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Estimating Shape of Target Object Moving on
Unknown Trajectory by Using Location-Unknown

Distance Sensors: Theoretical Framework
Hiroshi Saito, Fellow, IEEE and Hiroki Ikeuchi

Abstract—By using directional distance sensors that have
unknown locations, this paper proposes a method of estimat-
ing the shape of a location-unknown target object T moving
with unknown speed on an unknown straight line trajectory.
Regardless of many unknown factors, the proposed method can
estimate the shape by using each sensor’s continuous report of
the measured distance to T without using side information or
additional mechanisms such as locations of anchor sensors and
angle-of-arrival measurements. By using the sensor reports, the
proposed method estimates (i) the moving speed of T , (ii) the
length and direction of an edge of T , and (iii) the order of
consecutive edges. As a result, we can obtain the shape of T .

Index Terms—sensor network, distance sensor, estimation,
shape estimation, random placement, unknown location, geome-
try, geometric probability, integral geometry.

I. INTRODUCTION

A few decade has passed since the proposal of a new sensing
paradigm using a small and low-cost sensors like dust [1]. That
is, instead of having a few sensors with advanced functions and
high performance, this paradigm has many sensors with simple
functions and low performance [2]–[5]. They are networked
through a wireless link and send reports, each of which
includes only an insignificant amount of information but may
give us significant information if we collect all. Because many
sensors are deployed in this new sensing paradigm, we cannot
carefully plan the location of each one. A global positioning
system (GPS) cannot be used because the sensors should
have limited capability and keep power consumption low.
Developing low power wide area networks (LPWANs), such
as LoRa WAN [6], narrow-band Internet of Things (NB IoT)
[7], a wide area ubiquitous network [8], [9], and SIGFOX [10],
supports sensors with low performance and functionalities and
a long-range, low-speed wireless link with very low power
consumption. These networks will enable us to implement this
sensing paradigm and IoT [11], [12].

For a challenging application under this new sensing
paradigm, we investigated the problem of estimating target-
object shape by using randomly distributed distance sensors.
A distance sensor is often composed of a pair of transmit-
ter/emitter such as an infrared emitting diode, an ultrasound,
a laser and a detector detecting its reflection. We can find a
commercial sensor of a few US$ that is palm-sized or smaller.
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Such sensors may be deployed for various applications such
as security surveillance. The original objective of deployment
of such sensors may not be to estimate the shape of a
target object. However, this paper demonstrates that simple
distance sensors deployed randomly at unknown locations can
be applied to estimate a target-object shape at an unknown
location and moving speed. If each sensor is provided by
an independent third party, this suggests that crowdsensing
(participatory sensing) using directional distance sensors can
enable us to estimate the target-object shape while maintaining
location-privacy.

An individual sensor in this paper is a simple sensor mea-
suring the distance between a sensor and a target object and
has communication capability. It does not have a positioning
function, such as a GPS, and it is placed without careful
design. By collecting reports from individual sensors, we
statistically estimate the target’s object shape and moving
speed.

The contributions of this paper are:

• This paper demonstrates that we can estimate the shape
of a moving target object with location-unknown distance
sensors in an unknown sensing direction. Those sensors
continuously sense distance and report the sensing result.
The estimation method does not need any position-
ing function, anchor location information, or additional
mechanisms to obtain side information such as angle of
arrival of signal. Although previous studies suggest that
shape estimation is impossible with location-unknown
simple sensors, this paper shows that continuous sensing
enables us to estimate the shape of the target object
moving on an unknown line by using simple sensors
with unknown locations. For the time-invariant polygon
target object, the proposed estimation method estimates
each edge’s length and direction and the connectivities of
edges to estimate the complete shape of the target object.
To my best knowledge, this is the first paper proposing
the shape estimation method under such conditions.

• A moving speed of the location unknown target object
is also estimated with the location unknown distance
sensors.

In addition to its explicit contributions, this paper suggests
that, because location information of sensors is not essential
to estimate a target-object shape, various estimations using
location-unknown sensors may be possible. This is important
for crowdsensing or participatory sensing from the location-
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privacy point of view.

II. RELATED WORKS

The fundamental questions for this problem under this
paradigm are whether we can estimate the shape of a target ob-
ject under the new paradigm using many small simple sensors
and how we estimate if possible. Previous studies suggested
that only a small number of parameters such as the size and
perimeter length of a target object can be estimated with
randomly deployed unknown-location simple sensors such as
binary sensors and distance sensors and other parameters
cannot be estimated [13]–[15]. Thus, composite sensors, which
are composed of several simple sensors, were introduced. They
are randomly deployed and their locations are unknown [16],
[17]. By using them, additional parameters can be estimated.
Unfortunately, however, they are difficult to implement and
deploy, particularly when the composite sensors are large.
Those studies used the sensing results at a certain sensing
epoch, and estimated parameters using them. Even when they
used the sensing results at multiple sensing epochs, they did
not take account of sensing epoch information. Only one [18]
in that series took account of sensing epochs and the temporary
behavior of sensing results, but it focused on estimating the
size and perimeter length of the target object.

A new study has recently estimated the shape of a fixed
target-object by using mobile distance sensors with unknown
locations [19]. The estimation method structure in which parts
of the target object and their connectivities are estimated is
similar, but there are major differences between this paper and
that paper. (i) The estimation in this paper needs to estimate
the target object’s moving speed, but that in the other paper
assumes known sensor moving speeds. (ii) A single mobile
sensor’s report enables the relative edge direction (the edge
direction from the moving direction of the sensor) and the
edge length to be estimated, but the estimation in this paper
does not. This is mainly because the sensing area direction is
unknown in this paper.

To the best of my knowledge, no studies other than the
above have directly tackled these questions. However, there
have been considerable amount of studies on developing an
estimation method using location-unknown sensors. These
studies took a different approach. Most first estimated the sen-
sor locations [20] because it is believed that “the information
gathered by such sensor nodes, in general, will be useless
without determining the locations of these nodes” [21] or
“the measurement data are meaningless without knowing the
location from where the data are obtained” [22]. Once sensors’
locations are estimated, shape estimation is no longer difficult.
However, the approach of estimating the sensor locations often
requires additional mechanisms or side information, such as
locations of anchor sensors and measurement mechanisms
including angle-of-arrival measurements, training data and
period, and distance-related measurements [20], [22]–[24].
Concrete examples are intersensor distance information [21],
location-known anchor sensors [25], set of signals between
sensors [26], and the system dynamic model and location
ambiguity of a small range [27].
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Fig. 1. Illustration of target object model

In addition, there has been research capturing the shape of
a target object by using cameras that cannot cover the whole
shape of the target object [28].

III. MODEL

The target object T is coming into and going out of a
monitored area Ω ⊂ R2. It is moving at an unknown constant
speed v > 0 along an unknown reference directional line. In
the remainder of this paper, we use this directional line as
the x-axis and its direction as the reference direction. (We do
not need to know the reference direction. This is just used to
define direction.) T (t) ⊂ R2 denotes the set occupied by T at
t.
T is a polygon, and its boundary ∂T is closed and simple

(no holes or double points) and consists of directional edges
{Lj}j where j ≥ 1 (Fig. 1). Let λj be the length of Lj , and let
ξj be the angle formed by Lj and the reference direction where
0 ≤ ξj < 2π. Here, {Lj}j are counted counterclockwise along
∂T and the head of Lj is the tail of Lj+1. We do not know
any of {λj , ξj}j . That is, we do not know the target-object
shape, size, or location.

There are ns directional distance sensors deployed in Ω.
Each sensor can continuously measure the distance to an
object lying in the sensing direction within the maximum
range rmax > 0. Therefore, when the location of a sensor
is x = (x, y) and its sensing direction from the reference
direction is θ, the sensing area S(x, θ) is {(x + s cos θ, y +
s sin θ), 0 ≤ ∀s ≤ rmax} and the measured distance r(t) at t
to T by this sensor is given as follows.

r(t) =

{
min(x+s cos θ,y+s sin θ)∈T (t) s, for S(x, θ) ∩ T (t) 6= ∅,
∅, for S(x, θ) ∩ T (t) = ∅.

(1)
In particular, r(t) = 0 if (x, y) ∈ T (t).

These sensors are independently and randomly deployed
with each other, and their locations are independent of T . Their
directions are also random and independently and uniformly
distributed in [0, 2π). For the i-th sensor (1 ≤ i ≤ ns), let xi
be its location, θi be its direction, and ri(t) be the measured
distance to T at t. Assume that we do not know xi or θi for
any i. That is, we do not know their locations or directions.
We may remove the subscript and use L, x, θ, r(t), and ξ
to simplify the notation. Because sensors monitor Ω, assume
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TABLE I
LIST OF VARIABLES AND PARAMETERS

Ω monitored area
– Target object –
T target object
T (t) the set occupied by T at t in R2

Lj j-th directional line segment of ∂T
λj length of Lj

ξj angle formed by Lj and reference direction
v moving speed of T
– Sensor –
ns number of sensors
rmax maximum sensing range
xi, θi i-th sensor’s location and direction
ri(t) measured distance to T by i-th sensor
– Basic properties –
pd(L|θ) period detecting whole L by sensor of direction θ
ld(L|θ) length in time of pd(L|θ)
sd(L|θ) slope of r(t) during pd(L|θ)
nd number of (ld, sd) pairs
mt total sensing time while T is Ω

θmin1(ξ) θmin1(ξ)
def
= arcsin(λ| sin ξ|/rmax)

Ψ(x) set of sensing results satisfying x
λ̃, ξ̃ temporary estimates of λ, ξ
n̂e(λ, ξ) estimated number of edges with (λ, ξ) (Eq. (19))
nc(a, a′; b, b′) number of consecutive sensing results belonging

to Ψa,a′ and Ψb,b′

that xi ⊂ Ω for all i. To remove the boundary effect of Ω,
assume |Ω|2 � r2

max, |T |2 where |X|2 is the area size of the
set X ⊂ R2.

Each sensor can communicate with a server collecting sens-
ing reports from individual sensors. It reports the measured
distance r(t) between the sensor and a target object if it detects
within the maximum sensing range or reports “no detection”
otherwise. Because it does not have a positioning function
or direction information of the sensor, the report does not
include x or θ. All the sensors are assumed to continuously
send reports.

In the remainder of this paper, we use the following no-

tations. 1(z)
def
=

{
1, if z is true,
0, otherwise, and ẑ is an estimator of

z. For angles t1, t2, 〈t1, t2〉 is an interval [t1, t2) under mod
2π. That is, 〈t1, t2〉 is an interval [t1, t2) if t1, t2 < 2π and is
intervals [t1, 2π) ∪ [0, t2 − 2π) if t1 < 2π, 2π ≤ t2 < 4π.

Table I lists the variables and parameters used in the
remainder of this paper for the reader’s convenience.

IV. BASIC PROPERTIES

This section discusses basic properties of r(t). Let us see
a simple example illustrated in Fig. 2. Instead of moving
target objects, the relative position of the sensor is moving
in this figure. The sensor detects only a single edge located
the nearest to the sensor and its distance from the sensor is
r(t). Note that r(t) = 0 occurs if and only if the sensor is in
T (t).

An important observation of this figure is that there may be
some jumps in r(t) from a certain value between 0 and rmax
to another certain value (r1(t) in Fig. 2). Only a single edge
located the nearest to a sensor is detected by the sensor and
its distance from the sensor is r(t). Although other edges are

Time t 

Moving direction  
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Sensing 
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Fig. 2. Basic example
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Fig. 3. ω(θ)

within a sensing area, they are not detected or their distances
to the sensor are not measured. That is, a detection of an edge
may be blocked by another edge. A jump down (up) occurs
when a blocked detection starts (finishes).

A sensor detects an edge L for a given θ if and only if
the sensor is located in ω(θ), where ω(θ) is a parallelogram
attached to the right-hand side of L and one of its edges is L
and another edge has the length rmax and the direction θ (Fig
3). If and only if θ ∈ 〈ξ, ξ + π〉, ω(θ) exists. That is,

θ − ξ ∈ [0, π) mod 2π. (2)

Pay attention to a case in which a sensor keeps detecting
Lj (Fig. 4). When a sensor keeps detecting Lj , r(t) becomes
continuous. Because Lj is a line segment, r(t) becomes a line
segment while the sensor keeps detecting it (Fig. 2). When
the period pd(Lj |θ) detecting the whole Lj with r(t) > 0
by a sensor the direction of which is θ starts at ts and ends
at te, an event corresponding to ts is (i) a change of slope at
r(ts) > 0, (ii) a jump down of r(t) at ts, or (iii) r(ts) < rmax
and r(ts − dt) = ∅ and an event corresponding to te is (i) a
change of slope at r(te) > 0, (ii) a jump up of r(t) at te, or
(iii) r(te−dt) < rmax and r(te) = ∅. In the remainder of this
paper, we use data regarding pd(Lj |θ) the abovementioned
start and end events of which exist if we do not explicitly
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Fig. 4. Case when sensor keeps detecting Lj
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Fig. 5. Illustration of ld and sd

indicate otherwise. This suggests that we observe the whole
Lj with r(t) > 0 during pd(Lj |θ).

Let ld(L|θ) be the length in time of pd(L|θ) where pd(L|θ)
is the period detecting the whole L with r(t) > 0 when the
sensor direction is θ. Define sd(L|θ)

def
= r(te)−r(ts)

vld(L|θ) where
pd(L|θ) starts at r(ts) and ends at r(te). That is, sd(L|θ) is
the slope of the r(t) graph during pd(L|θ) where the x-axis
of the graph is the moving length of T . Due to geometric
calculation (Fig. 5),

vld(L|θ)| sin θ| = λ sin(θ − ξ), (3)
−vld(L|θ)sd(L|θ)| sin θ| = λ sin ξ. (4)

Thus,
sd(L|θ) = − sin ξ/ sin(θ − ξ). (5)

The following are the basic properties of ld(L|θ) and
sd(L|θ).

Because of Eq. (5),

|sd(L|θ)| ≥ | sin ξ|. (6)

Because of Eq. (4) and v, ld(L|θ), λ, | sin θ| ≥ 0,

sd(L|θ)/ sin ξ ≤ 0. (7)

Because of Eqs. (3) and (5),

{sd(L|θ) = 0} ⇔ {ξ = 0, π;λ = vld(L|θ)}. (8)

A. For a single pair of ld and sd
When ld(L|θ) and sd(L|θ) are results of detecting an edge

L of length λ and direction ξ, we can describe ξ as a function
of λ. Here, note that we do not know θ or which edge we will
estimate.

Due to Eq. (5), (−1+sd cos θ) sin ξ = sd sin θ cos ξ. Apply
Eq. (4) to sin θ in this and obtain the following.

cos ξ = ±µ

µ
def
=

(λ/v)2 + l2d(1− s2
d)

2λld/v
(9)

Because of Eq. (7),

ξ =

{
ξ0, π − ξ0, if sd < 0,
−ξ0,−π + ξ0, if sd ≥ 0, (10)

where ξ0
def
= arccosµ ∈ [0, π).

[Remark] Eq. (10) means that we cannot uniquely determine
ξ. In fact, we cannot distinguish T from its mirror image only
through directional distance sensors randomly deployed.

B. For two pairs of ld and sd detecting a single edge

Assume that two sensors detect the same edge of length λ
and direction ξ and that their sensing results are (ld, sd) and
(l′d, s

′
d), respectively. Because of Eq. (9), we obtain λ:

λ = v

√
ldl′d
l′d − ld

{l′d(1− s′2d )− ld(1− s2
d)}. (11)

By using λ in Eq. (10), we obtain ξ.

C. Number of results sensing a whole edge with r(t) > 0

The estimation method proposed in this paper uses sensing
result pairs (ld, sd) derived from r(t) > 0. Here, the expecta-
tion of the number nd of such sensing result pairs is derived.
This is used to estimate the number of edges.

Consider an edge the length of which is λ and direction of
which is ξ. A sensor the sensing direction of which is θ detects
this whole edge with r(t) > 0, if θ ∈ 〈ξ, ξ+π〉 and this sensor
is located in a strip the width of which is rmax| sin θ|−λ| sin ξ|
(Fig. 6). Because the width of this strip must be positive,

θ ∈ [θmin1, π − θmin1) ∪ [π + θmin1, 2π − θmin1), (12)

where θmin1(ξ)
def
= arcsin(λ| sin ξ|/rmax) for λ| sin ξ| ≤

rmax. (Note θmin1 ∈ [0, π/2].) Because the strip length inside
Ω is vmt and the sensor density is ns/|Ω|2, E[nd(λ, ξ)] for
λ| sin ξ| ≤ rmax is given as follows where mt is the total
sensing time start from the epoch T ’s entering Ω and to the
epoch T ’s leaving from Ω.

E[nd(λ, ξ)]

= vmtns

∫
θ∈Θ0

(rmax| sin θ| − λ| sin ξ|)dθ
2π|Ω|2

= vmtns
2rmax cos θmin1 − (π − 2θmin1)λ| sin ξ|

2π|Ω|2
,

(13)

where Θ0
def
= ([θmin1, π−θmin1)∪ [π+θmin1, 2π−θmin1))∩

[ξ, ξ + π). (The start epoch is detected by the first epoch a
sensor detects T and the end epoch detected by the epoch none
of the sensors detect T .) For λ| sin ξ| > rmax, E[nd(λ, ξ)] =
0.
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Fig. 6. Location of sensors detecting whole edge with r(t) > 0

V. TARGET-OBJECT SHAPE ESTIMATION

Now, we are in a position to discuss target-object shape
estimation. Additionally, we estimate v. As a preliminary, we
need to obtain (ld, sd) from the measured distance data r(t) >
0.

The shape estimation method consists of five parts. The
first part estimates the target object speed v. Because sensing
results depend on v, estimating v is an important first step for
estimating the target-object shape. The second step estimates
the edges parallel to the x-axis, which is the moving direction
of T . Because there are many examples of edges of target
objects being along the moving direction, that is, ξ = 0, π
and because the estimation becomes very easy for ξ = 0, π, it
is worth treating the edges parallel to the x-axis as a special
case. The third part estimates the lengths and directions of
the other edges. The second and third parts implicitly include
the estimation of the number of edges of T . The fourth part
estimates of the order of the edge. That is, it determines a
consecutive edge of a certain edge. The first to fourth parts
should provide the shape of the target object T , but we
typically may not find the complete shape of T when we fail
to estimate an edge. Particularly when T is not convex, it is
likely that we fail to estimate edges forming concave parts
of T . The fifth part makes up for errors for estimating edges
forming concave parts of ∂T .

Because sensors are randomly distributed over Ω, we can
obtain enough sensors that have sensing results for a whole
edge if rmax is sufficiently long and ns is sufficiently large.
Assume that we obtain {(l(j)d (i), s

(j)
d (i))}j from the sensed

distance ri(t) of the i-th sensor where l(j)d (i) (s(j)
d (i)) is the

j-th ld (sd) derived as its sensing result. Here, note that we do
not know which edge we obtain (l

(j)
d (i), s

(j)
d (i)). This makes

the estimation problem difficult and unique.

A. First part: estimating moving speed of T

Obtain the number of sensors detecting T with r(t) 6= 0 for
any t, and derive its expectation as a function of v to estimate

v. Note that such sensors are in the red dotted-line strip in
Fig. 6 the width of which is rmax sin θ for a given 0 ≤ θ < π.
(For a given π ≤ θ < 2π, another strip just above T the width
of which is rmax| sin θ|.) Because sensor density is ns/|Ω|2
and its strip size is vmtrmax sin θ,

E[

ns∑
i=1

1(ri(∃t) > 0, ri(∀t) 6= 0)] (14)

= 2vmtnsrmax

∫ π

0

sin θdθ/(2π|Ω|2) (15)

= 2vmtnsrmax/(π|Ω|2). (16)

Let nr be the measured sample of this number. Then,

v̂ = πnr|Ω|2/(2mtnsrmax). (17)

[Remark] vmt is used as the length of a strip in Ω in the first
part to estimate v and the second and third parts to determine
the number of edges. The measured vmt is not exactly the
length of a strip in Ω and can deteriorate the accuracy if
vmt � max(rmax, |T |1) is not satisfied where |X|1 is the
perimeter length of X ⊂ R2. If |Ω|1 � rmax is not satisfied,
the assumption of this strip makes the estimate less accurate.

B. Second part: estimating edges parallel to moving direction
of T

Let Ψ(sd = 0) be the set of samples (sensing results)
{(l(j)d (i), s

(j)
d (i))}i,j satisfying s

(j)
d (i) = 0. Due to Eq. (8),

s
(j)
d (i) = 0 means

ξ = 0, π;λ = vld. (18)

Therefore, these are basic estimates of λ and ξ. There can
be multiple edges parallel to the moving direction of T .
Ψ(sd = 0) corresponds to multiple edges of different lengths
with directions 0 or π. Otherwise, Ψ(sd = 0) corresponds to
multiple edges of the same length or a single edge.

When we have no idea how many edges are parallel to the
moving direction, it is a good idea to apply a classification tool
such as Mclust of R [29] to the set of {l(j)d (i)}i,j in Ψ(sd = 0).
Such a classification tool can divide Ψ(sd = 0) into several
subsets {Ψ0,k(sd = 0)}k. For each subset, obtain estimates.
That is, obtain the edge length estimate λ̂(Ψ0,k(sd = 0)) by
computing the mean of v̂ld, ld ∈ Ψ0,k(sd = 0). Note that
ξ̂(Ψ0,k(sd = 0)) = 0, π for any k.

The number of edges to which Ψ(sd = 0) or its subset
corresponds can be estimated through E[nd(λ, ξ)] given by
Eq. (13) when the edge length λ and direction ξ are given.
For given λ̂ and ξ̂, n̂e(λ̂, ξ̂) defined below (approximately)
provides the number of edges corresponding to Ψ(sd = 0) or
its subset, where ñd(λ, ξ) is the observed nd(λ, ξ) and

n̂e(λ̂, ξ̂)
def
= ñd(λ̂, ξ̂)/E[nd(λ̂, ξ̂)]. (19)

n̂e(λ̂, ξ̂) enables us to determine the number of edges corre-
sponding to Ψ(sd = 0) or its subset, where λ̂, ξ̂ are estimates
derived by Ψ(sd = 0) or its subset. ñd(λ̂, ξ̂) is given by the
number of samples in Ψ0,k(sd = 0) such that λ̂ is derived by
using these samples.
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C. Third part: estimating edges in general

This part consists of (i) temporary estimation of the length
and direction of each edge, (ii) evaluation of the number of
sensing results consistent with the temporary estimation, (iii)
decision of whether the temporary estimation is adopted, and
(iv) estimation of number of edges. We adopt the temporary
estimated length and direction with which many sensing
results are consistent as their estimates λ̂, ξ̂. This idea comes
from the fact that, if the estimates for Lj are exact, sensing
results detecting Lj are consistent with the estimates, where
a consistency test is defined below. Similarly to the edges
parallel to the moving direction, there can be multiple edges
of an estimated length and direction. Thus, in (iv), we estimate
the number of edges the length and direction of which are λ̂, ξ̂.

1) Temporary estimation: For temporary estimation,
we use two pairs of measured sensing results
(l

(j)
d (i), s

(j)
d (i)), (l

(j′)
d (i′), s

(j′)
d (i′)) 6∈ Ψ(sd = 0). Apply

Section IV-B to these two pairs, use v̂ as v, and obtain the
temporary estimates λ̃, ξ̃. If these two pairs of measured
sensing results are those of the same edge, the temporary
estimates should be good estimates. Otherwise, they are
meaningless. Therefore, we should choose sensing result
pairs that are likely to be sensing results of the same edge.

To efficiently find such pairs, we should classify
{(l(j)d (i), s

(j)
d (i))}i,j 6∈ Ψ(sd = 0) into several sets. If

(l
(j)
d (i), s

(j)
d (i)) and (l

(j′)
d (i′), s

(j′)
d (i′)) are the sensing results

regarding the same edge, they are likely to belong to the same
set defined below. Let Ψ(0 < sd � 1), Ψ(−1 � sd < 0),
Ψ(1 � sd), Ψ(sd � −1), Ψ(sd ≈ 1), and Ψ(sd ≈ −1)

be examples of such sets. (l
(j)
d (i), s

(j)
d (i)) belonging to Ψ(γ)

means that s(j)
d (i) satisfies γ where γ ∈ {0 < sd � 1,−1�

sd < 0, 1 � sd, sd � −1, sd ≈ 1, sd ≈ −1}. For the
following reasons, these sets are good candidates for sets
classifying {(l(j)d (i), s

(j)
d (i))}i,j .

According to Eq. (6), |sd| � 1 means | sin ξ| � 1. That
is, ξ ≈ 0, π. Because of Eq. (7), Ψ(0 < sd � 1) corresponds
to {ξ ≈ 2π or π} and {ξ ∈ (π, 2π)}. Similarly, Ψ(−1 �
sd < 0) corresponds to {ξ ≈ 0 or π} and {ξ ∈ (0, π)}.
Thus, if we choose (l

(j)
d (i), s

(j)
d (i)) and (l

(j′)
d (i′), s

(j′)
d (i′)) in

Ψ(0 < sd � 1) (Ψ(−1� sd < 0)), it is likely that those two
pairs are sensing results of the same edge.

Due to Eq. (5), |sd| � 1 means θ ≈ ξ, ξ+π. Then, because
of Eq. (4), ld|sd| ≈ λ/v. Therefore, we use Ψ(1 � sd)
(Ψ(sd � −1)) and, if needed, divide Ψ(1 � sd) (Ψ(sd �
−1)) into subsets of elements that have similar ld|sd|.

The remaining pairs {(l(j)d (i), s
(j)
d (i))}i,j that do not belong

to any of sets mentioned above belong to sets Ψ(sd ≈ 1)
Ψ(sd ≈ −1).

2) Consistency test: If ld and sd are sensing results for the
edge the length and direction of which are exactly λ̃ and ξ̃, Eq.
(10) with λ = λ̃, v = v̂ yields ξ̃. In accordance with this fact,
the consistency test of a pair ld, sd is defined as the following
procedure for a given temporary estimates λ̃, ξ̃:

Compute Eq. (10) with λ = λ̃ and v = v̂ to
obtain ξ(ld, sd) and compare this ξ(ld, sd) with ξ̃.
(Alternatively, compute Eq. (9) with λ = λ̃ and
v = v̂ to obtain µ, and compare this µ with cos ξ̃.)

If they (approximately) agree, this pair ld, sd passes
the test. That is, this pair (ld, sd) is consistent with
the temporary estimates λ̃, ξ̃. Otherwise, it fails.

3) Adoption as estimates: The first pair we adopt as an
estimate pair (λ̂, ξ̂) is the temporary estimate pair (λ̃, ξ̃)
that has the largest number of consistent sensing results in
Ψ1(sd 6= 0) where Ψ1(sd 6= 0) is the set of sensing results
{(l(j)d (i), s

(j)
d (i))}i,j not included in Ψ(sd = 0). In general,

the k-th estimate pair we adopt is the estimate pair that has the
largest number of consistent sensing results in Ψk(sd 6= 0). Let
Ψk,0(sd 6= 0) be the sensing results consistent with the k-th
estimate pairs. By removing Ψk,0(sd 6= 0) from Ψk(sd 6= 0),
define Ψk+1(sd 6= 0).

4) Estimating number of edges: There can be one or more
edges the length and direction of which are λ̂, ξ̂. Similar to
Section V-B, the number of edges the length and direction of
which are λ̂, ξ̂ can be estimated through E[nd(λ, ξ)] given by
Eq. (13) with λ = λ̂, ξ = ξ̂. We use n̂e(λ̂, ξ̂) as the estimate
of the number of edges the length and direction of which are
λ̂, ξ̂. The number of estimated edges through this method can
be zero when n̂e(λ̂, ξ̂) is small.

D. Fourth part: Estimating order of edges

The second and third parts provide us pairs of edge length
and direction. However, to identify the shape of the target, we
need to identify consecutive edges, that is, the order of edges
that connect.

To derive a method identifying the order of edges, pay at-
tention to the behavior of r(t). r(t) is continuous and becomes
two consecutive line segment parts pd(Lj |θ), pd(Lj+1|θ) when
a sensor the direction of which is θ detects consecutive edges
Lj , Lj+1. We use data detecting the whole of consecutive
edges Lj , Lj+1, but we do not know j.

Assume that (l
(m)
d (i), s

(m)
d (i)) and (l

(m+1)
d (i), s

(m+1)
d (i))

are the i-th sensor’s consecutive sensing results and belong
to Ψa,a′ and Ψb,b′ where Ψa,a′ ,Ψb,b′ ∈ {Ψk,0(sd 6= 0)}k ∪
{Ψ0,k(sd = 0)}k. If a sensor consecutively detects multiple
edges without jumps of r(t), these edges are consecutive. If
these sensing results are consistent with (λ̂(Ψa,a′), ξ̂(Ψa,a′))

and (λ̂(Ψb,b′), ξ̂(Ψb,b′)), respectively, it is likely that an edge
the length and direction of which are λ̂(Ψa,a′), ξ̂(Ψa,a′)
connects to an edge the length and direction of which
λ̂(Ψb,b′), ξ̂(Ψb,b′). Let nc(a, a′; b, b′) be the number of con-
secutive sensing results belonging to Ψa,a′ and Ψb,b′ . We
judge that an edge of length λ̂(Ψa,a′) and direction ξ̂(Ψa,a′)

connects to an edge of length λ̂(Ψb,b′) and direction ξ̂(Ψb,b′),
if nc(a, a′; b, b′) is large.

When the i-th sensor’s sensing results (l
(m)
d (i), s

(m)
d (i))

and (l
(m+1)
d (i), s

(m+1)
d (i)) are consecutive and

s
(m)
d (i) > s

(m+1)
d (i), this vertex formed by two consecutive

edges for which sensing results are (l
(m)
d (i), s

(m)
d (i)) and

(l
(m+1)
d (i), s

(m+1)
d (i)) is concave. Otherwise, it is convex.

Because the temporary estimates in the second and third
parts based on Section IV-B are not unique, this information
regarding convexity/concavity is useful to reduce the number
of combinations of estimates.
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Fig. 8. Blocking detection of Li due to convexity

In addition, the order of detection by a single sensor
provides the locations of edges. When T moves right, an edge
to the right is detected earlier than that to the left by a single
sensor. This information is particularly useful to reduce the
number of patterns of connected edges. For example, when the
direction of an edge L is estimated as π/2 and its consecutive
edge L′ is estimated as 0 or π, their connectivity patterns
are illustrated in Fig. 7. When T moves right and a sensor
detects L first and detects L′ later, we can conclude that L
and L′ connect as (b) or (d), not (a) or (c). This conclusion is
independent of the sensor direction.

E. Fifth part: Compensating edges forming concave vertex

This part may provide additional estimates of edges forming
a concave vertex of T . (By finding jumps in r(t), we can judge
the existence of a concave vertex.) As described below, the
estimated number of edges with E[nd(λ, ξ)] given by Eq. (13)
in the second and third parts may underestimate the number
of edges for non-convex T . As an extreme case, the estimated
number becomes zero. This part compensates for this error.

When T has a concave part, E[nd(λ, ξ)] may not be given
by Eq. (13). The reason is that a sensor that should detect
this edge may not because a part of T is between this edge
and this sensor. That is, a part of T blocks this sensor from
detecting this edge.

We take account of this block and modify Eq. (13) for non-
convex T . We consider an event in which two consecutive
edges form a concave vertex of T and one may block the
detection of the other. We neglect other blocking events caused
by other edges. As shown in Fig. 8, the detection of Li by the
sensor the direction of which is θ is not blocked only if ξi−1 <
θ. In addition, similarly to Section IV-C, to detect the whole Li

(if no blocking), θ ∈ 〈ξi, ξi+π〉 and θ ∈ [θmin1, π−θmin1)∪
[π + θmin1, 2π − θmin1). Hence, E[nd(λi, ξi)] for a concave
vertex (ξi−1 ∈ 〈ξi, ξi+π〉) with the condition λ| sin ξi| ≤ rmax
is given as follows.

E[nd(λi, ξi)]

= vmtns

∫
θ∈Θ(θmin1)

(rmax| sin θ| − λ| sin ξi|)dθ
2π|Ω|2

= vmtnsf(θmin1, λ| sin ξi|)/(2π|Ω|2), (20)

where Θ(θ)
def
= ([θ, π − θ) ∪ [π + θ, 2π − θ)) ∩ [ξi−1, ξi + π)

and
f(θ, x)

def
=

∫
z∈Θ(θ)

(rmax| sin(z)| − x)dz. (21)

f(θ, x) is given in Appendix.
Instead of Eq. (13), use Eq. (20) for concave vertexes and

reevaluate n̂e(λ̂, ξ̂) in the second and third parts. Reevaluation
may result in an increase in the number of edges.

VI. NUMERICAL EXAMPLES

A. Default conditions of examples

In this section, the following conditions are used as the
default conditions unless explicitly indicated otherwise.

Ω is a rectangular area of 5000 × 300 the longer edge of
which is along the x-axis. T is moving on the centerline
parallel to the x-axis of Ω. Although our model was con-
tinuous in time, sensors report at a single time unit interval
in the simulation. rmax = 100, ns = 2000, v = 1. If
|r(t+1)−r(t)| < 0.1, we judge that sd = 0. As a consistency
test, µ derived by Eq. (9) was used and it was tested that | cos ξ̃|
was between µ(λ = 0.85λ̃) and µ(λ = 1.15λ̃).

B. Basic examples

To understand the behavior of the estimates derived by
the proposed method, we use a simple T . This is a triangle
of {(λi, ξi)}i=1,2,3 = (50

√
3, 0), (100, 5π/6), (50, 3π/2). Be-

cause a triangle has a unique order of edges connecting except
for its mirror image, we can evaluate the shape estimation
accuracy by the accuracy of the estimated length and direction
of each edge without taking account of the order of edges
connecting. Therefore, two metrics are evaluated by using ten
simulation runs for each case: (i) mean square error (MSE)
def
=
∑10
j=1

∑3
i=1 ε

2
i,j/10, and (ii) relative square root of MSE

for Li (RSR-MSEi)
def
=
√∑10

j=1 ε
2
i,j/10/λi. Here, ε2i,j is an

square error of the estimated location of the head of Li at
the j-th simulation run when its tail is placed at the origin.
That is, ε2i,j

def
= (λi cos ξi− λ̂i cos ξ̂i)

2 + (λi sin ξi− λ̂i sin ξ̂i)
2

derived at the j-th simulation. (For two estimates of ξi, the
estimate minimizing the square error is adopted as the formal
estimate.) Although the number of edges estimated may not
be three for some ill conditions, these metrics are calculated
for the first three estimates obtained.

First, the relationship between the number of sensors and the
estimation accuracy was investigated. Fig. 9 plots RSR-MSE
for each edge. Additionally, a small T that has edges half
as long as those of the original T was also used to evaluate
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the estimation accuracy. There were three important findings.
(1) A vertical edge (short edge) was very difficult to estimate
whereas a horizontal edge was easy. The former caused errors
of about 30% and the latter caused errors of a few percent for
ns ≥ 1000. (2) The estimation accuracy is fairly insensitive to
the size of T . Therefore, the vertical edge (short edge) seems
to be difficult to estimate mainly because it is vertical not
because it is short. (3) The number of sensors ns should be
larger than 500, but the estimation accuracy is fairly insensitive
to ns if ns > 500.

Second, the impact of noise on the estimation accuracy was
investigated. For the set of observed periods pd without noise,
noises were imposed. With probability pb, r(t) was lost at each
t. As a result, ld for this pd was broken at this t. In addition,
a zero-mean Gaussian noise was imposed on each sd. Figure
10 plots the MSE. For ldpb � 1 such as pb = 0, 0.001, the
MSE super-linearly increased as the standard deviation of the
noise on sd increased. When ldpb ≈ 1 such as pb = 0.01, the
estimation became very poor for any standard deviation of the
noise on sd.

Third, the estimation accuracy for various speeds v is
investigated. As demonstrated in Figure 11, the shape of T
is difficult to estimate when T moves fast. This seems to be

0
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3000

4000

5000

0 2 4 6

M
SE

True speed

n_s = 2000

n_s = 500

Fig. 11. Relationship between target object moving speed and estimation
accuracy

because we use sensor reports at a single time unit interval.
Therefore, when a sensor finishes detecting one edge and and
starts detecting another, we may miss the exact epoch of this
change in the edges detected. This can introduce a sensing
error. For a small ns, MSE is sensitive to v.

C. Realistic examples

We applied the proposed estimation method to three toy-
vehicles ((a) truck, (b) sports car, and (c) tank) shown in Fig.
12. The truck and sports car are convex, and the truck and tank
have edges along the moving direction. For these examples,
the number of edges of length λ̂(Ψa,a′) and direction ξ̂(Ψa,a′)

is estimated as bn̂e(λ̂(Ψa,a′), ξ̂(Ψa,a′)) + 0.5c. Even if this
number is zero, we set this number as one if there exists (b, b′)
such that nc(a, a′; b, b′) ≥ 30.

In the following examples, in addition to the mirror image
of an estimated shape, ambiguity caused by two estimates of
ξ exists and the estimated shape of T cannot be uniquely
determined. However, the ambiguity of its shape is fairly
small. In addition, note that both ends of ∂T may not meet.

1) Shape estimation of truck: In accordance with the sec-
ond and third parts of our proposed method, we obtained the
estimated edge length and direction shown in Table II. We also
obtained consecutive edges in the fourth part. The obtained
results are shown in Table III where two consecutive edges
are listed in a line. Among two consecutive edges, an edge
closer to the head of truck is shown in the “Head” column
and an edge closer to the tail is shown in the “Tail” column.
Edge IDs (i) - (iv) used were those in Table II.

Results in these tables enabled us to plot the shape of T . For
example, a near-vertical edge (iii) connects to short two edges
(ii), each of (ii) connects to a horizontal edge (i), and two
edges (i) connect to edge (iv). The fifth step in the proposed
method was not applied. The estimated shape of T is plotted
in Fig. 13-(a). (Here, the shapes where ∂T is almost complete
are plotted. There are combinations of ξi estimated as shown
in Table II that do not make ∂T at all. For example, if both
estimated edges (i) take the direction 0, we cannot make ∂T
at all.)
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TABLE II
ESTIMATED EDGE LENGTH AND DIRECTION OF TRUCK

Num. edges λ̂ ξ̂
(i) 2 139.1 0,π
(ii) 2 6.348 0.8355,2.306
(iii) 1 31.03 1.726,1.416
(iv) 1 39.10 -1.900,-1.241

TABLE III
ESTIMATED CONSECUTIVE EDGES OF TRUCK

Head Tail Num. samples
(iii) (ii) 104
(ii) (i) 252
(i) (iv) 70

The estimated shape was slightly more slender than the
actual shape, and the vertical edges were not estimated as
vertical. That is, the error of the shape estimation mainly
comes from the estimation error of vertical edges. This is
consistent with the results for the basic examples.

2) Shape estimation of sports car: Similar to the example
of the truck, the proposed estimation was applied to the sports
car. Tables IV and V were obtained. Again, the fifth step in
the proposed method was not applied.

The estimated shape plotted in Fig. 13-(b) looks similar to
the actual shape. The estimation errors mainly occurred for
the following two reasons. One was the error of one vertical
edge: its estimated length was too short. The other was that the
two long nearly horizontal edges were estimated as horizontal
edges. Because they are long, small errors in direction resulted
in large errors in the estimated shape.
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Fig. 13. Estimated shape of target objects

TABLE IV
ESTIMATED EDGE LENGTH AND DIRECTION OF SPORTS CAR

Num. edges λ̂ ξ̂
(i) 2 61.02 0,π
(ii) 2 10.51 0.6965,2.445
(iii) 2 9.731 -2.439,-0.7022
(iv) 1 9.507 1.467,1.674
(v) 1 4.569 -1.399,-1.742

TABLE V
ESTIMATED CONSECUTIVE EDGES OF SPORTS CAR

Head Tail Num. samples
(iv) (ii) 83
(ii) (i) 305
(i) (iii) 280
(iii) (iii) 51
(iii) (v) 30

3) Shape estimation of tank: In accordance with our pro-
posed method, we obtained the estimated edge length and
direction shown in Table VI where the number of edges
in parentheses means that after applying the fifth part of
our proposed method. We also obtained consecutive edges in
Table VII. The shape was plotted in Fig. 13-(c). Connections
between edge (iii) near the head and edge (i) near the tail
were observed but not used in the estimated shape in T . This
seems to be because the proposed method did not accurately
distinguish short vertical edges. That is, the connection be-
tween edges (iii) and (i) should have been that between edges
(iv) and (i).

The estimated shape was too slender. The reason for the
estimation error in the shape of T seemed similar to that for the
first example (truck). That is, the estimation error of vertical
edges was the main reason.

All through these three examples, edge lengths tend to be
underestimated. A possible reason is that r(t) is not exactly
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TABLE VI
ESTIMATED EDGE LENGTH AND DIRECTION OF TANK

Num. edges λ̂ ξ̂
(i) 1(2) 45.84 0,π
(ii) 2 137.5 0,π
(iii) 1 14.70 0.9678,2.174
(iv) 1 7.420 1.627,1.514
(v) 1 44.00 -1.113,-2.028
(vi) 1 20.69 1.591,1.550

TABLE VII
ESTIMATED CONSECUTIVE EDGES OF TANK

Head Tail Num. samples
(iv) (i) 78
(i) (iii) 99
(iii) (ii) 113
(iii) (i) 80
(ii) (v) 55
(i) (vi) 30
(vi) (ii) 31

continuous but sampled at every one unit time interval. This
sampling may cut the end of a detected edge and may result
in a short edge length. Especially, this estimation error seems
to be more serious to vertical edges than to other ones. This
is probably because as for a vertical edge, the detection time
length ld is typically short and the change of the distance
|r(te)− r(ts)| is large as explained below.

Measurement errors include the detection time error ∆ld
and the slope error ∆sd. While the former appears systemat-
ically with negative value as explained above and should be
considered, the latter is not serious because the slope sd is
not so sensitive to the time sampling. Thus, the magnitude of
edge length’s error mainly depends on the derivative of λ with
respective to ld, not sd as follows.

∂λ

∂ld
=

1

2λ(1− x)

{
2

[
(r(te)− r(ts))2

ld
− ld

]
(22)

−
[

(r(t′e)− r(t′s))2

l′d
− l′d

]
+
λ2

l′d

}
, (23)

where x = ld/l
′
d.

With λ held constant, Eq. (23) appears to be large when
ld is small and |r(te) − r(ts)| is large. Eq. (23) depends
on ξ implicitly through ld and |r(te) − r(ts)|. In fact, it
can be shown that the expectation of ld under the mea-
sure (rmax|sinθ| − λ|sinξ|)dθ/

∫
Θ0

(rmax|sinθ| − λ|sinξ|)dθ
monotonously decreases with respect to ξ over the interval
[0, π/2], and that of |r(te) − r(ts)| monotonously increases
over the same interval. This fact supports the hypothesis that
the estimation error of vertical edge (ξ = π/2) length is likely
to be large because of small ld and large |r(te)− r(ts)|.

VII. CONCLUSION

This paper proposed a method for estimating the shape of
a target object moving at an unknown speed and unknown
location by using location-unknown sensors. This proposed
method demonstrated that simple sensors without location
information can estimate a target-object shape even though

there are many unknown factors. The estimate may not be
accurate enough, but the proposed method presents a new
direction for shape estimation. Simultaneously, this method
is important as a crowdsensing and participatory sensing that
maintains location privacy.

The following remain as for further study. (1) The proposed
method used sensing data that detected whole edges. This
means that some sensing data were not used. Therefore,
sensing data that do not correspond to whole edges need to
be efficiently used. (2) The proposed method assumed the
polygon target object and moving on a straight line. It thus
needs to be extended to a non-polygon target object and a
non-straight line movement.

In addition to a theoretical study, an experiment using the
proposed method also remains as further study.
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APPENDIX

For θ ∈ [0, π/2], define Zone1(θ)
def
= [0, θ) ∪ [2π − θ, 2π),

Zone2(θ)
def
= [θ, π − θ), Zone3(θ)

def
= [π − θ, π + θ),

Zone4(θ)
def
= [π + θ, 2π − θ). For 0 ≤ ξi−1, ξi < 2π, f(θ, x)

is given as follows for ξi−1 ∈ [ξi, ξi + π].
When ξi−1, ξi are in Zone1(θ), Θ = [θ, π − θ). Thus,

f(θ, x) = 2r cos θ − x(π − 2θ).
When ξi is in Zone1(θ) and ξi−1 is in Zone2(θ), Θ =

[ξi−1, π− θ). Thus, f(θ, x) = r(cos ξi−1 + cos θ)−x(π− θ−
ξi−1).

When ξi is in Zone1(θ) and ξi−1 is in Zone3(θ), Θ = ∅.
Thus, f(θ, x) = 0.

When ξi−1, ξi are in Zone2(θ), Θ = [ξi−1, π − θ) ∪ [π +
θ, π + ξi). Thus, f(θ, x) = r(2 cos θ + cos ξi−1 − cos ξi) −
x(π − 2θ − ξi−1 + ξi).

When ξi is in Zone2(θ) and ξi−1 is in Zone3(θ), Θ =
[π+θ, π+ξi). Thus, f(θ, x) = r(− cos ξi+cos θ)−x(ξi−θ).

When ξi is in Zone2(θ) and ξi−1 is in Zone4(θ), Θ =
[ξi−1, ξi + π). Thus, f(θ, x) = −r(cos ξi−1 + cos ξi) −
x(−ξi−1 + ξi + π).

When ξi−1, ξi are in Zone3(θ), Θ = [θ+π, 2π− θ). Thus,
f(θ, x) = 2r cos θ − x(π − 2θ).

When ξi is in Zone3(θ) and ξi−1 is in Zone4(θ), Θ =
[ξi−1, 2π − θ). Thus, f(θ, x) = r(cos θ − cos ξi−1)− x(2π −
θ − ξi−1).

When ξi is in Zone3(θ) and ξi−1 is in Zone1(θ), Θ = ∅.
Thus, f(θ, x) = 0.

When ξi−1, ξi are in Zone4(θ), Θ = [ξi−1, 2π−θ)∪[θ, ξi+
πmod2π). Thus, f(θ, x) = r(2 cos θ − cos ξi−1 + cos ξi) −
x(π − 2θ − ξi−1 + ξi).

When ξi is in Zone4(θ) and ξi−1 is in Zone1(θ), Θ =
[θ, ξi+πmod2π). Thus, f(θ, x) = r(cos θ+cos ξi)−x(−π−
θ + ξi).

When ξi is in Zone4(θ) and ξi−1 is in Zone2(θ), Θ =
[ξi−1, ξi+π). Thus, f(θ, x) = r(cos ξi−1+cos ξi)−x(−ξi−1+
ξi + π).
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