supported by
use of the Nectar Research Cloud, a collaborative Australian
research platform supported by the National Collaborative
Research Infrastructure Strategy (NCRIS).

REFERENCES

[11 L. M. Ni, D. Zhang, and M. R. Souryal, “Rfid-based localization and
tracking technologies,” IEEE Wireless Communications, vol. 18, no. 2,
2011.

[2] C.Za’in, M. Pratama, E. Lughofer, and S. G. Anavatti, “Evolving type-2
web news mining,” Applied Soft Computing, vol. 54, pp. 200-220, 2017.

[3] M. Pratama, J. Lu, and G. Zhang, “Evolving type-2 fuzzy classifier,”
IEEE Transactions on Fuzzy Systems, vol. 24, no. 3, pp. 574-589, 2016.

[4] M. Pratama, S. G. Anavatti, M. Joo, and E. D. Lughofer, “pclass: an
effective classifier for streaming examples,” IEEE Transactions on Fuzzy
Systems, vol. 23, no. 2, pp. 369-386, 2015.

[5] E. Lughofer, C. Cernuda, S. Kindermann, and M. Pratama, “Generalized
smart evolving fuzzy systems,” Evolving Systems, vol. 6, no. 4, pp. 269—
292, 2015.

[6] M. Sayed-Mouchaweh and E. Lughofer, Learning in non-stationary
environments: methods and applications. Springer Science & Business
Media, 2012.

[71 K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. leee, 2010, pp. 1-10.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[91 A. Fernandez, S. del Rio, V. Lopez, A. Bawakid, M. J. del Jesus, J. M.

Benitez, and F. Herrera, “Big data with cloud computing: an insight

on the computing environment, mapreduce, and programming frame-

works,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 4, no. 5, pp. 380409, 2014.

C. Zain, M. Pratama, E. Lughofer, M. M. Ferdaus, Q. Cai, and

M. Prasad, “Big data analytics based on panfis mapreduce.”

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “Panfis:
A novel incremental learning machine,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 1, pp. 55-68, 2014.

W. L. Tung and C. Quek, “efsm-a novel online neural-fuzzy semantic
memory model,” IEEE Transactions on Neural Networks, vol. 21, no. 1,
pp. 136-157, 2010.

A. Lemos, W. Caminhas, and F. Gomide, “Multivariable gaussian
evolving fuzzy modeling system,” IEEE Transactions on Fuzzy Systems,
vol. 19, no. 1, pp. 91-104, 2011.

G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning rbf (ggap-rbf) neural network for function approx-
imation,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp.
57-67, 2005.

H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran,
“Sequential adaptive fuzzy inference system (safis) for nonlinear system
identification and prediction,” Fuzzy Sets and Systems, vol. 157, no. 9,
pp. 1260-1275, 2006.

M. Pratama, S. G. Anavatti, and E. Lughofer, “Genefis: toward an
effective localist network,” IEEE Transactions on Fuzzy Systems, vol. 22,
no. 3, pp. 547-562, 2014.

E. Lughofer, J.-L. Bouchot, and A. Shaker, “On-line elimination of local
redundancies in evolving fuzzy systems,” Evolving Systems, vol. 2, no. 3,
pp. 165-187, 2011.

E. Lughofer, Evolving fuzzy systems-methodologies, advanced concepts
and applications. Springer, 2011, vol. 53.

A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distribution,” Bull. Calcutta
Math. Soc, 1943.

A. Djouadi, O. Snorrason, and F. Garber, “The quality of training
sample estimates of the bhattacharyya coefficient,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 92-97,
1990.

M. Pratama, J. Lu, S. Anavatti, E. Lughofer, and C.-P. Lim, “An
incremental meta-cognitive-based scaffolding fuzzy neural network,”
Neurocomputing, vol. 171, pp. 89-105, 2016.

	I Introduction
	II RFID Localization Problems
	II-A RFID Localization Systems
	II-B Capturing RFID Data From Sensor

	III Distributed Big Data Analytic Based on PANFIS Approach
	III-A PANFIS Algorithm
	III-B Big Data Analytic Architecture and Data Flow Process in Spark Platform
	III-C Rule Merging of Final Rules after All Data Chunk's Learning
	III-C1 Rule merging phase's policy

	IV Experimental setup and results
	IV-A Experiments
	IV-B Results

	V Conclusion and Future Works
	VI Acknowledgment
	References

