Decentralised Model Predictive Control of Electric Vehicles Charging

Alessandro Di Giorgio Member, IEEE, Alessandro Giuseppi* Student Member, IEEE, Roberto Germana and
Francesco Liberati Member, IEEE

Abstract— This paper presents a decentralised control strat-
egy for the management of simultaneous charging sessions
of electric vehicles. The proposed approach is based on the
model predictive control methodology and the Lagrangian
decomposition of the constrained optimization problem which
is solved at each sampling time. This strategy allows the
computation of the charging profiles in a decentralised way,
with limited information exchange between the electric vehicles.
The simulation results show the potential of the proposed
approach in relation to the problem of shaving the aggregated
power withdrawal from the electricity distribution grid, while
still satisfying drivers’ preferences for charging.

I. INTRODUCTION

In recent years the electric mobility has grown in popularity,
pushed by the need to overcome the problems of pollution,
depletion of natural oil and fossil fuel reserves, and rising
petrol costs. The automotive industry is also motivated to
adopt cleaner and more sustainable technologies by the
governmental regulations and international agreements (see
e.g. [1][2]). As largely recognized, massive Electric Vehicles
(EVs) charging represents a concern for the operation of
electricity distribution grids, but also an opportunity, due to the
possibility of exploiting the flexibility offered by the vehicles
during charging. Over the last decade, this remark has moti-
vated the investigation of several methodologies for the control
of the EVs charging process according to a pletora of grid and
drivers’ requirements. Among the criteria used for classifying
the control approaches, the centralized/decentralized nature
of the control plays an important role, since it reflects two
different visions of the new electromobility paradigm. On
the one hand the electric companies, as responsible for the
secure operation of the electric network or interested players
in the electricity markets, are interested in managing the
charging processes in a centralized way; on the other car
manufacturers are also interested in using the EVs as a mean
for enabling new business models and avoiding to share
proprietary information related to the EVs charger with other
market players, which brings to the idea of a decentralized
control. Both these two classes of control have been proposed
in the relevant literature for different purposes. Centralized
control strategies have been developed for minimizing the
peak load and avoiding distribution network issues [3], [4],
reducing the power losses [5], avoiding network congestion
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and lower CO2 emissions [6], minimizing the total cost
of energy for users [7], maximizing aggregator profits and
guarantee voltage regulation [8], tracking of target load curves
[9][10], deliver balancing [11][12] and frequency regulation
services [13]. Several studies also explore the possibility of
utilising the EV batteries as a distributed Energy Storage
Systems [14] to offer additional seriveces to the grid, as
service restoration [15] and resiliency improvements [16].

Similarly, decentralized control strategies have been pro-
posed for avoiding overloads [17] [18], minimizing the total
cost of energy for users and reducing power losses [19],
maximizing aggregator profits [20][21], frequency regulation
and integration of renewable energy sources [22], for reference
power tracking [23], etc. An in-depth analysis of the many
pursued objectives and proposed algorithms can be found for
example in the comprehensive reviews [24] and [25].

This paper targets a reference scenario consisting of a
load area, namely a node of the distribution grid, equipped
with a set of charging stations for the delivery of charging
services. The paper proposes a decentralised control strategy
aimed at maximizing the margin between the utility deriving
to the drivers from the delivery of the charging service,
and the cost for the operator deriving from the aggregated
charging power withdrawal. The proposed control is based on
a Model Predictive Control (MPC) framework, which embeds
a constrained optimization problem, taking into account both
grid and drivers’ requirements, which can be decomposed
through Lagrangian relaxation. Several centralised control
solutions based on MPC can be found for similar case
studies in the literature [26]-[28], while in this work the
computation of the charging load curves is performed by
agents working at the level of each single EV. Furthermore,
the information exchanged with grid players is restricted to
the computed load curve and energy price feedback from the
market, elaborated according to the charging infrastructure
congestion. Comparable scenarios have also been addressed
by decentralised solutions, as in [29], in which a Mixed-
integer optimisation formulation is utilised to model the
optimization problem in which the various users trade
their energy flexibility, in [30], where an aggregator agent
dynamically modifies the energy pricing signal to steer a
set of EVs behaviour, and in [31] where a game-theoretic
strategy is employed. In the envisaged scenario, the main
innovation of this work are:

o The predictive and dynamic nature of the charging
session scheduling, as the MPC scheme allows to attain
optimal performances over its prediction window and,
thanks to its receding horizon paradigm, it allows the



system to easily respond to new charging requests.

o The focus on decentralisation, as the amount of infor-
mation exchanged between the agents is limited thanks
to the Lagrangian Dual Decomposition approach.

o The focus on the trade-off between economic perfor-
mances and user satisfaction, captured by the utility and
cost functions considered for the optimisation.

The remainder of the paper is organized as follows. Section
II recalls the fundamental concept of the MPC methodology
and describes at high level how it is applied in this paper.
Section III presents the formalization of the open loop optimal
control problem at the basis of the MPC scheme. Section IV
describes the decentralized solving procedure of the problem.
Section V presents and discusses the simulation results and,
finally, section VI reports the conclusions and directions for
future works.

II. CONTROL METHODOLOGY

The proposed controller is designed based on the discrete-
time MPC methodology [32]. Discrete-time MPC is an
optimization-based technique in which, at the generic discrete
time ¢, the plant control signals are computed by solving a
constrained optimization problem, usually referred to as open
loop control problem, defined in a time window N steps in
the future (i.e. [t, t+ N —1]); the first sample of the computed
control signals is applied to the plant (the remaining sequence
is discarded) and then the process is reiterated at time ¢ + 1.
The generic optimization problem at time ¢ is built based
on the feedback of the state plant at ¢, so that the closed
loop properties of MPC arise from the combination of state
feedback and continuous reoptimization.

MPC is one of the advanced control techniques most
used in the industrial control practice, mainly because of
its native ability and easiness in managing multi-variable
constrained control. Also, great design flexibility is offered by
the possibility of selecting and tuning the objective function
and the constraints to be included in the optimization problem.

In standard MPC, the objective function terms are selected
with the aim of stabilizing the plant state around a desired
reference state, while minimizing the control effort. A
distinctive aspect of the MPC here proposed is that the
objective is designed to optimize the user satisfaction and
the economical operation of the system.

In this paper the control signals computed by the controller
at each time ¢ are the charging power of the EVs; though the
power flowing at the point of connection is a problem variable,
in principle it does not represent a control variable, since it
results from the EVs controls in the load area. The feedback
signals retrieved at each ¢ for computing such an optimal
control are the current State of Charge (SOC) of the EVs in
the network. Further key input to the MPC controller at ¢
are the boundary conditions and preferences characterizing
the requests for the charging service, more specifically i) the
arrival time at the charging station, ii) the initial SOC, iii)
the departure time and iv) the desired state of charge; also
the EVs and the point of connection of the load area with the

grid are characterized by their own technical and economic
data.

Despite the potential large amount of critical data being part
of the open loop optimal control problem, a distinctive aspect
of this work is the one of being solved in a decentralised
way; the information exchanged by the EVs and the operator
is restricted to power and energy price, while technical and
economic information related to the equipment are not shared,
then preserving user privacy and sensitive car manufacturers’
data.

III. CONTROL PROBLEM FORMALIZATION
A. Preliminaries

This section presents the open loop optimal control problem
at the basis of the proposed MPC scheme. In what follows ¢
will denote the current time, Ty = {¢,t +1,---,t + N — 1}
the set of discrete time instants within the control window
starting from ¢, 7 the generic time instant within the set.
The set R; is introduced to denote the EVs connected to
a charging station at ¢ and consequently being part of the
control problem.

B. Agents behavioural models

The behaviour of the agents being part of the control
problem is modeled taking advantage of the concept of utility
and cost functions usually applied in the context of mi-
croeconomics and resource management in telecomunication
networks [33], [34].

Each EV r € R; is modeled by a utility function
U, (pr(7/t)) which represents the level of satisfaction for
the withdrawal of the charging power p,(7/t) at time 7 € T,
The utility function is requested to satisfy three properties:
() it has to be continuous, (ii) monotonically increasing and
(iii) strictly concave. From the modeling perspective, these
requirements reflect the fact that the level of satisfaction of
each driver grows up continuously with the level of charging
power and is subject to saturation; from the theoretical point
of view, this natural choice brings to the definition of a convex
optimization problem. In particular, the utility function of the
r-th EV is here chosen as

U(pr(T/t)) = MTZOQ(I + pr(T/t))

where w,. is a weight introduced to differentiate the behaviour
of the drivers.

The system operator is modeled in relation to the effect
that multiple charging sessions have in terms of aggregated
power withdrawal at the point of connection between the load
area and the distribution grid. A cost function C(P(7/t)) is
then introduced, where P(7/t) is the power flowing at the
point of connection at time 7 € T;. This cost function is
requested to meet the following requirements: (i) it has to
be continuous, (ii) monotonically increasing and (iii) strictly
convex; as before, these are natural requirements, introduced
to penalize the peaks of power withdrawal from the grid.
Specifically, the cost function is here chosen as

C(P(r/t)) = a(P(1/t))*+
FO(P(r/t) — P(r—1/t) VYreT,

VT e Ty (1)
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where a and ¢ are proper weights. The first term represents a
penalty for excessive power withdrawal from the grid, while
the second one is a ramping rate term aimed at avoiding fast
variation of the power at the point of connection.

The utility and cost functions model counteracting require-
ments from different players. On the one hand, the drivers are
interested in disposing of the highest possible level of charging
power, on the other hand, the owner of the infrastructure is
interested in minimizing the deriving operational cost. Then
a trading mechanism is needed for establishing a proper
trade-off allowing to meet driver needs for charging while
guaranteeing acceptable operating conditions for the electrical
infrastructure.

C. The open loop optimal control problem

In order to establish the required trade-off, the social
welfare, defined as the difference between the total utility
and cost in the area, is evaluated over all the control horizon,
and the optimization criterion is consequently formalized as

max
pr(7/t), P(7/t)
VT S Tt

> { > Urlpe(r/1) - C(P(T/t))}

7Ty \reR;

3)
The optimal control sequences p; and P* are subject to
three classes of constraints, taking into account the overall
power balance, technical limitations and preferences at the
level of the single EVs and limitations of load area equipment.
As far as it concerns the overall behaviour of the agent at
load area level, the power balance has to be guaranteed at
each 7 € T}, which is modeled as

> pelr/t) = P(r/t) VT ET, 4)

reR;

At EV level the feasibility of the charging session has to
be guaranteed both in terms of allowed power withdrawal and
driver preferences satisfaction. According to the IEC 61851
international standard, only the values of current exceeding the
threshold of 6A are allowed for charging; also the maximum
current is upper bounded depending on the EV and the
charging station technology, so that the power is limited
accordingly as

P < (T /) < PP VP E Ry YT €T, ()

The driver preferences for charging are taken into account as
follows. Let e,.(7/t) = z,.(7/t) — 2¢* denote the deviation
of the state of charge x,.(7/t) of EV r € R, at time 7 € T}
from the desired state of charge x%°*; this error signal is
subject to the dynamics

er(T+1/t)=e.(1/t)—(1=& ) At p.(7/t),VT € T},Vr € Ry
e-(t/t) =e(t),Vr € Ry

(6)
where At denotes the sampling time, &, the conversion losses

coefficient and e,.(t) = z,.(t) — x4 the actual error at current
time t, evaluated using the feedback signal z,(¢) and the

desired state of charge 9%, The latter, which is in principle
different from the maximum capacity of the battery z*%*,
has to be guaranteed at the departure time t2°P chosen by
the driver, so that

e (t°P/t) =0, Vr € R, (7)

As expressed in (4), the aggregated charging power is
provided by the distribution grid at the point of connection
(typically through a dedicated medium voltage to low voltage
substation); due to the limited power rating of the transformers
the power P is bounded as follows:

P™" < P(1/t) < P™® Y1 e T, ®)

In the light of the above, the open loop optimal control to

be solved at each iteration of the MPC scheme can be stated
as follows.
Open loop EVs charging control problem. For a given load
area characterized by operational cost (2), hosting a set R; of
charging EVs having utility (1) and preferences (x4, tdeP),
solve (3), subject to the dynamics (6), control constraints (4),
(5), (8) and state constraints (7).

Remark 1 In order for the optimisation problem to be
feasible, it is required that all session requests have to be
checked for consistency in terms of their departure time and
desired state of charge, in such a way that they are compatible
with the maximum EV charging power. Furthermore, the
aggregated charging session shall not require, over their time
windows, more energy than the maximum output of the load
area.

IV. DECENTRALIZED SOLVING PROCEDURE

The problem previously formalized is solved in a decen-
tralised way taking advantage of the Lagrangian theory (in
particular the duality theory [35]) and the specific form
of the target function and constraints. For convenience of
notation, as customary in the MPC literature, a vector is
introduced to denote in a compact form each variable which
is defined over the whole control horizon; in particular
pr(t) = col(p-(t/t), pr(t + 1/t),...,p(t + N —1/t)) and
P(t) = col(P(t/t),P(t + 1/t),...,P(t + N — 1/t)) will
denote the r-th EV and the load area power over the period
respectively.

The Lagrangian function is introduced by combining the
target function (3) and the power balance constraint (4) - the
only one explicitly matching EVs and load area variables -
as

L(pr (t) »P(t)7 ’\(t)) =

— Z { Z U, (p-(7/t)) — C(P(T/t))} n N

T7€Ty \reR
= > A/ { > (/) - P(T/t)}
TET reR,

where A(t) = col(A(t/t), A(t+1/t),..., A(t+ N —1/t)) is
the vector of Lagrangian multipliers; as it will be clarified
in the following, the multipliers represent an indicator of the
energy price in the load area.



The dual problem is defined as

)\r(rtl)ir>10 D(A(t)) (10)
where
D)= max L(p(t),P)A®), (D)

pr(t),P(t)

subject to constraints (5) - (8).
The Lagrangian function can be decomposed as

L(pr(t), P =Y foe(t) + g(P(t),A(t))
reER (12)
where
for(t) =Y AU (p(7/1)) = A7 /t)p,(7/1)}
TeTy (13)
and
g(P(1),A(1)) = Y ANT/)P(r/t) = C(P(r/t))} (14)

Taking advantage of this property the dual problem can be
decomposed in subproblems, logically related to different
agents, and solved iteratively. The generic k-th iteration of
the procedure is as follows.

In the first step each EV and the operator compute the
respective optimal power, for a given value of multipliers
Ax(t). Each EV solves the subproblem

max J(pr(t), Ax(t))

pr

5)

subject to constraints (5) - (7). This means finding, for a given
Ax(t), the optimal charging power pyj, () over the time which
maximizes the margin among utility and cost, while respecting
technical constraints and charging preferences. Notice that,
due to the assumption made on the utility function (1), the
EV subproblem is a convex optimization problem.
Similarly the operator solves the subproblem

max g(P(t), Au(t)) (16)
P(t)

subject to constraint (8). Again, this means finding, for a
given A (t), the optimal power curve Py(t) at the interface
with the distribution grid which maximizes the margin among
the benefit and cost, while keeping feasible operation of
operator’s equipment. As before, due to the properties of the
utility function (2), the operator subproblem is convex.

In the second step of the procedure, once the powers py., (t)
and Py (t) are known, the Lagrangian multipliers are updated
following the anti-gradient of D (). The updating rule is
then

Ak+1(t) = max(Ag(t) — vV Dy, 0) (17)
where
VD =Py(t) = Y prilt (18)
reR;

and the step v is chosen according to the Armijo’s rule. Notice
that A, (t) evolves according to the imbalance between the
aggregated charging load and the power supply in the load

TABLE I
SIMULATION PARAMETERS

Parameter Value
At 5min
N 36
a,d 0.5, 0.1
€ 0.1
U(p) wlog(1 + p)
w 15
I3 0.05
PIAT | pImin 22kW, 0kW
rmeT 24kW h
pmaz_pmin 200kW, 0kW
TABLE II

SIMULATION 1 - CHARGING SESSIONS

EVID  Start time End Time Initial SOC [%]
1 00:00 04:00 12.5
2 00:00 05:00 25
3 00:00 03:30 29
4 03:00 07:00 21

area; specifically the values of the Lagrangian multipliers
increase as the demand outbalance the supply and vice-versa,
so that the multipliers can be interpreted as an indicator of
the energy price in the load area.

The two-steps procedure is repeated using Agy1(t), until a
k* exists for which the exit condition

IVDy-|| < € (19)

is satisfied, for an arbitrary small positive real number e. If
(19) holds, the balance (4) between demand and supply is
reached in practice, and the optimal solution of the dual
problem is achieved The point (p,*(t), P*(t),A"(t)) =
(Drjx (t), P = (t), P21+ (), A= (t)) rtepresents the optimal
control and price sequences over the control horizon, ac-
cording to the boundary conditions characterizing the load
area at current time ¢; consequently (p.(t), P(t),A(t)) =
(pi(t/t), P*(t/t)),\"(t/t)) is the control and the price
actually applied to the plant at current time ¢.

V. SIMULATION RESULTS AND DISCUSSION

The proposed control algorithm has been validated at
simulation level in order to provide a preliminary proof of
concept. The simulation framework has been built in Matlab,
leveraging Matlab built-in solver for the solution of agents’
optimization problems; the simulation parameters are specified
in Table I, while the simulation scenarios are reported in Table
IT and III. For simplicity, the desired final SOC has been
set to 90% for all the charging sessions, due to the fact that
this value represents the bound beyond which the validity of
model (6) becomes questionable.

The first simulation is intended to show how the algorithm
works in a simplified scenario where it is straightforward
to check for its effectiveness. Fig. 1 shows the aggregated
charging power in the (a) uncontrolled case, in which the
charging service is provided at rated power starting at the
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Fig. 1. Simulation 1 - Aggregated charging power in the (a) uncontrolled
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Fig. 2. Simulation 1 - Evolution of ||V D|| for the optimization performed
at 2:55.

time of arrival, and in the (b) controlled one. It is immediate
to see how the control distributes the charging power over
the time in order to smooth the aggregated power profile. As
far as concerns the decentralised optimization occurring at
each iteration of the MPC scheme, Fig. 2 reports an example
of the evolution of ||V D|| over the proposed decentralised
optimization procedure: it is seen that ||VD|| has a fairly
regular behaviour, and the convergence is achieved after 20
iterations of the procedure.

Simulation 2 is characterized by a more complex and
realistic scenario, in which the proposed control better
show its potential. In absence of control, the charging
requests produce a highly variable aggregated charging power

characterized by peaks reaching approximately 90 kW (Fig.

3); the proposed control allows to significantly mitigate the
variability of the aggregated power withdrawal while allowing
to steer the SOC errors of all the charging sessions to zero
(Fig. 4). Finally Fig. 5 reports the evolution of ||V D|| for the
optimization procedure occurring at 3:45, a congested time
in which 9 EVs charge simultaneously. The convergence is

TABLE III
SIMULATION 2 - CHARGING SESSIONS

EV ID  Start time End Time Initial SOC [%]
1 00:15 05:15 10
2 00:30 04:30 10
3 00:45 05:00 16
4 01:00 02:15 10
5 01:30 06:00 62
6 02:00 07:00 41
7 02:45 06:45 16
8 03:00 08:00 10
9 03:00 05:00 16
10 03:15 04:45 10
11 04:00 09:00 16
12 05:45 10:45 13
13 06:00 11:00 13
14 07:00 10:30 13
15 07:00 11:00 13
16 07:00 11:30 16
17 08:30 11:00 16
18 08:45 11:45 16
19 09:00 11:45 16
20 09:30 11:45 16
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Fig. 3. Simulation 2 - Aggregated charging power in the (a) uncontrolled

and (b) controlled case.
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achieved in approximately 120 iterations; though this value
may appear quite high for an implementation of the method
in a real system, it is important to remark that it is affected by
the choice of € and the sampling time; moreover, due to the
low complexity of the optimization problem solved by each
agent (with solving times in the range of a second or less),
it can be concluded that the proposed method is compatible
with a real time application characterized by the proposed
sampling time.

VI. CONCLUSIONS

In this paper a real time decentralised control strategy
for electric vehicles charging has been presented. The
decentralised control mechanism is based on model predictive
control methodology and Lagrangian decomposition of the
optimization problem at its basis. The simulation results
show the potential of the proposed approach, which can be
implemented in practice in scenarios where the sampling time
of the control action is in the typical range of power systems
metering and scheduling applications. Possible directions for
this work consider the integration of energy storage systems in
the decentralised framework, the improvement of convergence
performance and its theoretical validation.
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