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Abstract—Real-world environments face a wide range of noise
(uncertainty) sources and gaining insight into the level of noise
is a critical part of many applications. While Non-Singleton
Fuzzy Logic Systems (NSFLSs), in particular recently introduced
advanced variants such as centroid-based NSFLSs have the
capacity to handle known quantities of uncertainty, thus far, the
actual level of uncertainty has had to be defined a priori - i.e.
prior to run time of a system or controller. This paper does not
focus on such advances within the architecture of NSFLSs, but
focuses on a novel two-stage approach for uncertainty handling
in fuzzy logic systems which integrates: (i) estimation of noise
levels and (ii) the appropriate handling of the noise based on
this estimate, by means of a dynamically configured NSFLS.
As initial evaluation of the approach, two chaotic nonlinear
time series (Mackey-Glass and Lorenz), as well as a real-world
Darwin sea level pressure series prediction fuzzy logic systems are
implemented and compared to commonly used procedures. The
results indicate that the proposed strategy of integrating uncer-
tainty/noise estimation with the capacity of non-singleton fuzzy
logic systems has the potential to deliver performance benefits
in real-world applications without requiring a priori information
on noise levels and thus delivers a first step towards smart, noise-
adaptive non-singleton fuzzy logic systems and controllers.

I. INTRODUCTION

Noise (uncertainty) can be defined as an undesirable random
distortion in data and it is present in most real-world circum-
stances including (but not limited to) sensors, images, speech
or time series etc. As real-world environments, such as in
control, face a wide range of noise sources, gaining insight into
the level of noise becomes a critical part of many applications.
Therefore, noise studies are attracting considerable interest in
terms of the accurate estimation and/or removal of noise from
data. Due to the broad variance in noise levels in different
real-world circumstances, an accurate noise estimation can be
a challenging task. As a result, the removal of estimated noise
from a dataset can risk being either an ineffective, or in some
cases even detrimental, approach. In light of this, while the es-
timation of noise is a crucial initial step for many applications,
it may be beneficial to consider an alternative approach which
avoids noise removal in favour of robustly handling uncertainty
and noise as part of the control of decision making algorithms.

Fuzzy set (FS) theory was first introduced by Zadeh [1]
and provided the basis for Fuzzy Logical Systems (FLSs)
which are considered as robust systems to capture noise
in decision making. FLSs processes are completed in three

essential steps; fuzzification, inferencing and defuzzification.
In fuzzification, crisp input values are transformed into FSs
and this transformation can be implemented as a singleton
(SFLSs) or non-singleton (NSFLSs). Due to the fact that
inputs are commonly corrupted by noise, non-singleton fuzzy
sets have potentially designed to capture the existed noise in
input data, and so may provide better results than SFLSs for
the same number of rules [2]–[7]. To illustrate uncertainty
handling with the non-singleton designs, the extensive studies
in time series prediction are carried out [6], [8]–[16]. In these
studies, it is assumed that the additive noise level (σnoise) is
already either a priori known or can be calculated by using
the known values of the signal to noise ratio (SNR) and
standard deviations of a noise free set (σnf ). After ascertaining
the σnoise value, this is utilised as the parameters for non-
singleton input MFs in NSFLSs. Then the various further
adjustments (such as optimisation) are/are not implemented
and the remaining fuzzy procedures are performed. However,
the prior knowledge of additive noise level (σnoise) may
not reflect real-world situations, in which the level of noise
information cannot be obtained in advance.

The focus of this paper can be described under two aspects;
(i) estimation of noise levels with zero prior knowledge,
and (ii) exploring the effects of handling the estimated
noise by means of a dynamically configured NSFLS. This
technique eliminates the requirement of prior knowledge
about additive noise in the dataset and reduces the impact of
possible miscalculation of the noise level estimation value, by
preserving and capturing the estimated noise in the system.
While the proposed approach is ideally suited to Fuzzy Logic
Control, in this paper, as initial evaluation of the approach, we
implement noise estimation and handling procedures in two
well-known chaotic time series datasets (Mackey-Glass and
Lorenz) and also in a real-world Darwin sea level pressure
series. For each experiment, two-stage results comparisons
are carried out. Firstly, estimated noise levels are compared
to a priori known noise levels. Secondly, the gathered noise
levels are proceeded to NSFLSs to set input MFs parameters
and NSFLSs time series prediction results are compared.
While in the literature, there are a number of works on
advanced non-singleton architecture, such as centroid or
similarity based systems [6], [15], [16]. This paper does not



focus on such advances within the architecture of NSFLSs,
but focuses on specifically one key problem detecting noise
levels to define NSFLSs parameters at run time.

Since the generation of nonlinear time series samples is an
easily manageable procedure and different noise levels can
be injected in a controlled manner, this paper focuses on time
series prediction rather than for example real world control.
As the proposed strategy of integrating uncertainty/noise
estimation with the capacity of NSFLSs has the potential
to deliver performance benefits without requiring a priori
information on noise levels, it can be applied to a wide range
of real-world control applications which contains uncertainty
from robotics to unmanned aerial vehicle (UAV) control.

The structure of this paper is as follows. Section II gives
a brief overview of singleton, non-singleton FSs and time
series datasets along with noise adding procedures. Section
III introduces each step of the experiment including the noise
estimation technique. The next Section IV gives detail of
the experimental environment, the results and discussion.
In Section V, the conclusions of experiments with possible
future work directions are given.

II. BACKGROUND

In this section, a brief explanation of singleton, non-
singleton fuzzy sets will be introduced and an overview of time
series datasets with noise adding procedures will be given.

A. Singleton and Non-singleton Fuzzy Logic Systems

In standard singleton fuzzification, a given crisp input x is
transformed into an input fuzzy set I which is represented by
a membership function µI(x) that takes values in the interval
[0,1], formulated as:

I = {x, (µI(x)) | ∀x ∈ X} (1)

Singleton sets are characterised by a single point in I having
the value of 1:

µI(xi) =

{
1 xi = x′i,

0 xi 6= x′i,
(2)

In non-singleton fuzzification step, after identifying noise
level, it is processed on input data (x) by transforming it to
an MF. Normally it is assumed that the incoming input x is
the value which is possibly to be real and because of existing
noise, it is assumed that neighbour values of the x have also
potential to be real values. However, as we go further from the
input x value, the possibility of being real value getting less
and less in which expressed non-singleton MFs. Hence it can
be said that non-singleton MFs have a potential to capture sys-
tem uncertainty in an efficient manner. When the non-singleton
fuzzifier is considered, the crisp input transformation to fuzzy
sets can be formed in numerous shapes and as a sample, non-
singleton Gaussian input MF is formulated as follows:

µI(xi) = exp

[
−1

2

(
x− xi
σnoise

)2
]

(3)

where x′i is the crisp value of the input and σnoise is the noise
level of system.

B. Time Series

In our experiment artificially generated Mackey-Glass [17],
Lorenz [18] time series, which exhibits chaotic behaviour,
have been chosen to be tested. In addition that, the real-world
Darwin sea level pressure series is also been used to test noise
estimation and capturing capability of our system.

1) Mackey-Glass Time series: The Mackey-Glass equation
is the nonlinear time delay differential equation which is
formulated as:

dx(t)

dx
=

ax(t− τ)
1 + x10(t− τ)

− bx(t) (4)

where a, b and n are constant real numbers, t is the current
time and τ is the delay time.

2) Lorenz Time series: The Lorenz Time series was derived
from a model of the earth’s atmospheric convection flow
heated from below and cooled from above and it is described
using nonlinear differential equations as follows [18]:

ẋ = σ(y − x) ẏ = x(p− z)− y ż = xy − bz (5)

where the dots denote the next values to the three variables
x, y, z in the time series.

3) Darwin sea level pressures: Monthly values of the
Darwin Sea Level Pressure series are gathered between 1882-
1998. The dataset consists of 1300 samples and it can be
obtained from (http://research.cs.aalto.fi).

C. Noise Adding to Time Series

The noise is measured by signal-to-noise ratio (SNR) and
while high SNR values refer to less noise, low SNR values
refer to a high level of noise in a dataset. SNR calculation is
done as follows:

SNR = 10 ∗ log(
σ2
nf

σ2
noise

) (6)

where σnf is the standard deviation of noise free dataset.
The Gaussian noise adding procedure is implemented based

on the SNR values below:
By deriving the formula above, σnoise value can be

gathered:

σnoise =
σnf

10(
SNR
20 )

(7)

Then random noise values, with 0 mean, are added to the
noise free values as follows:

xt → xt +N (0, σ2
noise) (8)

Thereby, a noisy set can be obtained for each (t) in xt.



Fig. 1: A Flow chart of the experiment procedures

III. METHODOLOGY

In the literature, there are a number of studies which deal
with uncertainty in time series data by means of NSFLSs [6],
[8]–[16]. Generally, it is assumed that noise levels (σnoise) are
known in advance or it is calculated by using the known SNR
and σnf values (7). Thereafter, non-singleton input parameters
in the NSFLSs are defined based on the σnoise and further pro-
cedures such as optimisation etc. may/may not be carried out.

In this paper, firstly, a noise estimation technique is applied
to the noisy time series and it is compared to the priori
known noise levels. Moreover, the estimated noise levels are
captured in NSFLSs and prediction results are provided. Due
to the fact that real-world environments face a wide range
of non-stationary noise sources, the dynamic estimation of
noise levels and capturing it in a fuzzy system potentially has
features to a different variety of applications, which possibly
contain noise, such as sensor studies, stock market forecasting
or signal processing and etc.

The methodology of the current work can be divided into
five main steps and it is illustrated in the flow chart (Fig. 1);

Step 1 Time Series: The procedures in Section II-B are
followed to generate chaotic time series datasets. In addition
to the artificially generated time series, a real-world Darwin
sea level pressure dataset is tested in the experiment.

Step 2 Training: As the training phase of FLSs, the rule
generation is completed by utilising Wang-Mendel method
[19] over the first 70% of the data points (noise free training
set) in the total time series for MG, Lorenz and sea level
pressure series.

Step 3 Noise Injection: The procedures of Section II-C are
followed to add Gaussian noise to the time series datasets.
Since the real-world may contain different levels of noise,
in order to imitate real-world circumstances and analyse our
proposed method, six different noise levels (from low to high)
are employed per experiment.

Step 4 Noise Identification: At this step of the experiment,
two different procedures are performed. Firstly, an estimation
technique is performed to identify noise level and secondly,
the traditional procedures (the priori known parameters) are
used to calculate noise levels:

1) Noise Level Estimation without prior knowledge: In
literature, there are the numerous number of noise estimation
techniques which could be used in this study [20]–[24].
However, as an initial step of this work, one of the initial
noise estimation study for images [25] is performed to estimate

noise of time series dataset. In the study [25], firstly, difference
operator is implemented over image patches and standard
deviation of differenced patches is calculated. Thereafter, a
histogram is evaluated in order to receive desired noise level
estimation σnoise.

In this work, for the sake of simplicity and unconcerned of
patch parameters, the whole time series is considered as one
patch and difference operator is conducted as follows:

y(t) =
1√
2
(x(t+1) − x(t)) t = 1, 2, 3....N (9)

Then, the variance of the differenced set y is calculated and
the σnoise is gathered:

σnoise =

√√√√ 1

N

N∑
t

yt (10)

By following 9 and 10, noise estimation is completed
without any prior knowledge and the estimated noise levels can
be used to dynamically define parameters for non-singleton
input MFs in the fuzzification part of NSFLSs.

2) A Priori Known Noise Level Identification: The additive
noise to the noise free time series set is represented as σnoise
and in the literature, generally, it is assumed that the σnoise
is already known or we have the information about SNR and
variance of noise free set(σnf ). So that the noise level σnoise
can be calculated as it is shown in (7).

The first result comparison between the estimated and the
priori known noise levels is done as it is pointed out in Step
4 of the Fig. 1.

Step 5 Prediction Test: The remained 30% of the time series
are used to test NSFLSs. In the fuzzification of NSFLSs testing
process, firstly, the estimated noise levels are used as the
(adaptive) standard deviation of Gaussian input MFs and the
NSFLS prediction test is performed. Then the same experiment
is repeated; however this time priori known noise level is used
in the fuzzification step to define input MFs.

For example, when a 20 dB noisy dataset is used in testing,
as the first experiment, the estimated noise level is adopted
in input Gaussian MFs and the prediction is proceeded.
Thereafter, the same experiment is repeated by using the
priori known noise level in the input Gaussian MFs. At the
end of these two experiments prediction results, in Mean
Square Errors (MSEs), are compared as it is indicated in Step
5 of the Fig. 1.



Fig. 2: An illustration of the used antecedents MFs in training.

As mentioned earlier, rather using advanced architecture
NSFLSs, such as centroid or similarity based systems [6],
[15], [16], in the inference step of FLSs, the standard
minimum t-norm and max t-conorm operators are used and
centroid defuzzification is utilised in the last step of FLSs.
The same number of discretisation level (500) is used for all
FLSs. In order to mitigate the effect of randomness in the
noise addition process, each experiment is repeated 30 times
for all case scenarios and the average of generated Mean
Square Errors (MSEs) were calculated.

IV. EXPERIMENT AND RESULT

A. Time Series Datasets and Training
The experiment is performed on three different time series

data. As the Step 1 of the experiment, first, Mackey Glass
(MG) and Lorenz time series datasets are generated and in
order to provide a chaotic behaviour, τ is set to 30, while
a = 0.2 and b = 0.1 for MG (4) and the Lorenz time series
parameters are set as σ=10, b=8/3 and p=28 (5). x(t) are
generated for 2000 time points (from t=-999 to t=1000) and
due to the fluctuation tendency in the initial part of the time
series, the last 1000 (from t=1 to t=1000) points are taken to
be used in the experiment. Second, monthly data of sea level
pressure in Darwin, which consist 1300 samples, is obtained
from (http://research.cs.aalto.fi/) and used in the experiment.

As the Step 2 of the experiments, training is implemented by
using Wang-Mendel technique [19] and during rule creation,
seven antecedents MFs (See Fig. 2) are created as left shoulder,
5 equally distributed triangular and right shoulder antecedents.
Nine past points were projected to the corresponding an-
tecedents and the following (10th) point was designated as the
output. The window sliding procedure is applied until reaching
the end of the training set.

B. Noise Adding
After the FLS rule generation is completed by using noise

free set, the datasets are distorted by noise (as in Step 3) to
test our approach under different circumstances. Six different
Gaussian noise SNR levels (0,2,3,5,10 and 20 dB) were
injected to MG, Lorenz and sea level pressure data to be used
in different variations of the experiment (a sample of noise
differences can be seen in Fig. 3).

C. Noise Level Identification
As can be seen in Step 4 of the Fig. 1, two different noise

level determination strategies are implemented:

Fig. 3: The sample of different noise levels on Mackey-Glass
Time series dataset

1) Noise estimation without prior knowledge: In this esti-
mation, it is assumed that there is no any prior information
(neither SNR nor σnf ) and the noise level estimation is carried
out on the testing set. For each set (with different noise levels),
the procedures in the Section III-1 are followed to estimate
noise levels. First, the difference operator for the test set is
performed and second, the standard deviation (σnoise) of the
differenced vector is defined as the noise level in the set.

2) Noise Level calculation with prior knowledge: In this
technique, as it is carried out in the literature [6], [8]–[16],
it is presumed that the standard deviation (σnf ) of noise free
set (first 70% of the data) and SNR values for each variation
of experiment is already known in advance. By following the
(7), the standard deviation (σnoise) is calculated to define noise
level of the set and it is used to define input MF parameter in
the fuzzification of non-singleton input MFs.

D. Result Comparison for Noise Level Identification

In this section, noise estimation (see section IV-C1) and
the priori known noise level (see section IV-C2) comparison
result is given under six different noisy dataset. As the noise
adding procedures is practised 30 times for each noise level,
the average of estimation are given. The x axes of the Figs.
4, 5 and 6 below represent noise levels in dBs and the y
axes represent the calculated variance (σnoise). The figures
compares result for the noise calculations and the estimation
under six different SNR values for MG, Lorenz and sea level
pressure respectively.

E. Result Comparison for Time Series Prediction

In this section, the previously estimated and priori known
noise levels are adopted in the input MFs of the NSFLSs and
the average MSE prediction results are compared in regards
to both noise estimation and the known noise level calculation
(as in Step5). Figs. 7, 8 and 9 shows the prediction MSE result
for Mackey Glass, Lorenz time series and sea level pressure
data respectively. Note that as each variation of the experiment
is repeated 30 times, the average MSE results are provided in
these figures.

F. Discussion

As it is pointed out in the Fig. 1, the first comparison is
implemented on two noise level identification concept; the
prior known and the estimated (without any prior information)
noise levels. These two comparisons are tested under six



Fig. 4: Mackey Glass noise levels comparison between the
priori known and estimated (without prior knowledge)

Fig. 5: Lorenz series noise levels comparison between the
priori known and estimated (without any prior knowledge)

Fig. 6: Darwin sea level pressure time series noise levels
comparison between the priori known and estimated (without
any prior knowledge)

different noise levels. The performance of each noise level
identification is provided in Figs. 4, 5 and 6 for MG, Lorenz
and sea level pressure data respectively. Thereafter, both the
priori known and estimated noise levels are used to define
input MFs of the fuzzy system and corresponding MSEs
results are provided in Figs. 7, 8 and 9. Note that noise in
the data are able to be handled by tuning the parameters of
the input MFs of NSFLSs based on the noise estimation.

Figures 4 and 5 show that the noise levels in the time
series can be estimated without prior knowledge and it can
be said that the estimation levels are consistent with priori
known noise levels. Further, when the estimated levels are
proceeded to NSFLSs, as it is expected, the MSEs results of
prediction is in a complete agreement with the priori known
noise level predictions (Figs. 7 and 8).

Further analysis in noise estimation is implemented in
the real-world seal level pressure data. It should be noted
that due to the fact that there are a tremendous number
of uncertainty source in the real-world application, finding
a generally applicable and accurate noise level estimation
technique may not be realistic. To that end, when the noise
estimation technique is performed without prior knowledge of
dataset, it can be clearly seen in Fig. 6 that there is a strong
discrepancy between priori known and estimated noise levels
as it may be expected. As the further step of the experiment,

Fig. 7: Mackey Glass time series average MSE for prediction
comparison between the priori known and estimated noise
levels in input MFs

Fig. 8: Lorenz time series average MSE for prediction com-
parison between the priori known and estimated noise levels
in input MFs

Fig. 9: Darwin Sea Level Pressure time series average MSE for
prediction comparison between the priori known and estimated
noise levels in input MFs

priori known and estimated noise levels are proceeded to
NSFLS, regardless of the inaccuracy in the noise estimation.
Despite the fact that, noise estimation could not be performed
accurately, surprisingly the MSEs result comparison in Fig.
9 shows that the strong discrepancy is relatively disappeared
when the noise levels are proceed to NSFLSs.

To elaborate the strategy of successive noise estimation and
capture it in NSFLSs, a statistical analysis is implemented.
First, the ratio between priori known and estimated noise levels
are gathered. Second, ratio of prediction MSE results -from
both priori known and estimated noise levels- is calculated.
Then the paired two sample t-test are performed on the
gathered ratios list. Each noise level from the Figs. 4, 5, 6
is compared to the corresponding MSE prediction results in
Figs. 7, 8 and 9. For MG time series, it is found that under
low level of noise (20 dB) the differences between the priori
known and estimated noise level is significantly reduced when
they both proceeded to the NSFLSs. In other words, while the
estimation could not be made accurately under 20 dB (Fig. 4),
that inaccuracy is alleviated and reduced significantly when
those values are used in NSFLSs in Fig. 7. For the Lorenz
time series the similar statistical results are obtained. When



the NSFLSs is utilised for the priori known and estimated
noise levels, it is observed that under low level of noises
(20 and 10 dB), the inaccuracy of the estimation is reduced
significantly based on the paired two sample t-test. Moreover,
as can be clearly seen in the Fig. 6, the noise estimation is not
made to be close to priori known noise levels. However when
the traditional and estimated noises are used as parameters in
NSFLSs, based on paired two sample t-test, it is observed that
the impact of error in noise estimation is reduced significantly
under each level (20, 10, 5, 3, 2 and 0 dBs) of noise.

Based on above, it can be said that the strategy of focus-
ing on detecting noise levels -without prior knowledge- and
using the estimation to define the non-singleton parameters
dynamically has strong potential to mitigate the impact of
noise/uncertainty in real world systems.

V. CONCLUSION

In this paper, two different aspects are investigated; (i) first,
a method of noise level estimation that can be implemented
without any prior knowledge about the dataset (ii) second,
the effects of preserving estimated noise levels and using
these to define NSFLSs parameters. This technique allows
for the construction of dynamically parametrised NSFLSs,
which can handle the noise in the system without requiring
any information regarding the prior stage of dataset. The
experiment is implemented on two commonly used chaotic
time series (Mackey-Glass and Lorenz Time series) and on a
real-world sea level pressure dataset. The evidence from this
study suggests that noise level estimation can be implemented
without any prior information about the dataset, and a possible
impact of the erroneous risk in the estimation can be alleviated
by capturing and handling noise in NSFLSs. In the light of this,
the NSFLS based proposed strategy could indeed be a suitable
approach to be used in a wide range of real-world control
applications with different levels of non-stationary noise.

Future work will concentrate on different noise estimation
techniques and their impact in respect to the different advanced
NSFLS architectures such as centroid or similarity based
NSFLSs. Further, we will explore the real-world utility of the
proposed approach in both simulated and real-world control
experiments, for using on robotic case studies. Lastly, due to
the increased modelling capabilities of type-2 fuzzy logic in
handling uncertainty, different type-2 designs will be explored.
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