
THE UNIVERSITY OF ADELAIDE

MASTER’S THESIS

Deep Learning for Bipartite
Assignment Problems

Author:
Daniel Gibbons

Supervisor:
Dr. Cheng-Chew Lim

Dr. Peng Shi

A thesis submitted in fulfillment of the requirements
for the degree of Master of Philosophy

in the

School of Electrical and Electronic Engineering

August 2019





 



 



 



 



vii

Abstract

A recurring problem in autonomy is the optimal assignment of agents to tasks. Often, such

assignments cannot be computed efficiently. Therefore, the existing literature tends to focus on

the development of handcrafted heuristics that exploit the structure of a particular assignment

problem. These heuristics can find near-optimal assignments in real-time. However, if the prob-

lem specification changes slightly, a previously derived heuristic may not longer be applicable.

Instead of manually deriving a heuristic for each assignment problem, this thesis considers

a deep learning approach. Given a problem description, deep learning can be used to find near-

optimal heuristics with minimal human input. The main contribution of this thesis is a deep

learning architecture called Deep Bipartite Assignments (DBA), which can automatically learn

heuristics for a large class of assignment problems. The effectiveness of DBA is demonstrated

on two NP-Hard problems: the weapon-target assignment problem and the multi-resource gen-

eralised assignment problem. Without any expert domain knowledge, DBA is competitive with

strong, handcrafted baselines.
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Chapter 1

Introduction

A recurring problem in autonomy is that of assigning agents to tasks. Assignment problems
appear throughout domains such as logistics, robotics and defence (Öncan, 2007). The well-
known linear assignment problem (LAP) can be solved in cubic time (Jonker and Volgenant,
1987). However, in general, solving assignment problems to optimality is computationally in-
feasible and so heuristics are often employed to find near-optimal solutions.

The development of a heuristic usually requires expert-knowledge to exploit the problem
structure in some way such that near-optimal solutions can be found efficiently. However, if the
problem description changes slightly, a previously derived heuristic may no longer be appro-
priate.

Rather than handcrafting a separate heuristic for every assignment problem, this thesis ex-
plores a general-purpose learning approach. Given a description of an assignment problem,
such a learning approach automatically explores the problem description and builds a black
box solver. The black box solver can then be queried for fast, near-optimal solutions to specific
problem instances.

Deep neural networks (DNNs) are characterised by initially requiring significant compute,
but can be queried efficiently at runtime. Over the last decade, DNNs have been used to produce
state-of-the-art results across diverse domains such as computer vision (Krizhevsky et al., 2012),
machine translation (Vaswani et al., 2017) and game playing (Mnih et al., 2015). More recently,
DNNs have been used to automatically find heuristics for classic combinatorial optimisation
problems such as the travelling salesman problem (TSP) (Bello et al., 2016).

A DNN approach requires two fundamental components: an architecture and a learning
algorithm. The architecture describes how data flows from the input to the output of the DNN.
As the data is processed, it interacts with the DNN’s internal parameters. These parameters are
tuned by the learning algorithm.

The most well-known deep learning architectures are usually unsuitable for assignment
problems due to issues regarding parameter-sharing and permutation equivariance. In this
work, a customised architecture called Deep Bipartite Assignments (DBA) is presented that can
be applied with minimal alteration to a large class of assignment problems.
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1.1 Assignment Problems

There is no universal definition for what formally constitutes an assignment problem. However,
the formulation this thesis presents is general enough to capture many of the most well-known
assignment problems.

Definition 1. An assignment problem is composed of a set of problem instances I , a set of assignment
constraints C and an objective function J. A problem instance X 2 I describes a realisation of a particular
assignment problem for N agents and M tasks indexed by i and j respectively. A mapping from agents
to tasks is encapsulated by a binary-valued assignment matrix Y 2 {0, 1}N⇥M. If agent i is assigned to
task j, then Yi,j = 1. Otherwise, Yi,j = 0. A set of additional constraints C may be placed on Y. Let the
set of all constraint-satisfying assignment matrices be given by Y = {Y : c(Y) is satisfied 8 c 2 C}. An
objective function can then be defined by J : I ⇥ Y ! R. An assignment problem instance is solved by
finding an optimal assignment matrix Y⇤ that globally optimises J for fixed X .

Assignment problems can rarely be solved by exhaustive-search, even for relatively small
problem instances. For example, if a particular assignment problem mandates that each agent
select a single task (but a particular task may be selected by more than one agent), then there
are MN possible assignment matrices. In such a case, a problem instance with N = 20 agents
and M = 20 tasks has 2020 ⇡ 1026 possible assignment matrices, which cannot be searched
exhaustively in real-time. If an effective lower-bounding strategy can be derived, then branch
and bound can be used to can greatly speed up an exhaustive search. However, such methods
may still scale poorly with increasing N and M. There may also be many assignment problems
that do not have an obvious lower bounding strategy.

This thesis is especially interested in difficult assignment problems that have the following
qualities:

• No practical lower bounding strategy - which prevents the application of branch and
bound.

• A computationally expensive objective function J - which prohibits the use of a random
search method such as a genetic algorithm (GA).

• Problem instances that require high dimensional representation - so that it is difficult to
manually derive a good heuristic.

Many assignment problems are at-least NP-Complete (for example, the quadratic assign-
ment problem, the weapon-target assignment problem, the generalised assignment problem
etc.). Therefore, it is unrealistic to expect that optimal solutions can be found for large problem
instances in real-time. Instead, near-optimal solutions can be accepted if they can be found ef-
ficiently. The quality of a solution method is a weighted combination of how long it takes to
find sub-optimal solutions, and how far away from optimal the proposed solutions are. The
trade-off between efficiency and optimality is generally a matter of user-preference and usually
depends on the end-application.
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1.2 Bipartite Assignment Problems

A deep learning approach should not be limited to one particular assignment problem. In prin-
ciple, deep learning is a general-purpose paradigm that can easily be adapted to new problems.
However, it is unrealistic to design a DNN that can handle any assignment problem accord-
ing to the extremely general definition given in Definition 1. Therefore, this thesis considers a
particular class of assignment problems called bipartite assignment problems (BAPs).

A BAP is an assignment problem that can be represented by a bipartite multigraph. A bi-
partite graph is a graph where every edge connects vertices from two disjoint sets. This thesis
imagines that the two disjoint sets are the set of agents, and the set of tasks. Each edge pro-
vides useful information (in the form of a scalar) about a particular agent-task pair. The term
multigraph implies that more than one edge can exist between two vertices. In general, this the-
sis assumes that the bipartite multigraph is complete, meaning every valid vertex combination
(i.e. every agent-task combination) has the same number of edges. See Figure 1.1 for a visual
depiction of a BAP.

The BAP definition also allows for information to be stored at each vertex of the bipartite
multigraph. Such information can be used to describes agent-level or task-level properties. Fi-
nally, BAPs allow for the inclusion of a global state that is shared across all agents and tasks.
Such a global state may affect the objective and so should be taken into account when comput-
ing the assignment matrix.

A large number of assignment problems are BAPs (e.g. the linear assignment problem, the
weapon-target assignment problem). Note that there are many assignment problems that can-
not be represented on bipartite multigraphs (most notably, the quadratic assignment problem,
which requires a directed edge between every agent-agent pair). However, it is of the author’s
opinion that BAPs are general enough to allow for many interesting custom assignment prob-
lems.

The following is a formal definition of BAPs, in a form that is more amenable for deep learn-
ing.

Definition 2. A bipartite assignment problem is an assignment problem with problem instances that
can be represented by the tuple X = hA, T, P, Ei, where,

• A 2 RN⇥|A|, is an agent property matrix, where each row Ai 2 R|A| is a vector of information
specific to each agent.

• T 2 RM⇥|T|, is a task property matrix, where each row Tj 2 R|T| is a vector of information specific
to each task.

• P 2 RN⇥M⇥|P|, is an agent-task pairwise three-dimensional array, where the element Pi,j 2 R|P|

is a vector that describes how agent i interacts with task j.

• E 2 R|E|, is an environmental context vector that contains any additional information that is
shared across all agents and tasks.
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A1
P1,1

P1,2

P1,M

Agents

A2

P2,1

P2,2

P2,M

...

AN PN,1

PN,2

PN,M

T1

T2

...

TM

Tasks

FIGURE 1.1: Visual representation of a bipartite assignment problem. Each edge
contains information corresponding to a particular agent-task pair. Each vertex
also contains its own information. In addition, there may also be global state
information E shared across all agents and tasks (not depicted). The Ai, Tj and

Pi,j are vectors of length |A|, |T| and |P| respectively.

Example: The Linear Assignment Problem

The linear assignment problem (LAP) is often simply referred to as "the assignment problem"
and is well known in the combinatorial optimisation literature. Each agent-task pairing has an
associated profit pi,j. LAP seeks the maximisation of,

JLAP = Â
i

Â
j

pi,jYi,j, (1.1)

subject to

Â
j

Yi,j = 1, for all i if N  M, (1.2)

or

Â
i

Yi,j = 1, for all j if N > M. (1.3)

where the constraints specify that each agent must select a single task (unless there are more
agents than task, in which case, each task must be selected by a single agent).

It is well known that LAPs can be solved in polynomial time. Assuming N = M, the original
Hungarian algorithm gives exact solutions in O(N4) (Kuhn, 1955). Later variants such as the JV
algorithm bring this complexity down to O(N3) (Jonker and Volgenant, 1987).

The LAP is a BAP as it can be represented by the tuple X = hA, T, P, Ei, where,

• A is unused (|A| = 0).

• T is unused (|T| = 0).
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• P is reduced to a matrix of agent-task profits (|P| = 1). That is, Pi,j = pi,j.

• E is unused (|E| = 0).

1.3 Summary of Original Contributions

The main contributions of this thesis are as follows:

• A novel deep learning architecture called Deep Bipartite Assignments (DBA) that has been
specifically designed for representing and understanding a large class of practical assign-
ment problems. DBA produces high quality assignments in polynomial time with minimal
human knowledge about the assignment problem itself. DBA is modular and extendable
- and so easily allows for future innovations in the field of deep learning to be integrated.

• A thorough review of well-known deep learning architectures and their applicability to
assignment problems.

• To the best of the author’s knowledge, this thesis is the first time that techniques from the
modern deep learning movement have been applied to both the weapon-target assign-
ment (WTA) problem and the multi-resource generalised assignment problem (MRGAP).
In both cases, DBA is competitive with strong handcrafted baselines.

1.4 Thesis Structure

The core content of this thesis has been accepted for publication as part of the IEEE International
Conference on Systems, Man and Cybernetics 2019. This thesis significantly expands upon the
conference paper to include a thorough technical background, a broad literature review, a more
in-depth presentation of DBA and additional experimental validation. Where the original con-
ference paper only considers the WTA problem, here, this thesis also considers the MRGAP and
shows that DBA is general enough to still be competitive with state-of-the-art heuristics that
have been handcrafted by human experts.

This thesis is organised as follows:

• Technical Background: This thesis begins with all of the necessary deep learning back-
ground required to understand and implement the thesis contributions. This section starts
with a general introduction to deep neural networks and then present key results from the
reinforcement learning literature.

• Design Considerations: In this short chapter, the need for a novel neural architecture is
presented. Fundamental issues with conventional DNNs are raised and specifications are
given for a DNN that is suitable for representing and solving BAPs.

• Literature Review: Conventional DNNs are unsuitable for representing the graph-like
structure of BAPs. The deep learning literature is explored to learn how other authors
have addressed similar issues of representation. The design of DBA is informed by works
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from disparate areas such as natural language processing, multi-agent control and combi-
natorial optimisation.

• A Deep Learning Architecture for Bipartite Assignments: A novel DNN architecture enti-
tled Deep Bipartite Assignments (DBA) is presented that can be used to represent any BAP.
The architecture is presented as a series of modules. These modules can be customised and
improved as future innovations from the deep learning community emerge.

• Applications: DBA is applied to two NP-Hard BAPs: the WTA problem, and the MR-
GAP. Strong numerical results are provided, and there is discussion of DBA’s runtime and
training dynamics.

• Conclusions: This thesis finishes with a thorough discussion on the successes and limita-
tions of DBA. Possible directions for future research are provided.
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Chapter 2

Technical Background

This chapter contains all of the necessary technical background for this thesis. The techniques
described in this chapter are well known in the deep learning literature and should not be con-
sidered as original contributions.

A deep neural network (DNN) takes a multi-dimensional input and processes it through
a composition of differentiable layers parameterised by q. The most well-known layer is the
feedforward layer F, which is composed of an affine mapping followed by a differentiable non-
linearity. Assuming vector input x,

F(x; qk) = s(qw
k x + qb

k) , (2.1)

where qw
k is a weight matrix for layer k, qb

k is a bias vector for layer k and s(·) is an elementwise
differentiable activation function such as tanh(·). As each layer is simply an affine mapping
followed by a differentiable function, the output of the DNN is differentiable with respect to all
of its internal parameters q. If an appropriate loss function L is supplied, the DNN’s parameters
can be iteratively improved using the gradient descent equation

q0 = q � arq L , (2.2)

where a 2 R>0 is the learning rate.
The feedforward layer is just one of the many common layers employed in modern deep

learning architectures. Other popular layers include the convolutional layer (Krizhevsky et al.,
2012) and the long short-term memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). These
layers share the differentiable properties of the feedforward layer, and so their internal parame-
ters can also be improved with gradient descent.

DNNs are popular for a number of reasons. They can theoretically approximate any function
to arbitrary precision (Hornik et al., 1990). As DNNs become wider (i.e. the weight matrices be-
come larger) and deeper (i.e. more layers are stacked on top of each other), they are more likely
to find local minima with approximately equivalent performance to global minima (Choroman-
ska et al., 2015). With modern deep learning libraries, sophisticated DNNs can be designed.
Researchers can rely on autodifferentiation software to automatically compute partial deriva-
tives for such DNNs (Abadi et al., 2016). Finally, DNNs are fast to query at test-time as they are
composed of relatively simple matrix multiplications. Training and querying DNNs has become
even faster in recent years with the rise of GPU technology (Raina et al., 2009).
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There are a number of ways to train DNNs. This thesis consider two families of learning
algorithms: supervised learning (SL) and reinforcement learning (RL).

2.1 Supervised Learning

SL provides a methodology for learning a mapping from input to output using a dataset of
desirable input-output pairs. In the context of bipartite assignment problems (BAPs), there may
be a dataset of optimal hX , Y⇤i pairs. From this dataset, SL can be used to learn a function that
maps from any X 2 I to the corresponding optimal assignment matrix Y⇤.

Let by 2 Rh be the output from a DNN parameterised by q. In SL, the loss function is typically
an expectation of the difference between the DNN outputs by and the true output y as described
by the training dataset. In the case of regression, an example loss function may be the sum of `2

norms over a subset of the training dataset,

L =
x

Â
k=1

h

Â
z=1

⇣
byk
z � yk

z

⌘2
, (2.3)

where k is used to index x training examples, and z 2 {1, 2, . . . , h} is used to index the dimension
of y. In the case of discrete classification, the cross-entropy loss is often used,

L =
x

Â
k=1

h

Â
z=1

yk
z log

⇣
byk
z

⌘
, (2.4)

where it is assumed yk
z 2 {0, 1} and Âz yk

z = 1, where yk
z is equal to unity if, for training example

k, the correct class is class z. It should be noted that there are many commonly used SL loss
functions (e.g. hinge, Huber, sum of `1 norms etc.). These loss functions are all differentiable
with respect to the output of the DNN, and so can all be minimised by gradient descent.1

Training DNNs by SL tends to be relatively stable with modern deep learning architectures
and techniques. The main limitation of SL is that is requires a training dataset of correct input-
output examples. Creating such a dataset is infeasible for many applications, especially if the
desired output is unknown. The other training method which considered in this thesis, RL, is,
by comparison, fickle and unstable. Therefore, in this thesis, SL is used in the first instance to
verify that the architecture Deep Bipartite Assignments (DBA) is actually suitable for solving
BAPs. RL is then used to show that DBA can learn to solve BAPs without having access to a set
of optimal training examples.

2.2 Reinforcement Learning

Consider an agent that can take actions to transition between states of an environment. Assume
that the agent receives a user-defined numerical reward for every state-to-state transition. The
agent’s goal is to take actions that maximise the amount of reward it receives over time. Such a

1Not all SL loss functions are strictly differentiable throughout their domains. However, they are "differentiable
enough" and work well in practical settings.
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problem is typically called a Markov Decision Process (MDP). The field of reinforcement learn-
ing (RL) introduces iterative, general-purpose algorithms for solving MDPs (Sutton and Barto,
2018).

A classical MDP consists of a finite set of states S , a finite set of actions U , a reward function
R : S ⇥ U ⇥ S ! R, transition probabilities P : S ⇥ U ⇥ S ! [0, 1] and an optional discount
factor g 2 [0, 1]. An MDP is a discrete-time process with the following event loop. At time-step t,
the agent observes its state st 2 S . The agent then consults a (usually stochastic) policy p(ut|st)

which returns a probability distribution over possible actions. The agent samples an action
ut ⇠ p(ut|st) and transitions to a new state st+1 with probability P(st+1|st, ut) as described by
P . Upon transitioning to state st+1, the agent receives a reward rt(st, ut, st+1) according to R.
This process repeats either indefinitely or until the agent reaches a terminal state.

This thesis follows the convention of Sutton and Barto, 2018 and uses upper case S, U and
R to represent the states, actions and rewards as random variables. The following discussion of
RL is limited to finite episodic scenarios.2

The following definitions will be useful throughout this thesis.

Definition 3. The return gt is the sum of discounted rewards experienced by the agent from time-step t
until the end of the episode at time-step t. Formally,

gt =
t�t

Â
k=0

gkrt+k . (2.5)

Definition 4. The value function vp(s) is the expected return from state s assuming the agent follows
policy p. Formally,

vp(s) = Ep [Gt|St = s] . (2.6)

Definition 5. The action-value function qp(s, u) is the expected return from state s assuming the agent
follows policy p after first taking action u. Formally,

qp(s, u) = Ep [Gt|St = s, Ut = u] . (2.7)

Definition 6. The advantage function

ap(s, u) = qp(s, u)� vp(s) (2.8)

measures the expected difference in return by taking action u from state s (and following p thereafter) as
opposed to simply following policy p from state s.

In RL, the objective is to find the optimal policy p⇤ that maximises the expected return over
some distribution of all possible starting states. If there are a relatively small number of states,
actions, and a known set of transition probabilities, algorithms from dynamic programming are
guaranteed to find the optimal policy p⇤ (Howard, 1960). However, such methods scale poorly
as the number of states and actions increase. This thesis is especially interested in finding fast,
high-quality solutions where dynamic programming is too slow for real-time application.

2However, all of the upcoming results can be translated directly to environments with infinite time horizons.
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2.2.1 The Policy Gradient

If an MDP is composed of a relatively small number of states, then the policy p can be repre-
sented by a lookup table that returns a probability mass function (PMF) over actions for every
possible state. In cases where there are many (or even, an infinite number of states), a parame-
terised policy pq is often employed. A parameterised policy is simply a user-defined function
that is dependant upon a number of tunable parameters q. The only strict requirement is that
the output of the parameterised policy pq(u|s) must be differentiable with respect to the policy’s
parameters q. In the modern RL literature, the two most commonly used parameterised policies
are linear combinations of features and deep neural networks (DNNs).3

Consider an arbitrary parameterised policy pq . The performance measure J(pq) is defined
as the expected return from an arbitrary fixed starting state s0 following policy pq ,

J(pq) = vpq (s0) . (2.9)

J is to be maximised with respect to q. One obvious idea is to use gradient ascent to find a
local maximum. That is, if the gradient in the direction of the performance measure with respect
to the policy parametersrq J(pq) can be computed, then the parameters can be improved using

q0 = q + arq J(pq) , (2.10)

where a is a small positive constant called the learning rate. The quantity rq J(pq) is often re-
ferred to as the policy gradient. From continual application of the above equation, the parame-
terised policy eventually converges to a local maximum. The well-known policy gradient theo-
rem (Williams, 1992) states that, in the episodic case,

rq J(pq) µ Â
s

µpq (s)Â
u

qpq (s, u)rpq(u|s) , (2.11)

where µpq (s) 2 [0, 1] is the stationary distribution over states invoked by following policy pq .
For a simple proof of the policy gradient theorem, see Chapter 13.2 from Sutton and Barto, 2018.
From the policy gradient theorem, rq J(pq) can be rewritten as an expectation:

rq J(pq) = ES⇠pq

"

Â
u

qpq (S, u)rpq(u|S)

#
. (2.12)

With some simple manipulations, the above expectation can be rewritten as

rq J(pq) = ES⇠pq

"

Â
u

pq(u|S)qpq (S, u)
rpq(u|S)
pq(u|S)

#

= E S⇠pq
U⇠pq


qpq (S, U)

rpq(U|S)
pq(U|S)

�

= E S⇠pq
U⇠pq

[qpq (S, U)r log pq(U|S)]

(2.13)

3Note, a linear combination of features is the special case of a DNN with a single feedforward layer and identity
activation function s(x) = x.
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The state-value function qpq (S, U) is the expected return E [G] from being in state S, taking
action U, and following p thereafter. Therefore,

rq J(pq) = E S⇠pq
U⇠pq

[Gr log pq(U|S)] . (2.14)

A practical algorithm is as follows (usually attributed to Williams, 1992). Over a number of
episodes, collect many state-action-reward tuples hs, u, ri. From this information, the returns g
can be computed for each state-action pair. The returns can be used as Monte-Carlo estimates
of the state-action value function qpq . Let T = hs, u, gi be a recorded transition. Assume |T |

transitions are collected. Then, the policy gradient can be estimated by

rq J(pq) ⇡ \rq J(pq) =
1
|T |

Â
T

gr log pq(u|s) , (2.15)

and so, the policy can be incrementally improved by stochastic gradient ascent. The above
approximation is unbiased. Therefore, as the number of recorded transitions grows to infinity
|T |! •, the estimation approaches the true policy gradient \rq J(pq)! rq J(pq).

2.2.2 Advantage Actor-Critic

The returns-based policy gradient approximation from 2.2.1 is not typically used in practice
as it is known to exhibit extremely high variance. The following equation is a well-known
generalisation of the policy gradient theorem (as found in Chapter 13.3 of Sutton and Barto,
2018, for example):

rq J(pq) = Â
s

µpq (s)Â
u
(qpq (s, u)� b(s))rpq(u|s) , (2.16)

where b(s) is any function of s (normally called the baseline). The above expression is equivalent
to the original policy gradient theorem as

Â
u

b(s)rpq(u|s) = b(s)Â
u
rpq(u|s) = b(s)r1 = 0 (2.17)

Since the new expression is equivalent to the original policy gradient theorem, this new
expression is unbiased. However, the user-defined function b(s) can chosen such that estimates
of the policy gradient have lower variance. A common choice for b(s) is the state-value function
vpq (s). This substitution yields

rq J(pq) = Â
s

µpq (s)Â
u
(qpq (s, u)� vpq (s))rpq(u|s)

= Â
s

µpq (s)Â
u

apq (s, u)rpq(u|s) .
(2.18)

And so, as an expectation,

rq J(pq) = E S⇠pq
U⇠pq

[apq (S, U)r log pq(U|S)] (2.19)
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If the advantage function can be computed accurately, then the policy gradient can be esti-
mated using a similar procedure to previously. Over a number of episodes, collect many state-
action-reward tuples hs, u, ri. From this information, compute the advantages a = apq (s, u) for
every state-action pair. Let T = hs, u, ai be a recorded transition. Assume |T | transitions are
collected. Then, the policy gradient can be estimated by

rq J(pq) ⇡ \rq J(pq) =
1
|T |

Â
T

ar log pq(u|s) , (2.20)

Estimations of the above form are still unbiased but exhibit much lower variance than the
returns-based approach given previously in 2.2.1. For a rigorous theoretical analysis of why this
is the case, see Greensmith et al., 2004.

As the above estimation exhibits lower variance than the returns-based approach, far fewer
transitions are required to accurately determine the policy gradient (that is, |T | can be much
smaller while \rq J(pq) ⇡ rq J(pq)). This in turn means that fewer iterations are required to find
high-quality policies.

In practice, the advantage function is not known ahead of time. Instead, the advantage
function is estimated using a critic parameterised by f. Let apq

f (s, u) be the advantage of taking
action u in state s and then following policy pq thereafter, approximated using critic parameters
f. The use of a critic gives rise to a family of algorithms called actor-critic (AC) algorithms.
AC algorithms make up a large number of the current state-of-the-art RL algorithms. The RL
algorithm used by this thesis uses the critic specifically for estimating advantages, and so is
often referred to as an advantage actor-critic (A2C) algorithm.

2.2.3 Generalised Advantage Estimation

There are many possible procedures for estimating the advantage function. This thesis employs
a popular technique called generalised advantage estimation (GAE) from Schulman et al., 2016.

Let vp be the exact state-value function. One estimate of the advantage is to use the following
equation

ap(st, ut) ⇡ cap(st, ut)(1) = rt + gvp(st+1)� vp(st) (2.21)

where the (1) in the subscript of cap(st, ut)(1) denotes that this is a so-called one step-estimate of
ap(st, ut). Let dt be the temporal-difference (TD) residual

dt = rt + gvp(st+1)� vp(st) . (2.22)

Hence, cap(st, ut)(1) = dt. It has not yet been stated how to compute the state-value function vp

required to yield the TD residual dt. This is where the aforementioned critic is used. During
learning, the critic is trained to estimate vpq

f (s) ⇡ vp(s). Initially, the critic will give a poor ap-
proximation of the state-value function. Therefore, using a one-step advantage approximation
is unlikely to be accurate. To reduce bias, a two-step estimate can be constructed using

cap(st, ut)(2) = rt + g (rt+1 + gvp(st+2))� vp(st) . (2.23)
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The two-step estimate reduces bias (as more "real" data is used) but has more variance (as the
environment and policy are likely stochastic and we are only observing a single path) (Kearns
and Singh, 2000). By adding zero to the right hand side, notice that

cap(st, ut)(2) = rt + g (rt+1 + gvp(st+2))�V(st) + gvp(st+1)� gvp(st+1)

= rt + gvp(st+1)� vp(st) + g (rt+1 + gvp(st+2)� vp(st+1))

= dt + gdt+1 ,

(2.24)

and so,

cap(st, ut)(1) = dt

cap(st, ut)(2) = dt + gdt+1
(2.25)

Using a similar process, a k-step advantage estimator can be constructed:

cap(st, ut)(k) =
k�1

Ầ
=0

g`dt+` . (2.26)

To achieve a balance between bias and variance, GAE takes an exponentially weighted sum of
all k-step estimators:

cap(st, ut)GAE =
•

Â
k=1

lk�1cap(st, ut)(k) , (2.27)

where l 2 [0, 1] is a user-defined parameter. An efficient procedure can now be defined for
computing cap(st, ut)GAE. Consider the following manipulations:

cap(st, ut)GAE = cap(st, ut)(1) + lcap(st, ut)(2) + l2cap(st, ut)(3) + . . .

= dt + l(dt + gdt+1) + l2(dt + gdt+1 + g2dt+1) + . . .

= (1 + l + l2 + . . .)dt + (l + l2 + l3 . . . )gdt+1 + (l2 + l3 + l4 + . . .)g2dt+2 + . . .

=
1

1� l
dt +

l

1� l
gdt+1 +

l2

1� l
g2dt+2 + . . .

=
1

1� l

⇣
dt + gldt+1 + (gl)2dt+2 + . . .

⌘

(2.28)
The above expression can be multiplied by the constant factor (1� l) to give the generalised
advantage estimator as a sum of exponentially weighted TD residuals:

cap(st, ut)GAE =
•

Ầ
=0

(gl)` dt+` .4 (2.29)

For a more detailed discussion of GAE, see Schulman et al., 2016. However, the original
paper leaves off a useful recurrence relation that is required for actual implementation:

4This is legitimate in the context of the policy gradient equation where direction in parameter space is the funda-
mental consideration. Gradient direction is invariant to multiplication by a positive scalar.
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cap(st, ut)GAE =
•

Ầ
=0

(gl)` dt+`.

= dt +
•

Ầ
=0

(gl)` dt+`

= dt + gl
•

Ầ
=1

(gl)`�1 dt+`

= dt + gl
•

Ầ
=0

(gl)` dt+`+1

= dt + glcap(st+1, ut+1)GAE

(2.30)

2.2.4 Implementation

Here, an implementation of A2C implementation is presented. It can be assumed that this im-
plementation is used whenever RL is mentioned in the applications chapters of this thesis.

Begin by initialising the agent (or actor) parameters q and the critic parameters f. It is always
assume that the actor and the critic use the same neural architecture, but with their own learned
parameters (q and f respectively).5

The implementation considers e parallel environments (as popularised by Mnih et al., 2016).
Using parallel environments decreases the amount of correlation between samples and so can
help to calculate less biased estimates of the policy gradient. Another advantage to using paral-
lel environments is that, with a single batched query to the DNN, actions and critic estimates can
be computed for many environments in parallel. With modern multi-CPU and GPU systems,
the amount of time required to compute actions and critic estimates is decreased by roughly a
factor of e.

From each environment, |T | transitions of information are collected, where each transition
consists of

T = hs, u, r, 1, vpq
f i , (2.31)

where 1 is an indicator variable equal to unity if state s is nonterminal and vpq
f is the critic’s

estimate of the state-value function vpq (s). From this information, two additional quantities are
computed: the advantage estimation capq and a state-value target cvpq . The advantage estimation
is used in the policy gradient equation to update the agent’s parameters and the state-value
target is used to help guide the critic learn the true state-value function vpq

f (s) ⇡ vpq (s) for all
s 2 S . The more accurate the critic becomes, the more accurate the advantage estimates become.

It is assumed that every environment episode is isolated. Without loss of generality, assume
that at time t = 0 the agent is in a nonterminal state (that is 1t = 1). At time t = t, the agent
has either reached a terminal state (that is 1t = 0) or t = |T |, which implies that the data
collection procedure has been halted to allow for a parameter update to occur. The advantages
are computed using Algorithm 1 (as taken from Dhariwal et al., 2017). Line 4 of Algorithm 1
uses the recurrence relation from the end of 2.2.3. Once the advantages have been estimated, the

5In some works, the actor and the critic use the same parameters until the last layer of the DNN. In others, the
architectures for the actor and the critic are completely different.
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Algorithm 1 Generalised advantage estimation

1: capq
t  rt + 1tvpq

t+1,f � vpq
t,f

2: for t 2 {t � 1, t � 2, . . . , 1, 0} do
3: dt  rt + gvpq

t,f � vpq
t+1,f

4: capq
t  dt + gldapq

t+1

state-value targets are computed simply using

dvpq
t,f = capq

t + vpq
t,f (2.32)

for all t 2 {0, 1, . . . , t}. An SL procedure with a regression loss (such as mean-squared-error
(MSE) or the Huber loss) is then used to update the critic parameters f such that the critic
approaches the true state-value function.

Summary

This chapter gave an overview of DNNs and described learning algorithms from two contrast-
ing methodologies: SL and RL. The bulk of this chapter was devoted to a state-of-the-art RL al-
gorithm called advantage actor-critic (A2C) with generalised advantage estimation (GAE). The
main takeaway from the RL section is that, by simply collecting states, actions, and rewards,
the DNN’s parameters can be continually improved to perform some desired function. For the
purposes of this thesis, the states are the BAP instances X 2 I , the actions are the assignment
matrices Y 2 Y , and the rewards are governed by the objective J(X , Y). Later, in 5.4, more
details will be provided describing exactly how RL is used to train DBA to solve BAPs.
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Chapter 3

Design Considerations

This thesis presents a novel architecture for automatically finding heuristic solutions to bipartite
assignment problems (BAPs). However, it has not yet been discussed why such an architecture
is required. This short chapter examines the most commonly used approach from the deep
learning literature, and explains why it is unsatisfactory for representing and solving BAPs.

Recall that a particular BAP is defined by a set of instances, a set of constraints and an objec-
tive function hI , C, Ji. A deep neural network (DNN) is to take problem instances X 2 I and
return optimal assignment matrices Y⇤.

A naïve first attempt to design such a DNN is to use a composition of feedforward lay-
ers. The information contained in X is first reduced into a one-dimensional array x of length
|x| = N|A|+ M|T|+ NM|P|+ |E|. This vector can then be passed through a series of feed-
forward layers to yield an array of length MN. Each element of the output array is a scalar
corresponding to a unique agent-task combination. Depending on the problem description and
the chosen training method (SL or RL), simple operations can be performed to construct a fea-
sible assignment matrix Y. Such an approach (flattening out all of the problem information and
then passing through many feedforward layers) is often referred to as a multilayer perceptron
(MLP) and is commonplace throughout the deep learning literature. However, there are two
fundamental issues that prevent the adaptation of a naïve MLP to BAPs: variance to agent/task
permutation and parameter dependence on N and M.

Permutation Variance

The naïve MLP approach is sensitive to the ordering of the agents and tasks. That is, if the po-
sitions of two agents and/or tasks are swapped at the input, the DNN may produce a different
assignment matrix. Ideally, the DNN should be invariant to the ordering of the input informa-
tion. The input information should be considered as an unordered set as opposed to an ordered
tuple or vector. It is therefore required that the DNN be permutation equivariant with respect
to the ordering of both agents and tasks. Loosely speaking, this means that, if the information
of two agents and/or two tasks is swapped, the DNN should output an equivalent assignment
matrix.

Permutation equivariance is closely linked to the concept of permutation invariance. A per-
mutation invariant function y has the property that y(z) = y(r(z)), where z is an ordered tuple
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of elements and r(z) is an arbitrary permutation of the elements of z. A permutation equivari-
ant function w on the other hand requires that w(r(z)) = r(w(z)). That is, if the function takes
a tuple permuted by r, the output of the function should be the same as if the function was
applied to the original tuple and then permuted by r.

To demonstrate these concepts more concretely, consider a simple assignment problem with
a single agent and M tasks. Each task has a cost cj 2 c. The agent is required to select the task
with the least cost. Here, the minimum cost is a permutation invariant function. Regardless of
how the elements of c are shuffled, min(c) is constant. The optimal assignment matrix however,
is Y⇤ is permutation equivariant. As an example, if the cost vector is c = [ 3 1 6 2 ]> then
Y⇤ = [ 0 1 0 0 ]. If c is permuted with an arbitrary 1-index tuple, say h 3 1 4 2 i, then
r(c) = [ 6 3 2 1 ]>. The optimal assignment matrix is now [ 0 0 0 1 ], which equal to the
original optimal assignment matrix permuted by r.

Parameter Dependence on N and M

A naïve MLP approach is restricted to a fixed number of N agents and M tasks. For example, at
the input, the number of weights for the first feedforward layer F1 is conditioned on both N and
M as qw

1 2 R|x|⇥|F1|, where |F1| is the number of neurons in the first feedforward layer. As the
weight matrix has |x| = N|A|+ M|T|+ NM|P|+ |E| rows, the number of parameters is directly
tied to both N and M. There is a similar issue at the output, where the number of columns in
the final weight matrix is NM. Such a DNN cannot be used on larger problem instances than
those seen during training as the input and output weight matrices are undefined for larger N
and M. It is not even clear that such a DNN will function as intended in cases of smaller N and
M. For example, say the DNN is configured to represent N1 agents and M1 tasks. The DNN is
then presented with a problem instance with N < N1 and/or M < M1. Unused elements of
x can be filled with null placeholders. At best, such a DNN will perform unnecessary matrix
multiplications on the null placeholders. At worst, the DNN will not perform as expected as
it needs to make meaningful interpretations of the null placeholders in such a way that the
necessary computations being undertaken on the real problem information are not affected.

Summary

This short chapter identified fundamental issues that necessitate the need for a new DNN archi-
tecture for solving BAPs. To adequately represent and solve BAPs, a DNN architecture must be
permutation equivariant with respect to both agents and tasks. In addition, it is desirable that
the number of DNN parameters does not explicitly depend on N or M.
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Chapter 4

Literature Review

Assignment problems have received little attention in the deep learning literature. However,
there are a number of relevant domains that face similar issues with regards to graph repre-
sentation, permutation equivariance, and parameter dependence on input/output size. This
chapter summarise a number of contributions from the deep learning literature that will aid
in the design of a deep neural network (DNN) architecture for bipartite assignment problems
(BAPs).

Assignment problems have not received significant attention from the deep learning liter-
ature. Emami et al., 2018 undertook a survey of a number of machine learning methods for
performing multidimensional assignments for solving tracking problems. However, their sur-
vey focused more an a particular assignment problem (where this thesis seek sa more general
approach). Milan et al., 2017 used a long short-term memory (LSTM) based approach for find-
ing approximate solutions to specific formulations of the linear assignment problem and the
quadratic assignment problem. However, their architecture is not amenable to more generic
assignment problems and is dependent upon fixed input/output sizes.

One area that receives regular attention from the deep learning literature is combinatorial
optimisation. A number of authors have found data-driven approaches such as deep learn-
ing to provide fast, high quality heuristic solutions for a number of well known combinatorial
problems. These findings are extremely relevant as BAPs are a particular type of combinatorial
optimisation problem.

Combinatorial optimisation problems typically require a mapping from a set or a sequence
of objects to another set or sequence of objects. The canonical multi-layer perceptron (MLP)
composed of feedforward layers is often inappropriate as it can only map from a vector of reals
to another vector of reals. To overcome this issue, authors have designed custom DNN archi-
tectures that can adequately represent and solve combinatorial problems. This thesis identifies
three relevant bodies of work: natural language processing, multi-agent communication and
graph representation.

4.1 Natural Language Processing

This chapter begins by detailing a progression in neural architectures from the field of natural
language processing (NLP). Although NLP appears somewhat unrelated to combinatorial op-
timisation, a number of innovations from the field of NLP are now commonplace in the deep
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learning combinatorial optimisation literature.
A seminal work in machine translation is the sequence-to-sequence (seq2seq) architecture

from Sutskever et al., 2014. The seq2seq architecture uses two DNNs: an encoder and a decoder.
Both DNNs have an architecture composed of LSTM cells (Hochreiter and Schmidhuber, 1997).
The encoder reads in each word of a sentence and embeds the sentence into a hidden state.
The hidden state is then passed to the decoder to recover the sentence, one word at a time, in
a different language. Each generated word is fed back in to the decoder to compute the next
word. Although the seq2seq architecture is designed for NLP, it presents a general approach
for translating any sequence of objects to any other sequence of objects. The main restriction
on seq2seq is that is assumes a fixed number of possible words. Therefore, seq2seq cannot be
directly used for combinatorial optimisation problems where problem size may be variable.

Another important innovation from the field of NLP is the attention mechanism, as brought
to prominence by Bahdanau et al., 2015. In contrast to seq2seq, which applies the decoder to
a sentence encoded in a single hidden state vector, an attention mechanism instead applies a
decoder across each individual word embedding in parallel. This way, no information is lost by
trying to reduce the sentence down to a single vector, and the attention mechanism can easily
establish relationships between words that are far away from one another in a sentence.

Vinyals et al., 2015 built upon the ideas from seq2seq and attention to create pointer net-
works (Ptr-Nets). Ptr-Nets are specifically designed for sequential combinatorial optimisation
problems. Rather than generating words, the Ptr-Net uses an attention mechanism to point back
to the inputs. For example, rather than translating a word from one language to another, Ptr-
Net takes arbitrary words from a set and then points back to words within the same set. Vinyals
et al., 2015 trained Ptr-Net using supervised learning (SL) to provide approximate solutions to
well known problems such as convex hull computation and the travelling salesman problem
(TSP).

Bello et al., 2016 took the Ptr-Net architecture and instead trained it by reinforcement learn-
ing (RL). The use of RL allowed the authors to train the Ptr-Net without access to a database
of optimal solutions ahead of time. Rather, the parameters of the Ptr-Net were tuned in the
direction of the policy gradient (using a similar method to the one presented in 2.2). The resul-
tant model was able to outperform the original SL model by Vinyals et al., 2015. In addition,
the authors suggested a number of methods to improve performance at test time. For example,
rather than training a single architecture to solve the TSP, they trained 16 models in parallel.
As the training process is stochastic, each model is able to find different tours. At test time, 16
tours can be found for a specific problem instance, and the best solution can be quickly verified.
Later in the paper, Bello et al., 2016 also applied Ptr-Net (trained by RL) with successfully to the
knapsack problem (KP). The KP is of particular interest as it is the special case of the generalised
assignment problem (GAP) with a single agent (which is a BAP as shown in Chapter 7).

In a similar manner to Ptr-Net, Mirhoseini et al., 2017 combined the seq2seq architecture
with an attention mechanism. However, rather than working on classic problems such as the
TSP, they instead used their architecture to optimise how computational operations were allo-
cated across CPUs and GPUs. Such an application is ideally suited to deep learning, as it is very
difficult to capture the problem in a closed-form objective function (as the internal workings of a
computer are complicated and it is not entirely obvious how operations should be linked across
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devices to achieve optimal results). Their work demonstrated that DNNs can be directly trans-
lated from abstract, deterministic combinatorial problems, to real-world, stochastic problems
with little alteration.

Many problems from combinatorial optimisation (including assignment problems), require
set-to-set mappings (instead of sequence-to-sequence mappings). Although it is possible to use
Ptr-Nets with sets of objects (as in the knapsack application by Bello et al., 2016), Vinyals et al.,
2016 found that the order in which the objects are presented to Ptr-Net can make a significant
difference to solution quality (due to the sequential nature of the LSTMs found within Ptr-Net).

Up until 2017, LSTMs and similar recurrent mechanisms were considered essential in NLP.
However, Vaswani et al., 2017, showed that, using attention alone, they could outperform
seq2seq (the previous state-of-the-art) on machine translation tasks. Specifically, the authors
used a variation on attention called self-attention (as first presented by Cheng et al., 2016).
Rather than using a single external decoder that applies attention across every word, in self-
attention, each word has its own decoder and interacts with all of the other words in the sen-
tence. For purposes of this thesis, using attention without any LSTMs is an interesting concept
it allows for sets to be processed in a permutation invariant/equivariant fashion. In fact, au-
thors such as Deudon et al., 2018 and Kool et al., 2019, successfully adapted attention-only
approaches to the TSP. In doing so, both authors reported performance improvements over the
Ptr-Net baselines recorded by Bello et al., 2016. These attention-only approaches satisfy the de-
sign considerations of permutation equivariance and parameter dependence on problem size.
However, it is not clear whether these approaches can be applied directly to BAPs, where in-
teractions between two distinct sets of objects (the set of agents and the set of tasks) need to be
considered.

4.2 Multi-Agent Communication

A core area of artificial intelligence is multi-agent systems. A number of authors have proposed
DNN architectures that facilitate multi-agent communication. Crucially, these architectures en-
sure that the operations responsible for passing information between agents are differentiable,
and so agent-to-agent communication can be iteratively improved with gradient descent.

Sukhbaatar et al., 2016 proposed a simple architecture called the communication neural net
(CommNet). CommNet uses the following simple idea. For each agent, take the elementwise
mean of all the other agent’s hidden states.1 Then, process the agent’s own hidden state and the
elementwise mean through two separate feedforward layers (without biases and no activation
function). The two processed vectors are then summed to form the agent’s next hidden state.
This process can be performed an arbitrary number of times while still maintaining permuta-
tional equivariance. The authors demonstrate that CommNet successfully facilitates multi-agent
collaboration across a number of simple multi-agent games. In parallel to the development of
CommNet, Foerster et al., 2016 developed a similar architecture called differentiable inter-agent
learning (DIAL) to pass messages between agents. However, DIAL can only pass messages be-
tween agents once per time-step, and the number of agents is fixed. Hoshen, 2017 proposed a

1The term "hidden state" is used to describe the state of the data at some point in the DNN before any inference is
applied at the output. The state is "hidden" because it is not comprehensible to a human observer.
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similar communication scheme to CommNet but included an attention mechanism to exchange
messages as opposed to simply taking the elementwise mean. The use of an attention mecha-
nism over the elementwise mean appears to facilitate more non-linearity in the communication
exchanges.

Guttenberg et al., 2016 proposed a permutation equivariant architecture for predicting par-
ticle dynamics. At each time-step, their DNN takes the state of every particle in the system
predicts how the states will change at the next time step. To do this, they introduce the concept
of permutational layers. Given a set of objects, a permutational layer processes every pair of
objects through the same feedforward layer in parallel. The output for each object is then the
sum (or the mean) of all the processed pairs that include the object itself. Permutation layers can
then be stacked together to arbitrary depth. This concept is similar to that of CommNet, but has
running time O(n2) as opposed to the O(n) of CommNet (where n is the number of objects).

Zaheer et al., 2018 formalised the structure of permutation equivariant (and invariant) DNNs.
They presented invariant and equivariant architectures that can be considered as variations on
CommNet. Empirically, they showed that such architectures are effective on a wide range of
tasks such as anomaly detection and set expansion. In addition, they provided necessary and
sufficient conditions for permutation equivariant and invariant architectures.

4.3 Graph Representation

The convolutional neural network (CNN) is perhaps the most iconic neural architecture of the
modern deep learning movement (Krizhevsky et al., 2012). CNNs employ convolutional layers
that are designed to extract features from image data (Yann et al., 1998). Convolutional layers
have two appealing properties: they are translation invariant and their internal parameters are
not dependent on the size of the image that they are convolving over. Unfortunately, convo-
lutional layers are designed specifically for representing Euclidean space. This feature makes
CNNs ideal for working with image data, but not for understanding information over non-
Euclidean graphs. Adapting CNNs to non-Euclidean structures such as graphs has attracted
significant attention in recent years, culminating in the field of geometric deep learning (Bron-
stein et al., 2017).

An early work in this area is that of Gori et al., 2005, who first proposed the concept of
graph neural networks (GNNs). There are many variations on GNNs, but they tend to use the
following procedure. At each node of the graph, some notion of state is stored as a vector.
This state is then propagated out to the node’s local neighbourhood across the outgoing edges
of the node. As each node receives information from the other nodes in its neighbourhood, a
permutation invariant transformation can be applied to update the node’s internal state. This
process can be repeated to gradually propagate information throughout a connected graph. At
convergence, every node is fully aware of the information contained in the graph. Meaningful
operations can then be applied to the nodes to infer useful information.

GNNs received little attention until they were revived as part of the modern deep learning
movement by Li et al., 2016. Defferrard et al., 2016 considered GNNs directly as a generalisation
from CNNs. Battaglia et al., 2016 adapted a GNN-like approach for modelling interactions
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between physical objects. Gilmer et al., 2017 distilled many of the most popular mechanisms for
operating on graphs into a framework called message-passing neural networks (MPNNs). The
MPNN framework considers three functions: a message function (to pass information between
nodes), a vertex (or node) update function (to update each node’s internal state), and a readout
function (that distills the entire graph into a single feature vector). Some authors have applied
MPNN-like architectures to combinatorial optimisation problems. Selsam et al., 2019 adapted
MPNN to solve arbitrary propositional satisfiability problems. Dai et al., 2017 claim to have
beaten Ptr-Nets on the TSP as well as a number of other well known graph problems such as
the maximum-cut problem and the minimum vertex-cover problem.2

Summary

Many of the papers utilised similar concepts for facilitating arbitrary computations across sets of
related objects. From a thorough review of the literature, two fundamental processes emerged:
self-assessment and inter-object communication. First, every object assesses its own information
using an MLP. All objects in the system typically share the same parameters, which allows for
easier training and lower memory requirements. After assessing their own information, objects
communicate with each other using some permutation invariant/equivariant function (such
as the elementwise mean in CommNet or some sort of attention mechanism). These two pro-
cesses can be stacked and repeated an arbitrary number of times to approximate sophisticated,
nonlinear functions. Both processes are differentiable and so all parameters required for both
self-assessment and inter-object communication can be learned given an appropriate loss func-
tion (typically from either SL or RL). From these findings, a neural architecture can be designed
for representing and solving BAPs.

2Dai et al., 2017 employed RL like many of the other authors adapting DNNs to combinatorial optimisation. Unlike
other works, the authors explicitly chose to use Q-learning over a policy gradient based method for its improved sample
efficiency (Gu et al., 2017).
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Chapter 5

A Deep Learning Architecture for
Bipartite Assignment Problems

This chapter details the design of a deep neural network (DNN) architecture called Deep Bipar-
tite Assignments (DBA) that is capable of taking bipartite assignment problem (BAP) instances
and returning feasible assignment matrices. This chapter begins with a broad overview of DBA.
Next, close attention is paid to the communication layer, a key component of DBA. Finally, learn-
ing algorithms for training DBA are presented and discussed.

5.1 Preliminaries

5.1.1 Array Conversion

DBA is to take a problem instance X = hA, T, P, Ei 2 I as input and return a valid assignment
matrix Y 2 Y . DBA first converts X to a three-dimensional array X 2 RN⇥M⇥|X|, where |X| =

|A|+ |T|+ |P|+ |E|+ 1. X can be indexed by i and j to view information for a particular agent-
task pair.

Xi,j =

2

6666666664

Ai

Tj

Pi,j

E

1infeasible
i,j

3

7777777775

(5.1)

For a given i and j, the first |A| entries correspond to agent-specific properties, the next
|T| entries correspond to target-specific properties, the next |P| entries correspond to agent-
task pairwise information, the next |E| entries correspond to any contextual information that is
consistent across all agents and tasks and the final element 1infeasible

i,j is a binary indicator equal
to unity if assigning agent i to task j would invalidate one of the problem constraints according
to C.
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Taking the linear assignment problem (LAP) as an example, |X| = |A|+ |T|+ |P|+ |E|+ 1 =

0 + 0 + 1 + 0 + 1 = 2, which implies that X 2 RN⇥M⇥2. Indexing X by i and j returns Xi,j =

[pi,j,1infeasible
i,j ]>.

5.1.2 Representation (Optional)

Throughout DBA, the data is maintained as a three-dimensional array with dimensions N ⇥
M⇥ h (where h is arbitrary and will often change throughout DBA . This array can be consid-
ered from four different perspectives (or representations). From these representations, all of the
required computations to construct the assignment matrix Y can be performed.

The three-dimensional array can be considered in two fundamental ways: as a matrix-of-
vectors, and as a vector-of-matrices. The matrix-of-vectors representation is useful when the
same operation is to be applied to every agent-task combination in parallel. Performing such an
operation yields equivalent results regardless of whether the data has dimensions N ⇥ M ⇥ h

or M ⇥ N ⇥ h. The vector-of-matrices approach is then used to perform computations across
objects (either across tasks for a particular agent or across agents for a particular task).

Representation 1: N ⇥M⇥ h matrix-of-vectors

Throughout DBA, it is generally assumed that the data flow as a three-dimensional array with
dimensions N ⇥M⇥ h, where h is arbitrary. If the data are considered as a matrix-of-vectors,
where each vector represents an agent-task pair, then each row of the matrix corresponds to a
particular agent (from 1 to N) and each column corresponds to a particular task (from 1 to M).

agents #

tasks
!2

6664

x1,1 . . . x1,M
...

. . .
...

xN,1 . . . xN,M

3

7775
,

where xi,j 2 Rh is a vector of features for the pairing of agent i with task j.

Representation 2: M⇥ N ⇥ h matrix-of-vectors

It is sometimes useful to swap the first two axes of the data such that it has dimensions M ⇥
N ⇥ h. The resulting matrix of agent-task representations then has a row for each task and a
column for each agent. In this thesis, this operation is referred to as a transposition. Applying a
transposition to Representation 1 yields

tasks #

agents
!2

6664

x1,1 . . . x1,N
...

. . .
...

xM,1 . . . xM,N

3

7775
,
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where x j,i 2 Rh is a vector of features for the pairing of task j with agent i. The data can be
transposed again to revert to the original dimensions N ⇥M⇥ h.

Representation 3: N ⇥M⇥ h vector-of-matrices

The data, as a three-dimensional array, can also be considered as a vector-of-matrices (as op-
posed to a matrix-of-vectors as described previously). As a vector-of-matrices with dimensions
N ⇥M⇥ h, each element of the vector is a matrix that summarises all of the available tasks for
a particular agent. Each matrix has dimensions M⇥ h, where each row corresponds to a partic-
ular task and each column corresponds to a particular feature of that agent-task combination.

agents #

2

6666664

x1

x2
...

xN

3

7777775
,

where xi = tasks #

features
!2

6664

xi,1,1 . . . xi,1,h
...

. . .
...

xi,M,1 . . . xi,M,h

3

7775
is a matrix of tasks for each agent.

Representation 4: M⇥ N ⇥ h vector-of-matrices

A transposition of Representation 3, yields a vector of matrices with dimensions M ⇥ N ⇥ h,
where each element of the vector is a matrix that summarises the thoughts of every agent re-
garding a particular task. Each matrix has dimensions N ⇥ h, where each row corresponds to a
particular agent and each column corresponds to a particular feature of that agent-task combi-
nation.

tasks #

2

6666664

x1

x2
...

xM

3

7777775
,

where x j = agents #

features
!2

6664

x j,1,1 . . . x j,1,h
...

. . .
...

x j,N,1 . . . x j,N,h

3

7775
is a matrix of agents for each task.
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5.2 Overview

From X, DBA performs a series of operations to construct a valid assignment matrix Y. A
general overview of DBA is depicted in Figure 5.1.

5.2.1 Embedding

DBA begins by processing X through an embedding operation E . The embedding operation is
simply a feedforward layer that projects the last dimension of X into some other dimension R|E |,
where (typically) |E | > |X|. In other words, feedforward layer parameterised by qE is applied
elementwise to every Xi,j as follows:

E(X) =

2

6664

F(X1,1; qE ) . . . F(X1,M; qE )
...

. . .
...

F(XN,1; qE ) . . . F(XN,M; qE )

3

7775
(5.2)

and so E(X) 2 RN⇥M⇥|E |.

5.2.2 Main Body

The main body of DBA is a composition of S stacks, where each stack contains many operations
stacked together. From the output of the embedding layer, there is a vector representation in R|E |

for every possible agent-task pair. It is necessary to exchange information across these vector
representations to make informed decisions about which agent-task pairs should be included in
the assignment matrix Y. DBA use so-called "communication layers" to facilitate the exchange
of information across agent-task pairs, which are discussed at length in Section 5.3.

Each stack is created by chaining together three distinct operations:

1. Feedforward operation: Generalises the feedforward layer in the same way as the em-
bedding layer. The input to the feedforward operation is a matrix of vectors, where each
vector represents a particular agent-task pair. The feedforward operation applies the same
parameterised feedforward layer to every agent-task vector in parallel.

2. Communication operation: A communication layer is a matrix-to-matrix function that has
a number of special properties (as will be discussed in Section 5.3). The communication
operation takes a vector of matrices, and applies the same (possibly parameterised) com-
munication layer to every matrix in parallel.

3. Transposition operation: Swaps the first two axes of a three-dimensional array. For ex-
ample, if the array has dimensions N ⇥ M ⇥ h (where h denotes an arbitrary dimension
length), then after transposition, the array has dimensions M⇥ N ⇥ h.

Each stack is then composed of three sections: inter-task communication, inter-agent com-
munication, and self-assessment. See Figure 5.2 for a schematic of each stack and Figure 5.4 for
an expanded diagram that depicts the operations found within each section.
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X

(N ⇥M⇥ |X|)

Embedding

(N ⇥M⇥ |E |)

Stack 1

Stack 2

... Main Body

Stack S� 1

Stack S

Pre-inference

(N ⇥M⇥ h)

(N ⇥M)

Simultaneous
Construction

Greedy
Construction

Inference

Y hi, ji

FIGURE 5.1: A general overview of DBA. Data dimensions are given in parenthe-
ses.
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Input

(N ⇥M⇥ h)

Inter-task Communication

Inter-agent Communication

Self-assessment

Stack

(N ⇥M⇥ h0)

Output

FIGURE 5.2: Stack schematic.

1. Inter-task communication: For each agent, perform computations over all available tasks.
It is assumed the input has dimensions N⇥M⇥ h and apply a communication operation.

2. Inter-agent communication: For each task, perform computations across all agents. A
transposition operation is applied to convert the array dimensions to M⇥ N ⇥ h. Next, a
communication operation is applied. Finally, a transposition operation is used to convert
the resultant array back to dimensions N⇥M⇥ h0 (where h0 may not necessarily be equal
to h as a result of the communication operation).

3. Self-assessment: After both rounds of communication, additional computation can be per-
formed on each agent-task pair independently by applying an arbitrary number of feed-
forward operations in series (for all applications in this thesis, two feedforward operations
are used).

5.2.3 Pre-inference

Assume that the final stack outputs an array with dimensions N ⇥M⇥ h, where h is arbitrary.
A feedforward operation is applied to map the array into RN⇥M⇥1 and then the redundant final
dimension is removed to yield eY 2 RN⇥M.

Before performing inference, infeasible agent-task pairs need to be "masked out". During
inference, softmax operations are used to derive probability distributions over agent-task com-
binations. If infeasible agent-task pairs can be driven to large negative values, then the resulting
probabilities for these agent-task pairs will be zero (assuming finite computational precision). It
is then impossible for an agent-task pair with probability zero to ever be included in the final
assignment matrix Y. To mask out infeasible agent-task pairs, DBA takes the temporary output,
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Input

(N ⇥M⇥ h)

Communication Operation

Output

(N ⇥M⇥ h0)

(a) Inter-task communication.

Input

(N ⇥M⇥ h)

(M⇥ N ⇥ h)

(M⇥ N ⇥ h0)

(N ⇥M⇥ h0)

Transposition Operation

Communication Operation

Transposition Operation

Output

(b) Inter-agent communication.

Input

(N ⇥M⇥ h)

(N ⇥M⇥ h0)

(N ⇥M⇥ h00)

⇣
N ⇥M⇥ h(n�1)

⌘

⇣
N ⇥M⇥ h(n)

⌘

Feedforward Operation 1

Feedforward Operation 2

...

Feedforward Operation n

Output

(c) Self-assessment. This thesis always assumes n =
2.

FIGURE 5.3: Each section of the stack in detail.
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eY 2 RN⇥M and applies the operation

Yi,j = eYi,j � b1infeasible
i,j (5.3)

elementwise to every hi, ji pair , where b is a large positive constant (this thesis uses 230).

5.2.4 Inference

The are two methods for constructing a valid assignment matrix Y 2 Y from Y: simultaneous
construction and greedy construction.

Simultaneous Construction

In the special case that each agent must choose a single task (but each task can be selected by
an arbitrary number of agents), simultaneous construction (SC) can be used. SC first applies a
softmax operation to each row of Y to yield a probability mass function (PMF) over tasks for
each agent. An assignment matrix can then be constructed simultaneously across all agents
using one of two methods:

1. Deterministic: For each agent, select whichever task has the highest value given by the
agent’s PMF.

2. Stochastic: Sample a task according to each agent’s PMF over tasks.

The deterministic method is usually preferable for use at test-time. However, when training
by reinforcement learning (RL) (specifically when using a policy-gradient based approach as in
2.2.1), the stochastic method is required to estimate the direction of the policy gradient.

It is clear that, if each agent is to select a single task (and each task can be selected by an
arbitrary number of agents), that using simultaneous construction will always give a feasible
assignment matrix.1 However, if the problem constraints are more sophisticated, the above
approach may result in an infeasible assignment matrix (e.g. in the LAP, a 1-1 mapping between
agents and tasks is required - but using SC may lead to two agents selecting the same task).

The main benefit to using SC is that, with a single query to the DNN, a feasible assignment
matrix can be recovered (as long as the previous assumptions hold regarding C). In addition,
when combined with SC, the DNN can be trained by both supervised learning (SL) and RL.

Three significant drawbacks were observed to using SC. As previously noted, for many
BAPs, SC is unable to guarantee that the resulting assignment matrix will be feasible as ac-
cording to C. Second, it was observed that a large number of stacks (>10) are typically required
to obtain satisfactory performance on medium size problem instances. Finally, when training
with policy-based RL, it can be difficult to effectively coordinate the DNN’s actions (as a result
of sampling independent PMFs), and so training can be slow and unstable.2

1Similar operations can also be used if each task is to be selected by a single agent, and an arbitrary number of tasks
can be assigned to a single agent.

2Other RL algorithms, such as Q-Learning, may not suffer from this issue as they do not require an explicitly stochas-
tic policy. However, to keep this thesis concise, such algorithms are not considered.
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(a) Determinitic simultaneous construction.
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(b) Stochastic simultaneous construction.

4.8 6.2 0.8
�b 2.8 3.6

1.7 1.0 1.7

5.4 4.5 �b

Y

!

tasks

agents #
softmax
over all

0.1 0.5 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.2 0.1 0.0

argmax
over all

0 1 0

0 0 0

0 0 0

0 0 0

h1, 2i

(c) Deterministic greedy construction.
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(d) Stochastic greedy construction.

FIGURE 5.4: Methods of inference for DBA.
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Greedy Construction

Rather than simultaneously assigning all agents to tasks in a single round, greedy construction
(GC) incrementally builds Y. To use GC, the DNN input X needs to be extended to include an
additional binary indicator variable 1assigned

i,j , which is equal to unity if agent i has already been
assigned to task j. From this newly defined X, DBA is applied in the same way as previously
described. It is generally assumed that if 1assigned

i,j = 1, then 1infeasible
i,j = 1 as that particular

agent-task combination has already been selected.
From the output, Y is flattened out to yield Ẏ 2 RNM. This new vector, Ẏ has a scalar for each

agent-task combination. A softmax operation is applied over the entire vector to yield a PMF
over every possible agent-task pair. An agent-task pair can then be selected according to this
PMF either deterministically (by taking the argmax) or stochastically (by sampling). From the
previous subtraction operation, infeasible agent-task pairs will have zero probability of being
selected due to the exponential nature of the softmax operation. After each agent-task selection,
it is then necessary to update the new binary indicators variables 1assigned

i,j and 1infeasible
i,j to reflect

the new state of the system.
GC has a number of advantages over SC. First, it can be readily applied to a large number

of practical BAPs with sophisticated constraints on Y. Second, during preliminary experiments,
it was discovered that RL is much more effective when combined with GC rather than SC. It is
likely this is because the action space when using GC is dramatically smaller than when using
SC (MN vs. MN). Finally, it was noticed that, when using GC, the resulting DNN requires
far fewer stacks than SC. This is likely because the DNN only has to make a single agent-task
selection, instead of constructing a complete assignment matrix in a single call.

GC also comes with some disadvantages. First, it is not obvious how GC can be combined
with SL. Second, if an optimal assignment matrix has some W number of values equal to unity
(that is, Âi Âj Y⇤i,j = W), then a DNN with GC requires W separate calls to build the optimal
assignment matrix, which potentially makes GC much less efficient than SC.

5.3 Communication Layers

DBA employs communication layers to exchange information across a set of vectors arranged
as the rows of a matrix. These communication layers have been specifically designed to ad-
dress the requirements presented in Chapter 3. This thesis uses the following definition of a
communication layer.

Definition 7. A communication layer C is a function that maps from one matrix to another such that
the following properties are satisfied:

1. Row maintenance. The number of rows at the output is equal to the number of rows at the input.
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2. Row dependence. There exists a Z 2 RY⇥Wsuch that

C(Z) 6=

2

6666664

C(Z1)

C(Z2)
...

C(ZY)

3

7777775
, (5.4)

where Z` 2 R1⇥W is the `th row of Z.

3. Row equivariance. If r(Z) is a permutation of the rows of Z, then

C(r(Z)) = r(C(Z)) (5.5)

for all possible r and Z.

4. Differentiability. C(Z) is differentiable with respect to input Z. That is, rZC(Z) exists.

Row maintenance is used to assert that the number of objects under consideration (e.g.
agents or tasks) is invariant. The row dependence property asserts that computation is per-
formed across the entire matrix Z and that the rows of Z are not treated independently. Row
equivariance requires that an equivalent result should be returned regardless of the row permu-
tation of Z. Finally, differentiability is required to allow gradients to flow backwards through
the DNN during backpropagation.

The choice of communication layer is a matter of user preference. This thesis presents two
communication layers that have shown promising results: pooling and attention.

5.3.1 Pooling

Pooling computes a scalar statistic z columnwise across the rows of a matrix input. With input
Z 2 RY⇥W , the resulting row vector z 2 R1⇥W is

z =
h
z((Z>)1) z((Z>)2) . . . z((Z>)W)

i
. (5.6)

z is then duplicated and concatenated with Z to yield Cpooling(Z) 2 RY⇥2W:

Cpooling(Z) =

2

6666664

Z1 z

Z2 z
...

...

ZY z

3

7777775
. (5.7)

The pooling communication layer is strongly inspired by Sukhbaatar et al., 2016, in which the
mean is used to enable communication among cooperative agents. In keeping with Sukhbaatar
et al., 2016 (as well as Zaheer et al., 2018 and others), this thesis uses the mean as the pooling
scalar statistic.
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5.3.2 Attention

Given a set of vectors, an attention mechanism can be applied to extract relevant information.
Attention mechanisms are popular in deep learning and are especially prevalent in domains
such as natural language processing (NLP) (Vaswani et al., 2017). In the context of NLP, each
word in a sentence may be represented by a vector. In order to perform machine translation,
attention can be used to query which words are relevant for the purpose of providing the next
word in a translated sentence. The attention communication layer is inspired by Deudon et al.,
2018, in which attention is used to automatically generate heuristics for the travelling salesman
problem.

Canonically, attention uses an external decoder to extract information from a set of vectors.
This thesis specifically uses a variant called self-attention. In self-attention, each vector contains
its own decoder to make queries about the other vectors undergoing computation.

Given input Z 2 RY⇥W, self-attention first applies three feedforward operations in parallel
to produce queries Q 2 RY⇥|K|, keys K 2 RY⇥|K| and values V 2 RY⇥|V|. The soft-attention
mechanism as described by Vaswani et al., 2017 is then applied:

attention(Q, K, V) = softmax

 
QK>p
|K|

!
V . (5.8)

The scaling factor 1p
|K|

is used to counteract the vanishing gradient problem. For further

discussion, see Vaswani et al., 2017.
As in Vaswani et al., 2017, this thesis uses multi-head self-attention to perform many atten-

tion queries in parallel. Rather than creating a single Q, K and V from Z, h heads are used:
Q = (Q1, Q2, . . . , Qh), K = (K1, K2, . . . , Kh) and V = (V1, V2, . . . , Vh). The self-attention heads
are then concatenated together:

Cattention(Z) =
h

H1 H2 . . . Hh

i
, (5.9)

where
H` = attention(Q`, K`, V`) (5.10)

and so H` 2 RY⇥|V| and so Cattention(Z) 2 RY⇥h|V|.

5.4 Learning Algorithms

This thesis considers two families of learning algorithms: supervised learning (SL) and rein-
forcement learning (RL). SL assumes access to some potentially expensive f (X ) that returns the
optimal assignment matrix Y⇤ for any X . SL then trains the DNN to approximate f (X ). RL
(specifically policy-based RL), evaluates a particular realisation of q and then uses a gradient
approximation in the direction of negative expected objective to update q . In general, SL is
easier to implement and is more likely to find Y⇤. RL, however, is more general and can be used
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to solve problems without requiring a pre-existing method for computing Y⇤. SL is more ap-
propriate for accelerating the online execution of a pre-existing method, where RL can be used
when no such method exists.

DBA can be trained by both SL and RL. This section builds upon the work presented in
Chapter 2 and describes how these learning algorithms can be applied to train the parameters
of DBA .

5.4.1 Supervised Learning

It is always assumed that, when using SL, SC is used as the method of inference (as it is not
obvious how to combine SL with GC).

Recall that, in SL, there is some potentially expensive f (X ) that returns the optimal assign-
ment matrix Y⇤ for any X 2 I . From the agent PMFs, let Pi,j 2 (0, 1) be the probability that
agent i selects task j and let Y⇤i,j 2 {0, 1} indicate whether agent i selects task j according to
the optimal assignment matrix Y⇤. A cross-entropy loss LSL can then be used to measure the
"difference" between the agents’ PMFs and the optimal assignment matrix Y⇤

LSL = E

"
�

N

Â
i=1

M

Â
j=1

Y⇤i,j log(Pi,j)

#
. (5.11)

The above expectation is taken uniformly over all problem instances X 2 I . In practice,
the gradient is estimated dLSL ⇡ LSL using samples and stochastic gradient descent is used to
iteratively improve q.

5.4.2 Reinforcement Learning

RL can be used to train DBA, regardless of whether SC or GC is used. As previously noted, RL is
usually more performant when combined with GC, but in principle, either method of inference
can be used.

Simultaneous Construction

After the softmax operation, a PMF over all possible assignment matrices in Y can be derived.
If Pi,j 2 (0, 1) is the probability that agent i selects task j, then the probability that a particular
assignment matrix Y (where agent i selects task ji) is stochastically constructed is given by

P(Y) = P(Y1 = j1, Y2 = j2, . . . , YN = jN)

=
N

’
i=1

P(Yi = ji)

=
N

’
i=1

Pi,ji .

(5.12)

And so, a complete assignment matrix can be sampled as a single action u, where the set
of all actions is simply U = Y . As SC yields a complete assignment matrix, an objective can
be calculated as according to J(X , Y). The following information is now recorded: an action
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Y, a differentiable probability of selecting action Y (given by P(Y)), and a real-valued objective
J(X , Y). By collecting many data points, the policy gradient can be approximated. Recall that,
from 2.2.1

rq J(pq) ⇡ \rq J(pq) =
1
|T |

Â
T

gr log pq(u|s), (5.13)

where r log pq(u|s) is the gradient of the probability of selecting a particular action from a
particular state and g is the return after taking said action. Substituting in the values from SC
yields

rq J(pq) ⇡ \rq J(pq) =
1
|T |

Â
T

J(Y,X )r log P(Y). (5.14)

With the above equation, stochastic gradient ascent can be used (or descent if minimisation of
J(X , Y) is required) to iteratively move the DNN parameters in the direction of the expectation
of the objective function.

The above expression only uses the objective (or the return) to estimate the policy gradient.
Such an estimation is of high variance (recall 2.2.2). However, a parameterised critic vpq

f (X) can
be used to estimate the average objective that the policy will receive in expectation. The critic
has the same architecture as the policy but uses its own parameters (f as opposed to q). At
the output, the critic simply averages over all of the entries of Yf to yield vpq

f (X). If the value
from the parameterised critic is accurate, that is, it gives a good approximation of the expected
objective from the current policy given the problem instance X , then the critic can be used as a
baseline to construct a lower-variance estimate of the policy gradient

rq J(pq) ⇡ \rq J(pq) =
1
|T |

Â
T

⇣
J(Y,X )� vpq

f (X)
⌘
r log P(Y). (5.15)

Initially the critic will give uniformed values that do not help make the policy gradient esti-
mate more accurate. However, SL is used to train the critic to approximate the value function.
For details, see 2.2.4.

Greedy Construction

The sequential behaviour of GC naturally gives rise to a sparse-reward Markov Decision Pro-
cess (MDP). Therefore, given a reward function, any RL algorithm can be applied to gradually
improve the DNN’s parameters. This thesis uses advantage actor-critic (A2C) paired with gen-
eralised advantage estimation (GAE), as described in 2.2. Note however, that there exist many
different RL algorithms that could be used instead.3

This thesis uses a critic vpq
f similar to that described previously. Remember that, X needs

to be expanded to include the additional binary indicator variable 1assigned
i,j . Again, the value

3So long as they can handle discrete action spaces - which is not possible with specifically continuous algorithms
such as Deep Deterministic Policy Gradients (Silver et al., 2014).
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function is recovered by averaging over all values of Yf,

vpq
f (X) =

1
NM Â

i
Â

j
Yf,i,j (5.16)

To completely implement an algorithm such as A2C, a reward function needs specifying.
For all of the applications in this thesis, the following sparse reward function is used:

r(X , Yi,j) =

8
><

>:

0 if Âi Âj 1i,j < NM

J(X , Y) if Âi Âj 1i,j = NM.
(5.17)

Summary

In this chapter, a novel deep learning architecture entitled Deep Bipartite Assignments (DBA)
was presented. DBA is specifically designed for representing and optimising BAPs. Through
the use of communication layers, DBA satisfies the specifications set out in Chapter 3, achiev-
ing both permutation equivariance and parameter independence to variable N and M. In the
upcoming chapters, DBA is validated over two NP-Hard BAPs: the weapon-target assignment
(WTA) problem and the multi-resource generalised assignment problem (MRGAP).
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Chapter 6

Application 1: The Weapon-Target
Assignment Problem

As an initial application, DBA was tested on the weapon-target assignment (WTA) problem. The
WTA problem was selected because it is non-trivial but does not impose particularly sophisti-
cated constraints on the set of feasible assignment matrices. The relatively simple constraints
of the WTA problem allow us to first verify that Deep Bipartite Assignments (DBA) is effec-
tive through the use of supervised learning (SL) in combination with simultaneous construction
(SC). Recall that, from the previous chapter, SL is generally considered to be much more stable
than reinforcement learning (RL). Therefore, with SL, it is possible to quickly validate that DBA
is capable of finding optimal assignment matrices given an arbitrary problem description.

The chapter begins by defining the WTA problem and presenting relevant background liter-
ature. Two baseline algorithms are presented to assess the relative performance of DBA . Finally,
DBA is demonstrated to be competitive with these baselines, regardless of whether it is trained
by SL or RL.

6.1 Background

The WTA problem was first formally stated by Manne, 1958 and is loosely modelled on a mil-
itary engagement. WTA assume a battle scenario with a fleet of weapons (or agents) and a set
of targets (or tasks). The objective is to minimise the expected surviving values of the targets.
Each weapon-target combination has a kill probability

pi,j = P(target j is destroyed by weapon i | Yi,j = 1) (6.1)

and each target has positive value vj > 0.
The objective function JWTA assumes that the kill-probabilities pi,j are independent of one an-

other. Therefore, the probability that a given target survives is given by the product of conjugate
probabilities ’i(1� pi,j)

Yi,j . The solution to a WTA problem instance is an optimal assignment
matrix Y⇤ such that

Y⇤ = min
Y

JWTA = min
Y

M

Â
j=1

vj

N

’
i=1

(1� pi,j)
Yi,j . (6.2)
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For the WTA constraints CWTA, it is assumed that each weapon can be assigned to a single
target (but a single target can be selected by an arbitrary number of weapons). This leads to the
following set of constraints on Y for all i,

Â
j

Yi,j = 1 . (6.3)

The WTA problem is a bipartite assignment problem (BAP) as according to Definition 2 as
its problem instances can be represented by the tuple X = hA, T, P, Ei, where,

• A is unused (|A| = 0).

• T is reduced to an M entry vector, where each element represents the value of the jth target.
That is, for task j, Tj = vj and so |T| = 1.

• P is reduced to an N ⇥ M matrix, where each element Pi,j 2 [0, 1] represents the kill-
probability that agent i will destroy target j if it is assigned to it. For each agent-task pair,
Pi,j = pi,j and so |P| = 1.

• E is unused (|E| = 0).

The WTA problem is well-known to be NP-complete and so cannot be solved exactly in poly-
nomial time (Lloyd and Witsenhausen, 1986) . Lower bounding strategies can be used to find
exact solutions for medium-sized instances (e.g. 20 agents and 20 tasks), but no exact algorithms
exist for finding real-time solutions to large problem instances (e.g. 100 agents and 100 tasks).
There are well-known heuristics for finding near-optimal solutions to the WTA problem (Ahuja
et al., 2003). These heuristics are known to generate fast solutions within a few percentage points
of optimality. Therefore, despite being NP-complete, the WTA problem is essentially solved for
practical purposes. DBA is not necessarily designed to compete with existing heuristics for the
WTA problem. The WTA problem is instead a benchmark to illustrate how DBA can be applied
to a practical, non-trivial example.

6.2 Design Modifications

The relatively modest constraints on Y means that either simultaneous construction (SC) or
greedy construction (GC) can be used as a method of inference for DBA . To verify that DBA is
capable of constructing optimal assignment matrices, SC was combined with SL (SC-SL). Later,
in other experiments, DBA was trained using GC with RL (GC-RL) to test whether DBA can
discover near-optimal assignment matrices from scratch without human supervision. In both
cases, independent experiments were carried out with both of communication layers presented
in 5.3 (pooling and attention).

6.3 Baselines

Two baselines are supplied for the WTA problem: a branch and bound algorithm and a genetic
algorithm (GA). The branch and bound comes from Ahuja et al., 2003, and was used to generate
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a dataset of exact, optimal solutions to the WTA problem. These exact solutions can be used to
verify the relative optimality of DBA . The branch and bound however, requires expert human
knowledge about the structure of the WTA problem to derive and implement. GAs, on the
other hand, can be readily applied to a large number of different problems with little human
supervision. In this way, a GAs are a suitable comparison with DBA as they are general-purpose
and are not limited to a particular problem definition. Ideally, DBA should be competitive with
the branch and bound, while outperforming the GA.

6.3.1 Branch and Bound

The branch and bound uses a depth-first search to iteratively construct an assignment matrix,
one agent-task pair at a time. The algorithm begins with an empty assignment matrix. At each
step of the algorithm, an agent-task pair is added to the current assignment matrix. If the current
assignment matrix is complete (that is, no more agent-task assignments can be added without
violating the WTA constraints), then the objective is computed according to JWTA. Throughout
the branch and bound, the best objective and the best corresponding assignment matrix are
tracked.

Backtracking is used to search through different assignment matrices. Backtracking just
means that, the most recently added agent-task pair is removed and a new agent-task pair is
added in its place. If all new agent-task pairs have been exhausted, then the second-to-last
added agent-task pair is removed and a new agent-task pair is added in its place. If this process
repeats until there is an empty assignment matrix, and no new agent-task pairs can be added
that have not used been previously, the branch and bound is terminated.

As each agent-task pair is added, a lower bound is computed on the current assignment
matrix. This lower bound describes the best possible objective that can be obtained by adding
agent-task pairs to the current assignment matrix. Backtracking is induced by two events: when-
ever a complete assignment matrix is found, or whenever the current lower bound is larger than
the best objective on record. If a computed lower bound is larger than a previously found objec-
tive, then there is no need to keep adding agent-task pairs to the current assignment matrix (as it
is impossible to beat the best assignment matrix on record). Without lower bound computation,
a branch and bound degenerates into depth-first exhaustive search.

Ahuja et al., 2003 state three possible lower bounds for the WTA problem. This chapter uses
their maximum marginal return-based (MMR) lower bounding scheme as it is the easiest to
understand and implement. The MMR scheme assumes that, rather than having a unique kill
probability for every agent-task pair, a vector of kill probabilities is constructed using the best
kill-probability for each task. The current (partial) assignment matrix can then be completed by
selecting agent-task pairs to improve upon the current objective in a greedy manner using the
new vector of kill probabilities. This scheme always gives a lower bound on the best possible
objective using the current assignment matrix. For a proof of this result, see Ahuja et al., 2003.

Ahuja et al., 2003 state that, with MMR lower-bounding, exact solutions can be found when
N = M = 20 in less than a second. However, the authors only performed their tests on individ-
ual problem instances. This statistic may be misleading as solution speed appears to strongly
depend upon the structure of the particular problem instance. In the experiments carried out
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for this thesis, solving instances with N = M = 20 took between one second and five minutes
(depending on the instance). However, the code is mostly written in pure Python (which is noto-
riously slow) and the implementation likely contains inefficiencies. To speed up the branch and
bound, an initial solution was constructed using a heuristic from the same paper. The heuristic,
called the "minimum cost flow construction heuristic", in essence, uses the solution to a closely
related network flow problem to quickly find a good initial solution (which, in fact, is usually
optimal when N = M = 20).

6.3.2 Genetic Algorithm

A GA is a simple, derivative-free technique that combines random search with biologically-
inspired heuristics. For an introduction to genetic algorithms, see Eiben and Smith, 2015. GAs
provide a suitable comparison to DBA because they are also black-boxes that do not require
any human knowledge to find heuristic solutions. Unlike many other optimization paradigms,
GAs can be easily applied in non-convex settings with integer variables, which make them ideal
for many assignment problems. GAs are also extremely parallelisable, and so can easily take
advantage of large, multi-core systems. A key difference between DBA and the GA is that,
once trained, DBA can instantaneously finds near-optimal solutions for new problem instances,
where the GA must essentially start from scratch for every new problem instance. GAs are well
known to have two other issues: 1) they require many evaluations of the objective function (and
so can only be used in applications where the objective function can be evaluated cheaply) and
2), they tend to scale poorly as the size of the optimisation variable increases (which, here, is the
number of rows in the assignment matrix Y).

A high-quality GA implementation from the Pygmo library (Biscani et al., 2010) was used as
the baseline. The Pygmo library automatically parallelises the GA to run on all available cores
(12 in the experiments for this chapter) and has an efficient backend written in C++.

The Pygmo GA uses the following procedure. The GA begins with a large population of
random assignment matrices. Let the size of the population be given by ps. Each assignment
matrix is captured as a vector of length N, with integer values between 1 and M. The WTA
objective is then computed for all assignment matrices in parallel. The Pygmo GA then employs
three operations: selection, crossover and mutation. Each operation is performed ps in parallel
to produce a new population of ps assignment matrices. At selection, µs random assignment
matrices are sampled, and the one with the best objective is selected. At crossover, two random
assignment matrices are selected (in the form of agent-wise vectors) denoted as parent and the
partner respectively. A random point in the parent vector is selected. From this random point
until the end of the vector, each element is replaced with the corresponding element from the
partner vector with probability µc. Finally, mutation randomly perturbs each element of the
resulting vector with probability µm. There are now 2ps assignment matrices. The GA then uses
a technique called reinsertion to isolate the best ps assignment matrices, which will be carried
forward into future iterations of the algorithm. The algorithm iterates continually until some
pre-defined time limit is reached.
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A hyperparameter search was conducted to optimise µs, µc, and µm but were unable to out-
perform the default hyperparameters given by the Pygmo implementation. For all of the exper-
iments, ps = 512.

6.4 Experiments

DBA was applied to non-trivial instances of the WTA problem with N = 20 agents and M = 20
tasks. The experiments followed the modelling assumptions of Ahuja et al., 2003 by sampling
pi,j uniformly from [0.6, 0.9] and vj as uniform random integers from [25, 100].

DBA was trained with SC-SL and GC-RL. For both approaches, experiments were performed
with both of the communication layers presented in Section 5.3. Thus, four variants were trained
in total: pooling with SL (P-SL), attention with SL (A-SL), pooling with RL (P-RL) and attention
with RL (A-RL). Table 6.1 details some of the experimental settings.

TABLE 6.1: Settings for each variant.

Setting P-SL A-SL P-RL A-RL
Number of stacks S 18 12 3 2

Number of parameters 654529 103873 191362 9218
|E | 64 32 64 16

h, |K|, |V| n/a 4, 8, 8 n/a 4, 4, 4
Initial learning rate a 10-4 10-3 5⇥10-4 10-4

For the SL experiments, a training dataset with 200,000 optimal examples consisting of
hX , Y⇤i pairs was created. For both learning algorithms, an additional 1,000 optimal exam-
ples were created for evaluation and a final 1,000 optimal examples for testing. The evaluation
dataset was used to determine the best parameters q⇤ from each training run. The test dataset
was then used to make conclusions about how well each trained DBA generalised to problem
instances that were not seen during training or evaluation. Optimal assignment matrices Y⇤

were generated using the minimum cost flow construction heuristic from Ahuja et al., 2003 and
optimality was asserted by the branch and bound from 6.3.1.

It was observed that a large number of optimal examples were required to ensure general-
isation when training with SL. 200,000 examples led to generalisation, where 50,000 examples
led to overfitting (where DBA learnt to memorise the training dataset but performed poorly on
the evaluation and test datasets).

Throughout the experiments, many of the current best practices from deep learning were
adopted. The inputs to DBA were normalised using the previously stated modelling assump-
tions. Batch normalisation was added after every major operation (Ioffe and Szegedy, 2015).
The Adam update rule (Kingma and Ba, 2015) with an exponentially decaying learning rate
was used instead of vanilla stochastic gradient descent. Skip connections were included for the
pooling-based architectures (Sukhbaatar et al., 2016) and residual connections were used for the
attention-based architectures (He et al., 2016).

For all of the nonlinearities, the rectified linear unit s(·) = relu(·) was used. For P-RL, 10
problem instances were batched together for each parameter update. For the other variants, 20
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problem instances were batched together for each parameter update. For GAE, g = 1.0 and
l = 0.99 (see 2.2.3 Schulman et al., 2016). All hyperparameters were found by random search.

All experiments were run in Python and TensorFlow on an Ubuntu 16.04 machine with six
Intel(R) Core(TM) i7-8700K CPUs @ 3.70GHz and an Nvidia GTX 1080 GPU.

The primary metric of interest was the optimality gap og, defined as:

og = 100⇥
J(Y,X )� J(Y⇤,X )

J(Y⇤,X )
% . (6.4)

During each training run, the mean optimality gap was tracked over the evaluation dataset.
DBA was evaluated on the evaluation dataset every 100 parameters updates when training with
SL and every 50 updates when training with RL. To ensure reproducibility, 50 training runs were
performed for each communication layer/learning algorithm combination. For each training
run, the DBA parameters q⇤ that minimised the mean optimality gap over the evaluation dataset
were saved. Table 6.2 displays the average number of parameter updates required to find q⇤ for
each variant.

TABLE 6.2: Training time for each variant averaged over 50 independent runs.

Metric P-SL A-SL P-RL A-RL
Number of updates to find q⇤ 46839 41643 2024 4450

Time per update (seconds) 0.060 0.067 0.245 0.423

With the best parameters from each training run, the following metrics were computed over
the test dataset:

• Mean gap: The average optimality gap over the entire test dataset.

• % optimal: How often Y⇤ was found as a percentage of the entire test dataset.

• % upper bound (u.b.): The value for which a percentage of assignments had a lower opti-
mality gap.

Numerical results are reported in Table 6.3 and empirical cumulative distribution functions
(CDFs) are plotted in Fig. 6.1.

The attention-based architectures yielded the best results, with significantly fewer parame-
ters than their pooling-based counterparts. The SL-based architectures were able to find optimal
assignment matrices for the vast majority of problem instances in the test dataset. In contrast,
the RL-based architectures were rarely able to find the optimal assignment matrices, but tended
to have more reliable performance across the entire test dataset (see Fig. 6.1).

A-RL is perhaps the most impressive variant, as it was able reliably generate near-optimal
solutions for the entire test dataset and did not require any optimal demonstrations to train.

6.4.1 GA Comparison

The GA was applied to the test dataset. The GA was given access to all available computational
resources and its performance was benchmarked for various time limits (up to 10 seconds). It
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FIGURE 6.1: Empirical CDFs for all of the methods from this work. OG is a ran-
dom variable that represents the optimality gap for a random problem instance

from the test dataset.

was found that the best performance was achieved with a population size of 512, with the rest
of the settings unchanged from the default values recommended by Pygmo. To ensure fairness,
the GAs metrics were averaged over four independent test runs. The results are reported in
Table 6.4 and empirical CDFs are plotted in Fig. 6.1.

The GA was unable to outperform A-RL on any of the observed metrics and had a worse
mean optimality gap than any of the DBA variants. Significant compute was required for the
GA to even be competitive. For example, with a 10 second time limit, the GA (GA-10) performed
approximately 3⇥ 106 objective function evaluations for each individual problem instance. A-
RL however, produced better quality results in less than 50ms without any online objective func-
tion evaluation. In fact, throughout the entire training process, A-RL performed fewer objective
function evaluations than GA-10 performed for each individual problem instance. For example,
the best A-RL parameters were found after less than 1.8⇥ 105 objective function evaluations on
average (of which half of the function evaluations were used to track the mean optimality gap
over the evaluation dataset and were not directly involved in parameter updates).
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6.4.2 Scalability

The experiments so far have been limited to WTA problem instances with N = M = 20. To
verify that DBA is not severely limited by increasing N and M, an initialised DBA model was
tested with large WTA problem instances. Table 6.5 displays query-times for various values
of N = M. Each time is averaged over 100 random queries. Even in the worst case with A-
RL and N = M = 128, an assignment matrix is returned in just over two seconds. Although
the RL-based architectures are shallower than the SL-based architectures (see Table 6.1), the
query-times are significantly worse. This is because N calls need to be made to the DNN to
cycle through the complete MDP. Note that if very large values of N are required, SC-RL can
be used to compute a complete assignment matrix with a single call to the DNN. However,
in the preliminary experiments, it was noticed that performance suffered when using such an
approach. For example, with A-RL, a mean optimality gap of ⇡12% was observed when using
SC as compared to ⇡4% when using GC.

A key feature of DBA is that the parameters q are not explicitly conditioned on N or M.
Therefore, a pre-trained DBA can be applied to problem instances with variable N and M with-
out alteration. To demonstrate this feature, A-RL was trained on a randomised WTA training
dataset with N = M = 10. This approach is referred to as A-RL-10. A-RL-10 was then applied
to the original test dataset with N = M = 20 without any additional training. The test results
are reported in Table 6.6 and the CDF is plotted in Fig. 6.1.

TABLE 6.3: Results on the test dataset for each variant averaged over 50 training
runs.

Metric P-SL A-SL P-RL A-RL
Mean 4.562 1.128 11.247 4.124

% optimal 84.007 93.900 0.195 1.954
50% u.b 0.000 0.000 9.549 3.659
90% u.b. 19.438 0.001 20.365 7.615
95% u.b. 34.672 1.304 26.672 9.119
99% u.b. 61.184 40.338 41.261 13.111

100% u.b. 155.341 80.106 61.932 24.915

TABLE 6.4: GA results on test dataset for various time-limits averaged over four
runs.

Metric GA-1 GA-2 GA-5 GA-10
Mean gap 23.809 21.317 18.944 15.749
% optimal 0.000 0.000 0.000 0.000

50% u.b 23.752 21.217 18.801 15.712
90% u.b. 30.340 27.487 24.656 20.782
95% u.b. 32.269 29.576 26.371 22.290
99% u.b. 36.675 33.233 30.040 24.954

100% u.b. 41.083 37.608 34.808 30.209
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TABLE 6.5: Average query-time (in seconds) for WTA instances with variable N,
M.

N = M P-SL A-SL P-RL A-RL
2 0.005 0.013 0.003 0.005
4 0.006 0.011 0.005 0.010
8 0.006 0.012 0.011 0.018
16 0.006 0.012 0.023 0.039
32 0.008 0.012 0.053 0.078
64 0.018 0.022 0.255 0.290

128 0.059 0.080 1.572 2.151

TABLE 6.6: Results on test dataset for A-RL-10 averaged over 100 training runs.

Metric A-RL-10
Mean gap 3.909
% optimal 1.940

50% u.b 3.396
90% u.b. 7.158
95% u.b. 8.878
99% u.b. 14.892
100% u.b. 26.158

Surprisingly, A-RL-10 outperformed A-RL across a number of metrics while also being much
faster to train. A similar number of parameter updates were required, but each update only took
0.12 seconds, as opposed to 0.42 seconds previously. Therefore, A-RL-10 was able to generate
good results on the test set with less than 10 minutes of training. In the future, the pseudo-
invariance of DBA with respect to N and M may help us scale DBA to more difficult assignment
problems.

Summary

DBA can generate fast, near-optimal solutions for non-trivial instances of the WTA problem. It
was demonstrated that, when contrasted against a comparable black box method, DBA returns
faster, better quality results with significantly less compute. Finally, it was shown that DBA can
generalise to larger assignment problems than those seen during training.
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Chapter 7

Application 2: The Multi-Resource
Generalised Assignment Problem

In this chapter, DBA is applied to a more difficult problem: the multi-resource generalised as-
signment problem (MRGAP). The MRGAP is NP-hard and is APX-hard just to approximate
(Martello and Toth, 1990). Here, with an almost identical approach to the previous chapter,
Deep Bipartite Assignments (DBA) is competitive with an effective, well-known baseline.

7.1 Background

Th MRGAP is a generalisation of the classic knapsack problem (KP) from computer science
(Martello and Toth, 1990). Consider a single agent with many available tasks. Each task has
a profit pj and a weight wj. In addition, the agent has a capacity c. The agent can select any
number of tasks, so long as the sum of the weights of the selected tasks does not exceed its
capacity. Formally, the KP seeks to maximise

JKP = Â
j

pjYj , (7.1)

subject to

Â
j

wjYj < c . (7.2)

If, somehow, the agent can select fractional tasks (that is Yj 2 [0, 1]), then the KP can be solved
with a trivial greedy algorithm. However, the more interesting case in which Yj is constrained
to binary values is NP-Hard (Martello and Toth, 1990).

The KP can be extended to the generalised assignment problem (GAP). Instead of consider-
ing a single agent, the GAP has N agents. Each agent has its own capacity ci and each agent-task
pairing has a profit pi,j and a weight wi,j. The GAP requires the maximisation of

JGAP = Â
i

Â
j

pi,jYij , (7.3)

subject to

Â
j

wi,jYi,j  ci (7.4)
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for all i and

Â
i

Yi,j  1 (7.5)

for all j.
Another variant on the KP is the multidimensional knapsack problem (MKP). In the MKP,

each task has a K-dimensional vector of weights and the agent has a K-dimensional vector of
capacities. That is, wj, c 2 RK. The objective function JMKP ⌘ JKP. However, the constraints
become

Â
j

wj,kYj < ck (7.6)

for all k 2 {1, 2, . . . , K}.
Finally, the MRGAP generalises the MKP in the same way that GAP generalises KP to mul-

tiple agents. Given N agents, maximise

JMRGAP ⌘ JGAP = Â
i

Â
j

pi,jYij , (7.7)

subject to

Â
j

wi,j,kYi,j  ci,k (7.8)

for all k 2 {1, 2, . . . , K} and all i, and

Â
i

Yi,j  1 (7.9)

for all j.
The MRGAP is a bipartite assignment problem as according to Definition 2 as its problem

instances can be represented by the tuple X = hA, T, P, Ei, where,

• A is a capacity vector for each agent (|A| = 0). That is, for agent i, Ai = ci = [ci,1, ci,2, . . . , ci,K]
>

and |A| = K.

• T is unused, as each agent-task combination is unique (|T| = 0).

• P is a three dimensional array of agent-task information. For each agent-task pair, Pi,j =

[pi,j, wi,j,1, wi,j,2, . . . , wi,j,K]
> and so |P| = K + 1.

• E is unused (|E| = 0).

From the MRGAP, all of the other problems (KP, GAP, MKP) can be derived as special cases.
Like all of the previously mentioned problems, a branch and bound can be used to find exact
solutions, but this becomes impractical as the problem instances become larger. During pre-
liminary experimentation, it was noticed that branch and bound scale especially poorly as K
increases.
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7.2 Baseline

The greedy heuristic from Cohen et al., 2006 was chosen as a baseline for the MRGAP (denoted
as GH). The GH was chosen as a baseline because it is simple to implement while maintaining
appealing theoretical guarantees.

The GH uses a KP solver as a subroutine. The KP solver can either be exact or a heuristic.
The GH then uses the following algorithm. First, arbitrarily select an agent. Then, solve the
corresponding KP for that particular agent and update the assignment matrix to reflect the tasks
chosen by the agent. Next, another agent is selected and the process is repeated. However,
before the KP solver is called again, the profits are scaled to reflect the current assignments.
For example, if a given agent-task combination has profit pi,j and the task has been selected
by another agent `, then the residual profit p0i,j = pi,j � p`,j is computed. If the KP solver still
attempts to select task j given this residual profit, then task j is moved from agent ` to agent i.

The GH has a running time of O(N f (M) + NM), where O( f (M) is the running time of
the KP solver. Interestingly, the GH guarantees that the final assignment matrix will have an
objective that is, at least 1

1+a of the optimal objective. That is,

JGAP(X , YGH) �
JGAP(X , Y⇤)

1 + a
(7.10)

for all X 2 IGAP, where a is the approximation ratio of the KP solver. Therefore, in the case
that the KP solver is optimal (a = 1), the assignment matrix returned by the GH will have an
objective that is no worse than half the optimal objective.

In the original algorithm, the KP solver is invoked N times, once for each agent. However,
if an agent i has a task removed from it by another agent `, then it may have enough freed up
capacity to accommodate additional tasks. Therefore, the GH can be strengthened by continuing
to invoke the KP solver over each agent with updated residual profits until some notion of
convergence is reached (for example, if Y stays constant throughout N consecutive rounds of
invoking the KP solver). This improved strategy is used as the baseline in this chapter.

Note that the GH was designed for the original GAP (with K = 1). However, it is reasonable
to use this algorithm in the context of MRGAP as long as an appropriate MKP solver is supplied.

7.3 Design Modifications

DBA can be used with minimal alteration from the previous chapter. The only major differ-
ence is that, the set of assignment constraints C has changed. Unlike the previous chapter,
agents can continually select tasks so long as they have enough capacity (rather than being
limited to one task). In addition, each task can be selected by at most a single agent. These
constraints make using simultaneous construction (SC) difficult, as it is hard to guarantee that
the resulting assignment matrix is always feasible. Therefore, in the experiments, the only infer-
ence method/learning algorithm is greedy construction (GC) paired with reinforcement learn-
ing (RL).
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7.4 Experiments

7.4.1 Preliminary Experiments

Upon first exposing DBA to the MRGAP, it was observed that the pooling communication lay-
ers performed significantly better their attention-based counterparts. P-RL required far fewer
training iterations and produced higher quality assignments than A-RL. This result is somewhat
surprising. Recall that, in the previous chapter, A-RL convincingly outperformed P-RL (though
note that even then, A-RL generally took longer to converge than P-RL - see Table 6.2). The core
experiments therefore focus on just using P-RL.

Early on, it was also noticed that DBA is not pseudo-invariant with respect to the size of
MRGAP instances. Recall that, when trained on the WTA problem with N = M = 10, A-RL
was able to achieve almost identical performance to being trained on N = M = 20. Here, DBA
can still generalise to larger problem instances than those seen during training, but optimal
performance was always achieved when the model was trained over the same distributions of
N and M as found in the test dataset.

7.4.2 Core Experiments

DBA was trained over a number of different MRGAP configurations. All hyperparameters were
left unchanged from the previous chapter (see Table 6.1). Better results may be possible with
further hyperparameter exploration, but the hyperparameter settings were left unchanged to
show the robustness of DBA to new problem settings. To gain a thorough understanding of
how well DBA scales to different sized problem instances, the following Cartesian product over
MRGAP parameters was considered,

{(N, M, K) : N 2 {2, 4, 8}, M 2 {10, 20, 40}, K 2 {1, 2, 3}} . (7.11)

Profits pi,j and weights wi,j,k were sampled uniformly from the integers between 1 and 100.
The capacities ci,k were sampled uniformly from the integers between 100M

8 and 100M
4 .

As a baseline, the GH was as outlined in 7.2 was used. Google’s OR Tools MKP solver
was used as a subroutine for the GH. This MKP solver uses a branch and bound to obtain exact
solutions to MKP problem instances. Therefore, the GH always find assignments with objectives
that are, at worst, half the optimal objective (as a = 1).

For each (N, M, K) tuple, an evaluation dataset and a test dataset were created with 200
and 1,000 problem instances respectively. DBA was then trained over each (N, M, K) tuple and
saved whichever parameters maximised the average objective over the evaluation dataset. The
GH was run over each test problem instance to obtain a series of (X , YGH) pairs. For each set of
trained DBA parameters and every relevant test problem instance, the following objective gap
was computed og,

og =
JMRGAP(X , Y)� JMRGAP(X , YGH)

JMRGAP(X , YGH)
⇥ 100% . (7.12)
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A positive objective gap og > 0 indicates that DBA model found a better assignment matrix than
the GH, while an objective gap of 0 og = 0 indicates that the DBA model found an equivalent
assignment to the GH.

For each (N, M, K) tuple, the following statistics were recorded over the test dataset:

• The average objective gap.

• The percentage of assignments that had a better objective than the GH (denoted > GH in
the results table).

• The percentage of assignments that had an equal objective than the GH (denoted = GH in
the results table).

• The percentage of assignments that had a worse objective than the GH (denoted < GH in
the results table).

12 DBA models were trained for each (N, M, K), combination. The results are displayed in
Table 7.1. For each test problem instance, both the average and the best objective obtained by
the 12 DBA models were recorded. Taking the best assignment matrix from 12 separate models
is justified in this case as each DBA model is independent and can be queried in parallel with all
of the others. In addition, the MRGAP objective can be computed very cheaply, and so does not
add significant overhead to the entire process. This approach, of using a number of indepen-
dent deep neural networks (DNNs) to find a number of different solutions to a combinatorial
optimisation problem, is taken from Bello et al., 2016. Such an approach is valid so long as the
objective can be computed relatively cheaply, and that there are enough available computational
resources to query all trained DNNs in parallel. Note that a similar approach could also be ap-
plied to the WTA problem from Chapter 6, resulting in monotonic improvement to the objective
function.

DBA is competitive with the GH across all combinations of N, M and K, with objective
gaps around 1% in absolute value. In certain scenarios, for example N = 4, M = 10, DBA
outperforms the GH across the majority of the test dataset. However, in other cases, for example,
whenever N = 8, DBA tends to perform slightly worse than the GH.

The performance of DBA is a somewhat unpredictable, nonlinear function of N, M and K.
For example, increasing K in some cases (e.g. N = 4, M = 10) increased the relative performance
of DBA with respect to the GH, but not in others (e.g. N = 2, M = 10).

Generally speaking, as the MRGAP instances become larger, the assignments found by DBA
become slightly worse with respect to the GH. However, throughout the experiments, it was
found that DBA is always at least competitive with the GH. When taking the best assignment
matrix from 12 parallel models, DBA usually outperforms the GH across all combinations of N,
M and K except when N = 8, M = 40, and K  2. It is possible that with further hyperparameter
tuning and training, DBA may be able to outperform the GH for any size MRGAP. Again, no
additional hyperparameter tuning has been carried out since Chapter 6, so it is possible that the
current hyperparameters are not well suited to large MRGAP instances.

The results demonstrate that, if DBA is to be used for solving a BAP, it is essential to under-
stand the distribution from which it is expected that real-world problem instances will arise. If
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TABLE 7.1: DBA results over the MRGAP test dataset. Note that all values are
given as percentages. Therefore, the value 1 corresponds with 1% (not 100%).

N M K Average over models Best-of 12 Models
Mean og >GH =GH <GH Mean og >GH =GH <GH

2

10
1 0.330 29.42 35.51 35.07 1.636 41.30 45.20 13.50
2 -0.462 23.28 34.74 41.98 1.311 34.60 45.60 19.80
3 -1.378 20.97 32.05 46.98 1.077 31.60 48.10 20.30

20
1 0.738 49.42 12.76 37.82 1.519 63.10 18.70 18.20
2 0.051 43.82 9.43 46.76 1.683 62.50 16.70 20.80
3 -1.058 33.25 7.04 59.71 1.213 57.40 13.30 29.30

40
1 0.831 63.80 2.72 33.48 1.461 80.40 4.10 15.50
2 -0.346 45.98 0.96 53.07 1.350 77.70 1.70 20.60
3 -1.290 33.64 0.92 65.44 1.039 68.20 1.70 30.10

4

10
1 0.511 28.30 38.98 32.72 1.063 36.50 55.10 8.40
2 1.489 49.04 24.42 26.55 2.392 60.30 32.60 7.10
3 1.914 55.78 17.37 26.85 3.333 68.80 24.20 7.00

20
1 -0.062 19.84 29.98 50.18 0.296 31.10 57.10 11.80
2 0.187 35.53 18.43 46.03 0.762 52.60 33.40 14.00
3 0.544 50.34 10.69 38.97 1.342 68.90 19.30 11.80

40
1 -0.134 11.94 20.51 67.55 0.074 23.50 57.30 19.20
2 -0.258 18.62 11.48 69.90 0.165 39.50 34.30 26.20
3 -0.172 27.71 8.98 63.31 0.292 51.60 26.30 22.10

8

10
1 -0.310 7.82 38.09 54.09 0.127 13.20 78.90 7.90
2 -0.377 13.83 28.85 57.32 0.280 24.20 67.20 8.60
3 -0.258 20.59 27.05 52.36 0.486 32.60 58.00 9.40

20
1 -0.168 2.33 37.12 60.55 0.014 4.70 89.60 5.70
2 -0.209 4.27 26.77 68.97 0.029 9.40 75.60 15.00
3 -0.192 7.58 29.96 62.46 0.051 15.00 73.70 11.30

40
1 -0.096 0.29 46.44 53.27 -0.001 0.90 97.30 1.80
2 -0.104 0.89 23.33 75.78 -0.003 2.30 83.20 14.50
3 -0.136 1.18 23.57 75.26 0.003 3.90 93.30 2.80
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an accurate, well-constrained distribution of test instances can be derived, then that it is much
easier to automate the necessary hyperparameter sweeping required to convincingly outper-
form more traditional approaches on real-world problem instances.

7.4.3 Runtime

For each combination of N, M and K, the query times were recorded over the test dataset. The
results are presented in Table 7.2. DBA scaled roughly linearly with increasing M, while holding
relatively constant for increasing N and K.

The GH was faster than DBA on average across all problem sizes. However, the GH tended
to scale super linearly with increasing M and K. The GH became particularly slow as K in-
creased if N and M were already large. It is conjectured that, as MRGAP instances become even
larger (especially as K increases), DBA will eventually be faster than the GH.

DBA is relatively stable in terms of runtime, where the GH is more unpredictable. In the
worst-case, the GH is in fact slower than DBA (see for example, M = 40, K > 1). Therefore,
DBA can provide competitive results while also being faster in certain cases.

Summary

In this chapter, DBA was adapted to the MRGAP. It was demonstrated that DBA is competi-
tive with a high-quality baseline. In terms of runtime, DBA was slower than the baseline, but
appears to have better asymptotic growth. In addition, the baseline required expert human-
knowledge and a high performance branch and bound, where DBA only required knowledge
of the MRGAP description.
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TABLE 7.2: DBA runtime over the MRGAP test dataset. All values are given as
milliseconds. s.d. corresponds with standard deviation.

N M K DBA GH
Mean Min Max s.d. Mean Min Max s.d.

2

10
1 12.336 7.135 16.107 1.917 0.274 0.089 1.263 0.119
2 10.506 5.614 14.027 1.626 0.266 0.101 2.655 0.129
3 9.545 5.898 14.481 1.774 0.260 0.107 1.139 0.103

20
1 26.415 18.218 31.768 3.117 0.866 0.168 4.221 0.351
2 23.458 17.826 29.557 2.658 0.515 0.149 2.636 0.236
3 21.789 13.086 29.094 3.008 0.560 0.174 4.891 0.289

40
1 54.584 41.858 64.069 4.919 1.378 0.358 7.495 0.731
2 46.547 36.301 59.163 5.636 8.406 0.299 391.335 25.511
3 44.706 32.837 54.550 4.437 14.311 0.367 470.992 38.694

4

10
1 14.590 13.184 16.079 0.396 0.788 0.295 2.506 0.224
2 15.504 13.746 17.612 0.800 1.838 0.315 14.246 1.552
3 14.911 10.331 17.671 1.024 0.796 0.287 3.237 0.282

20
1 29.565 28.372 33.787 0.805 2.417 0.652 9.561 2.023
2 29.608 27.728 31.968 0.936 2.488 0.656 7.261 1.274
3 29.982 27.391 32.596 1.152 2.598 0.877 16.574 1.429

40
1 63.833 60.575 67.849 1.807 3.277 1.247 9.808 1.544
2 63.845 61.046 69.632 1.631 9.597 1.371 578.842 28.462
3 63.145 60.210 67.925 1.790 22.856 1.813 652.132 55.206

8

10
1 15.300 14.260 17.824 0.509 1.632 0.918 4.859 0.373
2 15.547 14.586 16.884 0.449 1.878 0.935 5.453 0.511
3 15.491 14.628 16.774 0.429 1.877 0.837 41.002 1.641

20
1 31.116 29.495 36.374 1.050 3.310 1.507 8.986 1.143
2 31.469 29.832 33.820 0.850 3.396 1.889 7.056 0.547
3 31.344 29.684 34.459 0.772 3.730 1.900 27.449 1.259

40
1 63.213 59.898 68.276 1.784 4.798 2.433 6.959 0.458
2 65.490 61.350 97.715 4.981 14.072 3.050 607.329 34.310
3 64.129 60.770 70.321 1.731 25.558 4.173 497.458 43.145
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Chapter 8

Conclusions

This thesis presented Deep Bipartite Assignments (DBA), a customisable deep learning architec-
ture for automatically finding high-quality heuristics for bipartite assignment problems (BAPs).
DBA is designed in particular for problems that cannot be addressed by traditional techniques:
such as those that have a computationally expensive objective function and/or require high
dimensional representation. In this thesis, DBA was shown to be competitive with strong base-
lines on two NP-Hard problems.

DBA is a general-purpose approach for heuristically solving a large class of assignment prob-
lems. This generality brings about both strengths and limitations.

8.1 Strengths

DBA requires minimal human knowledge to generate high quality assignments for arbitrary
BAPs. In order to achieve optimal performance on a given BAP, hyperparameter sweeping may
be required. However, this process can be easily automated with a simple script. In Chapter
7, it was also shown that DBA is capable of producing good performance without any addi-
tional hyperparameter tuning. In all of the experiments, the runtime of DBA at test time is
strongly polynomial. As an example, over the multi-resource generalised assignment problem
(MRGAP), DBA scaled roughly linearly with increasing M.

8.2 Limitations

Deep learning approaches are usually unable to provide any theoretical guarantees in terms of
achievable objective. Where the greedy heuristic (GH) of 7.2 is able to guarantee an assignment
matrix that is at least half as good as the optimal assignment matrix, DBA can only give empir-
ical evidence of quality when compared alongside an existing method. Even when presented
with empirical evidence, it is generally considered impossible to provide non-trivial guarantees
about how DBA will perform on unseen BAP instances.

For very large problem instances, significant training time may be required. Depending on
the exact BAP, DBA may discover strategies that are pseudo-invariant with respect to problem
size. For example, when presented with the weapon-target assignment (WTA) problem, DBA
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can find high quality assignment matrices for larger problem instances than those seen in train-
ing. However, if this pseudo-invariant quality does not hold (as in the MRGAP), it is essential
that DBA be trained on a distribution that is as close to what is expected at test time. Such a
distribution may involve a large number of tasks and agents. As the number of agents and tasks
grows, DBA takes significantly longer to train. When compounded by a hyperparameter sweep,
deploying DBA may be infeasible in some scenarios unless high-performance resources (such
as an HPC or similar) are available for training.

8.3 Future Work

In this work, DBA was validated on BAPs that already have strong existing baselines. In both
cases, insufficient evidence was provided to justify that DBA should be adopted in place of these
baselines. The construction heuristic of Ahuja et al., 2003 almost always outperforms DBA.
In the MRGAP, the GH of Cohen et al., 2006 produced similar quality assignment matrices to
DBA, but was much faster on average to compute. Therefore, perhaps the most pressing area
of future research is to find an application of DBA that unambiguously outperforms all existing
baselines. This thesis takes inspiration from domains such as Go (Silver et al., 2017) and Starcraft
2 (DeepMind, 2018) where deep learning easily surpasses traditional human-derived strategies.
This thesis conjectures that there are BAPs where DBA reliably outperforms all existing human-
derived heuristics - but this if left to future work.

Another area of future work lies in the development of communication layers. This thesis
presented two communication layers that have good empirical backing: pooling and attention.
In general, it was noticed that attention as a communication layer is more stable during training
but is slower to both train and query. The choice between pooling and attention is a matter of
user preference and the exact BAP under consideration. However, there may be other commu-
nication layers that are more effective. This thesis recommends an in-depth review of the field
of geometric deep learning (Bronstein et al., 2017) to find other possible communication layers.
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