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 

Abstract— To select among competing generative models of 

timeseries data, it is necessary to balance the goodness of fit 

(accuracy) and model complexity. Bayesian methods are a 

mathematically principled way to achieve this balance. However, 

when performing simulations – to assess the identifiability of 

models (face validation) – the best model identified by Bayesian 

model comparison might appear more complex than the model 

that actually generated the data. We illustrate this using dynamic 

causal models of human electrophysiological data, where models 

with multiple parameter modulations are selected as the best 

model, even if the true modulations are sparse. We explain this by 

the form of the complexity penalty, which is equivalent to weighted 

L2 norm. This phenomenon is an example of implicit prior biases 

that necessarily entail a complexity penalty.  

 

I. INTRODUCTION 

When developing a new or improved mathematical model to 

explain empirical data, it is necessary to establish that the model 

and its parameters are identifiable, to the extent needed to 

distinguish different hypotheses about the causes of the data. 

This is typically assessed by simulating data using the candidate 

model and estimating the evidence for alternative models as 

explanations for the simulated data. Intuitively, the model that 

generated the data should have the strongest evidence. 

However, as we have found when developing models of 

neuroimaging data, this is not necessarily the case and the “true 

model” that generated the data is not necessarily the one 

assigned the strongest model evidence. This speaks to the adage 

that “all models are wrong but some are useful” [1]– even when 

it comes to simulations. In brief, the model used to generate 

some data is not the best explanation for those data, because 

there is always a simpler model that is more consistent with 

prior beliefs. Here, we explore this effect, which may be 

important when evaluating models. 

The phenomena we describe are relevant to any inverse 

modelling problem; however, we will focus on the application 

of identifying functional brain circuitry from neuroimaging 

data, using Dynamic Causal Modelling (DCM). DCM is a 

Bayesian scheme for inferring physiologically meaningful 

parameters of neural systems from features of 

neurophysiological and neuroimaging data [2]. DCM entails the 

inversion of partially observed nonlinear dynamical systems to 
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estimate biophysical parameters and their changes caused by 

experimental contexts – as well as to select the most plausible 

from several alternative models. DCM was first developed to 

provide insights about interactions between neuronal sources 

(effectivity connectivity) from functional magnetic resonance 

imaging (fMRI, [3]) data and subsequently further developed to 

investigate underlying generators of electrophysiological 

responses from EEG/MEG [4], [5], [6]. 

In Bayesian statistics, the goodness of models is measured by 

their marginal likelihood or log model evidence, 𝑝(𝑦|𝑚) for 

data 𝑦 and model 𝑚. This cannot typically be computed 

explicitly, so approximations are used. In DCM a lower bound 

on the evidence is defined called the free energy, equivalent to 

the Evidence Lower Bound (ELBO) in machine learning. This 

quantity is a useful score for the quality of the model, because 

it can be decomposed into the difference between the model 

likelihood (i.e., accuracy) and the Kullback-Leibler (KL) 

divergence between the prior and posterior densities of 

(unknown) model parameters (i.e., complexity). Parameter 

estimation in DCM is carried out through iterative optimization 

of the free energy, making it possible to optimally balance 

accuracy and complexity and thereby avoid overfitting [7]. The 

optimization scheme is a variational Bayesian (VB) procedure 

under the Laplace assumption (assuming a Gaussian form for 

probability densities functions). The free energy score of the 

estimated model in DCM is a statistical quantity that allows 

Bayesian model comparison (e.g., with a fixed effects [8] or 

random effects approach [9]). 

Recently a novel post-hoc model selection approach known as 

Bayesian Model Reduction (BMR) was introduced  [10], [11] 

for analytically deriving the evidence and parameters of sub-

models of an estimated model. This can be used to rapidly assess 

the evidence for a small set of pre-defined, reduced models – or 

to automatically search over potentially thousands of candidate 

models – to find an optimal explanation for the data. The BMR 

approach may outperform separate VB estimations for each 

reduced model, because reduced models cannot be caught in 

different local optima.  

How can we assess whether a particular DCM model or 

procedure is valid? The concept of model validity has been 

extensively explored in philosophical and statistical literature. 

When applying the notion of validity to DCM one can identify 
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three basic types: (i) Face validity – the ability of a DCM 

procedure to recover the model (and parameters) that generated 

the data, (ii) Predictive validity – the ability to obtain consistent 

results when applying DCM to multiple realizations of the same 

type of data; e.g., the inferences from one group predict the 

responses of another group of subjects drawn from the same 

population, (iii) Construct validity – the ability to obtain 

consistent results using different DCM procedures, different 

generative models or different measurements. Clearly, 

establishing construct validity will ensure that DCM results are 

applicable and useful in a wide variety of contexts.  However, 

the first challenge is to establish face validity and predictive 

validity. Several previous works have addressed the predictive 

validity of DCM analyses for different procedures and data 

types [12]–[14].  

The present paper deals with the problem of establishing the 

face validity of a DCM. This is a more difficult problem than 

may appear at first glance. The difficulty is that even when 

simulating data – with known parameters under a given model 

– the ensuing data can be emulated by a different set of 

parameters or different models. Therefore, Bayesian model 

comparison may not be able to distinguish the ‘true’ model 

that generated the data from other models. Instead, it will favor 

the least complex (simplest) model (in the sense of the smallest 

complexity term) that can still fit the data features sufficiently 

accurately. 

This notion of a least complex model may naïvely point to a 

model with fewer parameters or with the smallest changes with 

the same number of parameters. This suggests that model 

comparison is conservative, meaning that it might miss some 

aspects of how data are generated but the ones it does identify 

are true in the sense that they are necessary to explain the data. 

In this paper, we show that in DCM a model with small 

modulations of a large number of parameters can be less 

complex than a model with large modulations of a few 

parameters. This is just one example of the nature of Bayesian 

model comparison that should be considered when interpreting 

DCM results.  

 

II. METHODS 

In this paper, we focus on DCM for evoked electromagnetic 

responses – and on the simplest problem of identifying the 

functional architecture using DCMs of single subject data or 

grand average responses over subjects. However, the same issue 

can arise when using other data features (e.g., spectral features) 

and other data modalities such as fMRI. 

A. Data pre-processing 

A publicly available group dataset of visual responses to 

familiar, unfamiliar and scrambled faces is used in this paper 

[15]. The dataset includes multiple neuroimaging modalities; 

however, in this paper, we only used EEG data collected from 

16 subjects (7 female, age 26.4±2.9 years). The dataset was 

preprocessed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) as 

described in [16] and the evoked responses were averaged 

across subjects. The ensuing grand average was used as the 

observed data features in DCM for evoked responses. The 

Boundary Element Model [17] based on template head meshes 

and standard extended 10-20 electrode locations [18] was used 

to construct the forward model in DCM for EEG. 

B. Model structure 

Six regions including (left and right) bilateral primary visual 

cortex (V1) as well as the key areas known to be involved in 

processing of faces: bilateral occipital face area (OFA, [19]) and 

bilateral fusiform face area (FFA, [20]) were included in our 

DCM (Table 1 provides the MNI coordinates of these regions).  

 

TABLE I.  COORDINATES OF MODEL SOURCES 

Source name 
MNI coordinates (mm) 

X Y Z 

lV1 -12 -97 -1 

rV1 12 -97 -1 

lOFA -39 -85 -13 

rOFA 39 -79 -13 

lFFA -42 -55 -19 

rFFA 42 -49 -19 

 

 

 

Figure 1.  The architecture of DCM used for our analysis. See Table I for 

source coordinates. 

We assumed that the hierarchical order of the network is in the 

form of V1OFAFFA, which is commonly used in literature 

[21]. We used the ‘ERP’ neural model in DCM, which is based 
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on the neural mass model formulation originally suggested by 

Jansen and Rit [22]. In this model, each source for node 

comprises three neuronal populations, each modelled as a single 

neural mass: pyramidal neurons, excitatory interneurons and 

inhibitory interneurons. The interconnections between different 

sources are defined by forward connections (targeting the 

excitatory interneurons), backward connections (targeting 

pyramidal neurons and inhibitory interneurons) and lateral 

connections (targeting all the three populations) [23]. In our 

model, the connections from V1 to OFA and from OFA to FFA 

were of the forward type, the reciprocal connections were of the 

backward type and the corresponding bilateral areas at each 

hierarchical level were linked by reciprocal lateral connections 

(See Fig. 1) 

C. Between trial effects 

We only modelled two of the three original experimental 

effects: unfamiliar and scrambled faces in the DCM input. This 

allowed us to focus on the well-known N170 response to faces 

[24], which is one of the strongest and most robust effects in 

cognitive neurophysiology. The aim of DCM – in this study – 

was to identify which hierarchical levels of the network increase 

their responsiveness to generate the N170. Following the 

established DCM procedures, we formed a model space (see 

Table II) comprising 7 models in total: 3 simple models with 

connectivity modulations at a single level (low – V1, mid – OFA 

and top – FFA), 3 models with modulations at two of the levels 

and one model with modulations at all the levels (the full 

model).  

 

TABLE II.  MODEL SPACE 

Model 

number 
Modulation levels 

1 low 

2 mid 

3 top 

4 low mid 

5 low top 

6 mid top  

7 low mid top (full model) 

 

D. Model inversion and comparison 

We used both full VB inversion [7] and the BMR procedure [10] 

to invert the set of models described in the previous section. 

BMR is computationally efficient – and is not affected by the 

idiosyncratic local minima in the free energy landscape. 

However, for nonlinear models, the parameter estimates 

generated by BMR are generally not identical to those identified 

using VB due to the (Laplace) approximations BMR calls on. 

Therefore, we assessed the evidence for competing models 

using both VB and BMR and compared the results. 

 

To perform BMR, the full model (model 7 in Table 1) was fitted 

to the empirical data using VB. The free energy and parameter 

estimates of the other six models, which are all reduced or sub-

models of model 7, were then computed analytically from the 

posterior parameter estimates of the full model using BMR [10], 

[11]. Since all analyses were performed using the grand average 

(effectively a single subject) our model comparisons did not 

have to consider random effects at the between subject level.  

 

E. Face validation using simulations 

To address the question of whether the BMR procedure can 

identify the ‘true’ model, we simulated ERP data using the 

posterior parameters of the sub-models fitted to the data. The 

simulation was performed by integrating the model with the 

posterior expectations of the parameters (inferred by VB fitting 

to the original data) and adding random Gaussian fluctuations 

(sampled from the posterior noise covariance matrix estimated 

from the real data). This reproduces the amplitude and 

autocorrelation structure of the real noise. We then fitted the full 

model to each of the simulated ERPs and performed BMR with 

the 6 sub-models to ask whether the ‘true’ model could be 

recovered. 

III. RESULTS 

A.  DCM results on real data 

The results of the VB model inversion with the original grand 
average data are shown in Fig. 2. All the models fitted the N170 
effect well. For both VB and BMR procedures, there is a clear 
tendency for models with modulations at more than one level to 
have higher evidence than the first three (simple) models. In both 
cases, the full model had the highest free energy by a large 
margin (a difference of 108 from the next best model for VB, 60 
for BMR). From these log evidence differences – i.e. the log 
Bayes factors – the posterior probability for each model can be 
computed, under equal priors for each model. This equates to the 
full model having a posterior probability of very close to 1, with 
other models being close to zero.  

 

Fig. 3 shows the posterior correlations matrix between the 
modulation parameters for the 6 sources, computed by 
normalizing the posterior covariance matrix which is produced 
by VB inversion of the full model. The pattern of correlations 
shows non-trivial conditional dependencies, particularly within 
a group of connectivity parameters from the left sources and the 
right V1. 

B.  Face validation with simulated data 

We performed face validation for both the VB and BMR 
procedures with data generated from the three simple models. 
We tested whether each of the two procedures could identify the 
model that generated the data. The results of this analysis are 
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shown in Fig. 4.  Only in one case (‘true’ model – model 2 with 
VB inversion), the generating model was correctly identified. In 
all other cases, the best model was one of the multi-level models. 
In two cases it was the full model. Note that if we limited our 
comparison to the simple models, we would have obtained 
perfect face validity in this case for both VB and BMR 

 

Figure 2.  Model comparison for fitting DCM to the original data. Please refer 
to Table II for interpretation of the model numbers. The top bar chart shows the 

F values obtained from VB inversion. The plots above show the quality of the 

fits to the N170 effect for the 7 models. The dotted lines show the original data 
and the solid lines model fits. All the models fitted the effect well. The bottom 

bar chart shows the F values from BMR procedure with model 7 used as the full 

model. For both analyses, the full model had the highest evidence. 

 

 

Figure 3.  Posterior correlations for the modulation parameters of the full 

model (model 7) fitted to real data with VB. The numbers above diagonal show 
the corresponding values of the correlation coefficient. The group of sources 

including all the left sources and right V1 shows relatively high absolute 

correlations – 0.18 and above.  

 

Figure 4.  Model comparisons for the analysis of simulated data. The left 

column shows the results of the VB procedure and the right column those of 

BMR. Each row corresponds to a different true model (model 1 – top row, model 
2 – middle row, model 3 – bottom row). The winning models are marked with 

stars. 

IV. DISCUSSION 

A. Conditional dependencies. 

A model can lack identifiability for various reasons. For 

example, the amount of data or the signal-to-noise ratio may be 

insufficient to confidently infer the presence or absence of 

various parameters. Additionally, conditional dependencies 

among parameters reduce identifiability, where more than one 

setting of parameter combinations can generate the same 

predicted data. In effect, the parameters with these sorts of 

dependencies cannot be estimated reliably. Conditional 

dependencies between estimated parameters (for a particular 

model and data) can be examined by looking at the posterior 

correlations. Such a matrix is calculated for the full model as 

shown in Fig 3, where one can see high conditional 

dependencies between four of the six modulation parameters.  

In the DCM for fMRI literature, particular attention has been 

paid to minimization of conditional dependencies between the 

parameters of the neuronal model and between neuronal and 

hemodynamic parameters [25]. Correlations among 

hemodynamic parameters are usually not considered 

problematic, because these parameters do not show 

experimental effects.  

In the case of DCM for M/EEG, the existence of conditional 

dependencies is closely related to the number of sources and 

their spatial proximity. MEG and EEG have low spatial 

resolution – and sources located within a few centimeters of 

each other can produce similar spatial patterns if their 

orientations are similar [26]. Therefore, any parameters that 

modulate the amplitude of spatially proximal sources will be 

conditionally dependent. In principle, it is possible to 

disambiguate some of their effects by their different signatures 

in terms of temporal aspects of the response [27] or the predicted 

responses of other sources in the network. However, multi-node 

DCMs have many degrees of freedom that could effectively 
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‘absorb’ this kind of differences predicting similar data for 

distinct parametric effects. Since, in the presence of realistic 

noise, there is no way to disambiguate these effects based on the 

goodness of fit (accuracy); one would expect that differences in 

model evidence are driven by model complexity, which in effect 

the least complex model could well not be the ‘true’ model.  

 

B. Model complexity vs. parameter number 

Under Laplace assumptions – that underlie both VB and BMR 

methods – the complexity penalty reduces to a measure of the 

deviation of the parameters from their prior values weighted by 

the respective prior precisions. Let us assume, there is a set of 

parameters with strong conditional dependencies for which 

prior precisions are the same (and they change in the same 

direction with similar effect). Which would be a simpler model: 

(i), the one where only one parameter is modulated or (ii), the 

one where all parameters change? The complexity penalty, in 

this case, would reduce to a scaled L2 norm of the parametric 

modulations. The L2 norm does not strongly penalize small 

deviations from zero but does penalize large deviations, in 

relation to a L1 norm [28]. This property well known in the 

M/EEG community from minimum norm solutions in source 

reconstruction; known to be spatially smeared rather than focal 

or sparse. These solutions use the L2 norm of source amplitudes 

as a regularization term [29]. Gaussian priors in VB make a 

similar kind of minimum norm assumption, which results in 

spreading of effects to all parameters that could improve the fit. 

This explains why full models or models with multiple 

modulations often win in DCM model comparison.  

As seen in our simulation example, this could happen even for 

simulated data, where the ground truth is a sparse modulation. 

If we have a prior belief that differences in responses between 

our experimental conditions are caused by changes to a single 

connection, this belief must be explicitly expressed in the 

functional form of the complexity term. This is simple to 

implement with BMR, by using the number of allowable 

parameters as a prior (i.e., prior energy) over reduced models. 

In electromagnetic source reconstruction, this is known as a 

multiple sparse priors (MSP [30]). 

The tendency for models with multiple modulations to have 

higher evidence – under L2 norm like complexity penalty – is 

just one example of what could be called implicit prior biases. 

Other examples, which we hope to address in our future work, 

include: (i) prior preferences for particular kinds of models 

induced by the model structure and (ii) biases induced by the 

relative strength of the effects of different parameters on the 

predicted data. Prior biases cannot be avoided as they reflect 

implicit prior assumptions about the generative model. 

However, one should be aware of them and ensure that they 

properly reflect prior beliefs about the generative process – in 

the same way as priors that are specified explicitly.  

V. SUMMARY AND CONCLUSIONS 

In this paper, we suggest that the ‘true’ model – that is known to 
have generated some simulated data – is not necessarily the 
‘best’ model of those data. If one finds this result for a particular 
model space or application, this may be useful information; by 
suggesting that the model space or data features are not fit for 
purpose for the hypotheses (i.e. models) being tested. We 
highlighted the issue of implicit bias towards non-sparse models, 
which stems from the use of Gaussian priors in DCM. This can 
be useful to bear in mind, when developing models or when 
designing a model space for empirical applications. 
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