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Abstract—Traditional Frequency Response Function (FRF)
estimation techniques used for analysis of Human Controller
(HC) dynamics in tracking tasks assume HC dynamics to
be linear, but generally do not quantify or compensate for
the effects of human nonlinearities. The robust and fast Best
Linear Approximation (BLA) techniques for estimating an FRF
do provide such quantification of nonlinear distortions caused
by Period-In-Same-Period-Out (PISPO) nonlinearities and can
reduce the effect of PISPO nonlinear operations on the FRF
estimate. This paper investigates the application of these BLA
techniques to both measured and simulated HC data. For the
simulated data, a linear HC model was deliberately extended
with a symmetric PISPO deadzone nonlinear operator and a
realistic level of HC “remnant” noise. Overall, both the measured
and the simulated data indicate that due to the high levels
of remnant noise inherent to HC data, no consistent estimate
of PISPO nonlinear contributions could be made. This also
means that the improvement of using BLA techniques and
averaging over multiple forcing function realizations does not
result in a substantial improvement over the current practice of
estimating HC FRFs from repeated measurements of a single
forcing function.

I. INTRODUCTION

Human controller (HC) dynamics are mostly measured

in compensatory tracking tasks with quasi-random multisine

forcing functions [1], [2], in which a human controller is

asked to continuously minimize a tracking error presented

on a visual display. HC behavior is then generally analyzed

by estimating a Frequency Response Function (FRF) of HCs’

control dynamics, which also serves as a reference for fitting

linear HC models [1]–[3]. The part of the measured control

responses that cannot be explained by a linear model is the

HC “remnant”, which includes all nonlinear operations, non-

steady and time-varying behavior and pure noise injected

by the HC [1], [4]. To reduce the effects of remnant on

estimates of HC FRFs, it is common practice to collect

repeated measurements (with the same forcing functions) to

average out the remnant contribution. The specific impact of

individual nonlinear contributions on the estimated FRFs has,

however, not yet been explicitly considered.

The Best Linear Approximation (BLA) measurement ap-

proach [5] has been developed to obtain the best possible FRF

estimate of weakly nonlinear systems operating in a closed

loop. By using clever data-averaging techniques, which are

implemented differently for the robust and fast BLA methods

[5], this approach not only reduces the impact of nonlinear

operators on the FRF estimate, but also provides explicit

insight into how large the impact of nonlinear contributions on

the FRF estimate actually is. While the fast method, equivalent

to the traditional approach to HC FRF estimation, only uses

repeated measurements of a single forcing function, the robust

method also uses different realizations of multisine forcing

functions (by changing the phases of the sinusoids) to improve

its estimates. While not yet applied to estimating HC FRFs,

these BLA measurement approaches have been successfully

applied to analyze other weakly nonlinear systems operating

in a closed loop [6]–[8].

The goal of this paper is twofold. First, the robust and fast

BLA measurement procedures [5] will be used to investigate

whether conventional FRF estimation techniques for HC con-

trol behavior can be improved using these methods. Second, it

will be investigated whether these methods can also be used for

estimating the level of nonlinear contributions in typical HC

data, and thereby learn more about the possible nonlinear HC

dynamics that are generally simply lumped into the “remnant”.

To achieve these goals, both measured and simulated HC

data are analyzed in this paper, for a compensatory tracking

task with double integrator controlled system dynamics. For

the simulation data, a quasi-linear HC model is used, with

parameters tuned to match the experiment data. Furthermore,

a symmetric nonlinear deadzone operator is added to the

simulation to account for typical nonlinear HC dynamics [9].

The extent to which the level and nature of this nonlinear

contribution can be retrieved from HC control data will then

be used to determine the effectiveness of the BLA techniques

for our application.

II. HUMAN OPERATOR MANUAL CONTROL

A. Control Task

A typical manual compensatory tracking task is depicted in

Fig. 1. Such tasks involve the continuous minimization of a

tracking error from a visual display. The input to the human

controller (HC), i(t), is this tracking error, and the HC’s

output is the control input y(t) that is applied to the controlled

element (CE) Hc. In tracking tasks, errors to be corrected by

the HC are typically induced using a target forcing function,

ft(t), that defines the reference the HC is instructed to follow.

Most research into HC compensatory control behavior uses

quasi-random multisine signals for the target forcing function

[1], [2], [10].
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Fig. 1. Schematic representation of a compensatory tracking task.

B. Human Controller Dynamics

It is well-known that HC dynamics in compensatory tasks

are quasi-linear [1]. Hence, compensatory HC models gen-

erally consist of a linear HC describing function Hp(jω)
and a remnant signal n(t) that accounts for all nonlinear

contributions not captured by the linear model [1], see Fig. 1.

The linear HC dynamics Hp(jω) are known to be modeled

accurately with models of the form of [1], [2]:

Hp(jω) = Kp

(

TLjω + 1

TIjω + 1

)

e−jωτpHnm(jω)

Hnm(jω) =
ω2
nm

(jω2) + 2ζnmωnmjω + ω2
nm

(1)

In (1), Kp is the HC gain, TL and TI are the HC’s lead and

lag time constants, and τp is the HC delay. The dynamics of

the neuromuscular system are typically included as a second-

order mass-spring-damper model with natural frequency ωnm

and damping ratio ζnm [1], [2].

Contributions to the remnant n(t) include nonlinear opera-

tions, non-steady and time-varying control behavior and pure

noise injected by the operator [1], [4]. Generally, HC remnant

is modeled as colored (low-pass filtered) white noise with an

intensity that is roughly proportional to the power of the HC

control signal, y(t) [4], [11]. In this paper, a second-order low-

pass filter – with a remnant gain Kn and time constant Tn as

the parameters – is used for modeling the remnant:

Hn(jω) =
Kn

(Tnjω + 1)2
(2)

Note that this approach to modeling HC remnant lumps all

nonlinear, time-varying and noise-injection processes together

and thus does not explicitly distinguish between the different

nonlinear contributions to the (linear time-invariant) remnant.

III. FREQUENCY RESPONSE FUNCTION ESTIMATION

A. Traditional HC FRF Estimation

To estimate the linear HC describing function Hp(jω), see

Fig. 1, traditionally an HC FRF is estimated using the instru-

mental variable approach enabled by the use of a multisine

forcing function ft(t) [1]–[3]:

Ĥp(jωk) =
Ŝyft(jωk)

Ŝift(jωk)
(3)

In (3), Ŝyft(jωk) and Ŝift(jωk) are the cross-power spectral

density estimates of the HC output y(t) and input i(t) with

the forcing function ft(t) at the kth frequency excited by the

forcing function, ωk. Due to the feedback of the remnant

noise in the closed-loop system and other HC nonlinearities,

an FRF estimated with (3) is generally biased, with a bias that

can be explicitly determined [3]. Generally, this is countered

by collecting multiple (e.g., five to ten [1], [10]) repeated

measurements and averaging the time- (i(t) and y(t)) or

frequency-domain (Ŝyft(jωk) and Ŝift(jωk)) data.

B. Best Linear Approximation

The BLA is an optimal linear approximation of the dy-

namics of weakly nonlinear systems that minimizes the mean

square error between the outputs of the true nonlinear system

and its linear FRF [5], [12], [13]. BLA techniques rely on

smart forcing function design and controlled data-averaging

techniques – both over repeated period measurements P and

varying phase realizations M of the applied multisine signals

– to obtain improved FRF estimates. With this approach, also

the impact of Period-In-Same-Period-Out (PISPO) nonlinear

contributions on the FRF estimate can be explicitly quantified

and minimized. For example, when a purely odd input sig-

nal, in which only odd integer multiples of the fundamental

measurement frequency are excited, is used, the effects of odd

and even nonlinear operators in the identified system can be

separated: all odd (excited) frequencies are only disturbed by

odd operations, while the even (unexcited) frequencies are

only disturbed by even nonlinearities. This fact is exploited

in this paper, as the symmetric deadzone considered as the

nonlinearity in our HC dynamics is a purely odd operator.

For closed-loop BLA techniques, generally a distinction

is made between two different methods. The robust method

uses both multiple measurements using different multisine

signals (M ) and several periods of the same multisine signals

(P ) to determine, and average out, the effects of nonlinear

operators and stochastic measurement noise. The fast method

only requires repetitions of one forcing function (P ), but an

approximation is needed to estimate the noise and stochastic

nonlinear distortions on the FRF [5]. In general it is recom-

mended to use P ≥ 4 repetitions with the fast method, while

P ≥ 2 repetitions and M ≥ 4 phase realizations, and thus

more data, are generally required for the robust method [5].

1) FRF Estimation: To estimate an improved FRF, both the

fast and robust BLA methods use an average of the HC input

signal I(jωk) and HC output signal Y (jωk) at the frequencies

excited by ft(t), calculated over a number of repeated periods

P of each forcing function realization (m), according to:

Î [m](jωk) =
1

P

P
∑

p=1

I [m,p](jωk) (4)

In (4), the superscripts between square brackets indicate the

dependency of the signal on different realizations of ft(t), m,

and on repeated period measurements p. The same equation

as (4) is also used to calculate the averaged HC output,

Ŷ [m](jωk). The BLA is then calculated by further averaging

of Î [m](jωk) and Ŷ [m](jωk) over the phase realizations M ,



TABLE I
FORCING FUNCTION FREQUENCIES, AMPLITUDES AND PHASES.

k nk ωk Ak φk,1 φk,2 φk,3 φk,4 φk,5 φk,6 φk,7 φk,8 φk,9 φk,10

(-) (-) (rad/s) (inch) (rad) (rad) (rad) (rad) (rad) (rad) (rad) (rad) (rad) (rad)

1 1 0.10 0.288 2.901 4.419 1.273 3.373 2.722 5.380 5.243 2.049 4.514 2.914

2 3 0.30 0.288 4.090 3.301 4.102 3.207 0.694 3.143 0.279 5.411 5.125 5.924

3 5 0.50 0.288 1.745 1.837 3.172 4.385 5.781 0.898 3.116 5.722 1.990 1.777

4 7 0.71 0.288 5.591 4.774 6.067 4.949 5.331 2.881 2.209 2.313 3.095 1.327

5 9 0.91 0.288 0.276 0.140 3.150 1.466 2.618 5.814 2.787 1.854 0.397 1.549

6 15 1.51 0.288 3.852 1.111 5.491 0.461 0.766 5.019 1.762 5.453 5.913 0.800

7 25 2.52 0.029 2.113 5.462 1.330 1.170 5.978 4.087 3.994 3.632 0.233 3.550

8 41 4.13 0.029 2.529 1.263 1.691 1.777 1.089 5.127 2.397 3.162 6.037 4.913

9 75 7.56 0.029 3.966 0.043 5.598 2.731 3.084 0.042 0.419 0.607 3.662 0.355

10 135 13.61 0.029 4.761 5.696 0.727 6.001 4.562 2.826 4.921 3.255 5.457 5.234

taking care of compensating for the different phases of the

input signals at the input frequencies, ∠F
[m]
t (jωk):

ĜBLA(jωk) =

1
M

M
∑

m=1
Ŷ [m](jωk)e

−j∠F
[m]
t (jωk)

1
M

M
∑

m=1
Î [m](jωk)e−j∠F

[m]
t (jωk)

(5)

Note that as for the fast method M = 1, this second

averaging is only performed with the robust method.

2) Nonlinear and Noise Contributions: In addition to pro-

viding an estimate of the BLA of a weakly nonlinear system,

the BLA measurement techniques also provide an estimate of

both the level of nonlinear contributions and noise from other

sources. The estimated BLA, ĜBLA(jωk), is thus the sum of

the true BLA of the nonlinear system, stochastic contributions

of nonlinear operators GS(jωk), and the contributions of

measurement noise NG(jωk):

ĜBLA(jωk) = GBLA(jωk) +GS(jωk) +NG(jωk) (6)

The use of repeated measurements P and different realiza-

tions M allows for estimating the contributions of GS(jωk)
and NG(jωk) to the estimated BLA. The variance of the

noise contribution, here referred to as σ̂2
ĜBLA,n

, is estimated

from the sample variance of the FRF estimates over the

periods P only, with averaging this variance estimate over the

phase realizations M (robust method), see (7). Since PISPO

nonlinearities have a constant contribution for each period, the

nonlinear contributions do not affect this sample variance.

σ̂2
ĜBLA,n

(jωk) =
σ̂2{NG(jωk)}

MP
(7)

σ̂2
ĜBLA

(jωk) =
σ̂2{GS(jωk)}

M
+

σ̂2{NG(jωk)}

MP
(8)

Similarly, when computing the variance of estimated FRFs

over the different phase realizations M , the stochastic non-

linear contributions do vary, and contribute to the variance

estimate. Consequently, a total variance of the BLA (σ̂2
ĜBLA

)

is obtained, see (8), including both variance introduced by

GS(jωk) and NG(jωk). The difference between the estimated

noise variance and total variance thus provides a direct esti-

mate of the contribution of the nonlinear distortions, GS(jωk).
With (7) and (8), the nonlinear and noise contributions to

the estimated FRF can be estimated at the excited measure-

ment frequencies ωk. Following the same rationale, also the

variability due to noise and nonlinear system operators at all

frequencies can be separated over the different measurements

of the system output signal [5], here Y [m,p](jω). In this paper,

both the variability in the BLA (σ̂2
ĜBLA

and σ̂2
ĜBLA,n

) and in

the HC output (σ̂2
Ŷ

and σ̂2
Ŷ ,n

) are analyzed to verify the extent

to which nonlinear distortions can be estimated from HC data.

IV. EXPERIMENT

A. Experiment Setup

1) Control Task and Apparatus: For this paper, experiment

data were collected from one participant, who performed a

compensatory tracking task as shown in Fig. 1. The experiment

was performed in the part-task simulator setup of the Human-

Machine Interaction Laboratory at the Faculty of Aerospace

Engineering at TU Delft. The CE dynamics were a double

integrator, Hc(s) = Kc/s
2, with Kc = 5. The participant

controlled the CE with a passive side-stick, with characteristics

equal to those reported in [14].

2) Forcing Functions: The forcing functions for the experi-

ment were traditional random-appearing multisine signals with

a high-frequency shelf amplitude distribution [1], [10]:

f(t) =

N
∑

k=1

Ak sin(ωkt+ φk) with ωk =
2πnk

T
(9)

In (9), N indicates the total number of sinusoids, ωk the

excited frequencies, and φk and Ak the phase shift and the

amplitude of each sinusoid, respectively. To prevent leakage

in the Fourier signal analysis and to ensure that an estimate of

even and uneven nonlinear contributions could be made, the

sinusoid frequencies ωk were chosen as odd integer multiples

of the base frequency 2π/T . The measurement period T for

this experiment was chosen to be 62.3 seconds. The amplitudes

were uniformly scaled to have a standard deviation of ft equal

to 0.5 inch.

To enable application of both the robust and the fast

methods, data were collected for M = 10 phase realizations
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Fig. 2. Estimated BLA of the HC dynamics for the robust and fast methods (M = 10 and P = 6).
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Fig. 4. Total and noise variance on the HC output signal
y(t) for the robust method (M = 10 and P = 6).

φk, each for 6 repeated period measurements P . The φk were

selected from a pool of randomly-generated phase sets ac-

cording to the procedure described in [10]. The used sinusoid

frequencies, amplitudes, and phases are listed in Table I.

B. Experiment Results

Fig. 2 shows the FRFs of the BLA ĜBLA(jωk) of the

HC dynamics as estimated with both the robust and fast

methods. For the fast method, the result for one of the phase

realizations is shown, which is equivalent to a traditional HC

FRF estimate [1]. As is clear from Fig. 2, both methods give

equivalent results, especially at the higher excited frequencies.

At low frequencies, fewer repeated periods of the sinusoids

are available over the measurement time. In addition, for the

considered task with a double integrator CE, the HC control

dynamics also have low magnitude at the low frequencies, see

Fig. 2. These effects explain the larger differences between

both methods for the lower excited frequencies, where the

robust method BLA is in general more accurate due to the

additional averaging over the phase realization M .

Fig. 3 shows the estimated variance of the BLA, both

the total variance (gray data) and the variance attributed to

noise (black data) for the robust (lines) and fast (crosses)

methods. For the fast method, these variances could only be

estimated for the four highest frequencies, as with the chosen

measurement time and the required odd input frequencies it

was not possible to leave odd frequencies unexcited in this

frequency range, see Table I. As is evident from Fig. 3, only

very small differences between the total and noise variances

of ĜBLA(jωk) are observed, which indicates that no signif-

icant contributions of possible PISPO nonlinearities could be

measured at the excited frequencies.

The same can be concluded from a comparison of the total

and noise variance components present in the measured HC

output signals y(t). Fig. 4 shows the estimated variance in

y(t) at all (i.e., both excited and unexcited) frequencies for

the robust method only, as the variance estimates for the fast

method were equivalent. As is evident from Fig. 4, also in

the HC output and over the whole frequency range covered

by the measurement the total and noise variance estimates are

equivalent, and thus no strong indication of the presence of

PISPO nonlinear contributions is found.

V. SIMULATIONS

A. Simulation Setup

1) Human Controller Model: The simulations were setup

to match the experiment data, to allow for a fair comparison of

the results. In the simulations the HC dynamics Hp(jω) were

represented by the HC model of (1). The model parameters

were tuned based on the collected experiment data, estimating

them from these data with the time-domain procedure of [15].

The estimated model fits to the data from the M = 10 phase

realizations had an average Variance Accounted For (VAF) of

90.5% and resulted in average parameter estimates of Kp =

0.61, TL = 0.74 s, τp = 0.27 s, ωnm = 7.76 rad/s, and ζnm
= 0.13. Remnant intensity and frequency characteristics were

similarly estimated from the experiment data, resulting in Kn

= 0.6 and Tn = 0.1 s to be used with the model of (2).

2) PISPO Nonlinear HC Dynamics: For the simulation

analysis, an PISPO nonlinear deadzone (DZ) operator was



included in the HC dynamics model, as shown in Fig. 1. The

DZ is a symmetric threshold-like operator that is likely to

occur in HC dynamics [1], [9] and here is assumed to work on

the HC input signal i(t), to model an HC who only responds

to tracking errors that are above a certain magnitude. The DZ

threshold was set to 0.05 inch, which is around 10% of the

highest peak of the error signal.

3) Forcing Functions: The forcing functions were chosen

to directly match the measurement case, as described in

Section IV-A2, with M = 10 phase realizations and P = 6
repeated period measurements. To assess the stochastic vari-

ability in the results, all simulation data were generated for

100 different realizations of the simulated remnant noise.

4) Simulation Cases: To verify the extent to which PISPO

nonlinear contributions from the considered threshold operator

could be estimated from simulated HC data, four simulation

cases were considered, as listed in Table II. The CLEAN and

DZ cases were included to verify the known performance

of the robust and fast methods on noise-free data [5]. For

the DZ case, the pure PISPO nonlinear contributions on the

FRF estimation process will be quantified. For the DZ+REM

case additional modeled HC remnant noise is added to the

simulation data, as is also present on real HC data. Finally,

the REM condition is included for quantifying the effects

of remnant on the estimation results, for comparison to the

DZ+REM data.

TABLE II
SUMMARY OF SIMULATION CASES.

No Deadzone With Deadzone

No Remnant CLEAN DZ

With Remnant REM DZ+REM

B. Simulation Results

Matching the corresponding experiment data presented in

Fig. 3 and 4, Fig. 5 and 6 show the estimated total (black)

and noise (gray) variances on the BLA FRF estimate and the

HC output signal y(t), respectively, for the four simulation

cases listed in Table II. The results presented in Fig. 5 for the

fast (crosses) and robust (lines) methods are averaged over 100

different remnant realizations. Fig. 6 only presents results of

the robust method, which for the REM and DZ+REM cases

also shows the spread in the obtained results with a shaded

area matching the 5th and 95th percentiles.

For the CLEAN, DZ, and REM simulation cases, the

expected results are obtained. For the CLEAN case, see Fig. 5a

and 6a, both the total and noise variances are negligible due

to the absence of both nonlinearities and remnant. The gaps

between the data points in Fig. 6a are caused by estimated

values truly equal to zero, which cannot be represented on a

logarithmic scale. For simulation case DZ (Fig. 5b and 6b),

only a substantial variance due to the DZ is found, together

with a negligible noise contribution. Fig. 6b also clearly shows

the nature of the odd deadzone operator, which with the used

odd input signal only shows a contribution at odd measurement

frequencies. Finally, Fig. 5c and 6c show that for the REM case

the total and noise variances are substantial and nearly overlap,

which is expected in the absence of additional nonlinearities.

For the DZ+REM case, Fig. 5d and 6d show results equiva-

lent to those obtained for the REM case. Thus, despite the fact

that a pure PISPO nonlinear operator is present in the control

loop, its effects on the total variances of the BLA estimate

and the HC output signal are negligible. This shows that with

significant additional (remnant) noise, as is characteristic of

all HC data [1], [2], it is not possible to detect the presence

of PISPO nonlinear operators, such as a deadzone, using the

techniques considered in this paper.

VI. CONCLUSION

The robust and fast Best Linear Approximation (BLA) tech-

niques for estimating Frequency Response Functions (FRF)

of nonlinear systems were applied to measured and simulated

data of human controllers’ (HC) compensatory control behav-

ior. The main goal was to investigate if more reliable FRF es-

timates were obtained than with conventional FRF estimation

techniques for HC behavior and if explicit estimates of typical

nonlinear Period-In-Same-Period-Out (PISPO) contributions,

such as a deadzone (DZ) operator at the HC input, could

be obtained. Overall, it is concluded that when typical HC

remnant noise from other sources than PISPO nonlinearities

is present, the current practice of estimating the FRF from

repeated measurements of one forcing function is as effective

as averaging over various forcing function realizations, as done

in the robust method. Furthermore, due to the high noise level

of typical HC data, both the measured and the simulated data

indicate that no consistent estimate of the presence of PISPO

nonlinearities such as a DZ can be obtained from measured

HC control behavior with the considered methods.
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Fig. 5. Total and noise variances of the BLA estimate averaged over 100 simulations, with P = 6 and M = 10.
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