Abstract:
We propose a novel method for evolutionary network analysis that uses the genetic algorithm (GA), called the multiple world genetic algorithm, to coevolve appropriate in-...Show MoreMetadata
Abstract:
We propose a novel method for evolutionary network analysis that uses the genetic algorithm (GA), called the multiple world genetic algorithm, to coevolve appropriate in-dividual behaviors of many agents on complex networks without sacrificing diversity. The GA is the powerful way, and thus, used in many domains, such as economics, biology, and social science as well as computer science, to find the interaction strategies on networks of agents. In evolutionary network analysis using GA, parents for reproduction of offspring are often selected among their neighbors under the assumption that neighbors' better strategies are useful. However, if they are on complex networks, agents exist in distinctive and diverse situations. Therefore, agents have their own appropriate interaction strategies that may be affected by a large number of neighboring agents. Here, we propose the evolutionary computation method that uses a GA on fixed networks to coevolve diverse strategies for individual agents. We conducted the experiments using simulated games of social networking services to evaluate the proposed method. The results indicate that it could effectively evolve the diverse strategy for each agent and the resulting fitness values were almost always larger than those derived through evolution using the conventional evolutionary network analysis using the GA.
Date of Conference: 06-09 October 2019
Date Added to IEEE Xplore: 28 November 2019
ISBN Information: