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Multi-Channel Neural Network for Assessing Neonatal Pain from Videos
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Abstract— Neonates do not have the ability to either ar-
ticulate pain or communicate it non-verbally by pointing.
The current clinical standard for assessing neonatal pain
is intermittent and highly subjective. This discontinuity and
subjectivity can lead to inconsistent assessment, and therefore,
inadequate treatment. In this paper, we propose a multi-channel
deep learning framework for assessing neonatal pain from
videos. The proposed framework integrates information from
two pain indicators or channels, namely facial expression and
body movement, using convolutional neural network (CNN). It
also integrates temporal information using a recurrent neural
network (LSTM). The experimental results prove the efficiency
and superiority of the proposed temporal and multi-channel
framework as compared to existing similar methods.

I. INTRODUCTION

Pain is an unpleasant emotional experience that can be
expressed verbally (adults) or non-verbally (children). Unfor-
tunately, neonates do not have the ability to either articulate
pain or communicate it non-verbally by pointing. Pain in
neonates occurs as different behavioral and physiological
cues. By monitoring these cues, caregivers can understand
neonates’ pain and develop suitable treatments. The care-
givers’ observation of neonatal pain is a tedious job that
requires significant time and resources. Moreover, it is inter-
mittent and depends entirely on the subjective judgment of
the observer.

The discontinues assessment of pain may lead to missing
the pain during the postoperative period when the neonate is
left unattended (under-treatment). The observers’ subjectivity
can result in inconsistent assessment, which can lead to
inconsistent treatment. The inadequate treatment (under- or
over-treatment) of neonatal pain can cause serious damages
to the brain of neonates as discussed thoroughly in [1],
[2]. Hence, developing automated methods that continuously
monitor pain is needed in all Neonatal Intensive Care Unit
(NICU) to provide a standardized and continuous assessment.

Currently, neonatal pain is measured using clinical pain
scales (e.g., NIPS [3] and NPASS [4]) that provide a score for
different pain cues followed by adding all the scores together
to obtain the final level of pain. Examples of these cues
include facial expression, body movement, crying sound, and
vital sign readings. Among all pain cues, facial expression is
considered the most validated, prominent, and pain-specific
cue [5], [6], [7].
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Although facial expression is considered the most pain-
specific indicator, extracting features from facial expression
and other indicators is necessary for two main reasons. First,
combining multiple pain indicators allows to assess pain
in case of missing data (occluded face). Second, there is
a strong correlation between different pain indicators [8],
[9]. An illustration of this correlation is depicted in Figure
1. As it can be seen from the Figure 1, the pain stimulus
triggers both facial expression and body movement. Due to
these reasons, we think it is important to assess neonatal
pain using a shared representation of different pain indicators
(e.g., facial expression and body movement).

Existing automated methods for assessing pain of neonates
from facial expression are broadly classified into handcrafted
methods and deep learning methods [10].

Most existing methods fall under the first category. The
first handcrafted method for neonatal pain assessment from
facial expression was introduced by Brahnam et al. [11].
In this work [11], a neonatal facial dataset named COPE
was introduced and used to assess pain from facial features
extracted from the images. The extracted images’ features
are used with PCA, LDA, and SVM classifiers to classify
the static images as pain or no-pain. COPE dataset has 204
static images of 26 healthy infants. Nanni et al. [12] used
different variations of Local Binary Patterns (LBP) descriptor
to classify images of COPE dataset as pain or no-pain.
Instead of detecting the label of pain using a binary classifier,
Gholami et al. [13] used Relevance Vector Machine (RVM)
to detect pain and estimate the intensity of the detected pain.
The intensity estimation was determined using the posterior
probability provided by the RVM.

Zamzmi et al. [14] proposed a multimodal neonatal pain
analysis system. They used a decision fusion after getting the
predictions from multiple modalities; i.e. facial expression,
body movement, crying sound and vital sign. The prediction
for each of these modalities was obtained using binary
classifiers (e.g., SVM) trained using handcrafted features.
Recently, deep learning methods [15], [16] have become
popular in pain classification. In case of infants, Celona
and Manoni [17] proposed a framework that combines both
handcrafted and deep features for classifying COPE images
as pain/no-pain. Specifically, they combined LBP, HOG,
pre-trained VGG-face and Mapped LBP+CNN features to
represent the final feature vector. The extracted feature vector
was used to train SVM to perform binary classification
(pain/no-pain).

There are two main drawbacks of existing automatic
methods for assessing neonatal pain. First, the vast majority
of the methods that assess pain from facial expression depend



Fig. 1. Facial and bodily pain stimulus of neonate

highly on facial landmark points for either cropping the face
region or extracting features from the face. Facial landmark
detection can be challenging in case of neonates since their
facial muscles are not well-developed as compared to adults.
In addition, neonates hospitalized in the NICU undergo
different postoperative care that might lead to complete or
partial occlusion of their face (e.g., oxygen mask or tapes).
Besides, designing and training landmark points detector is
a complex task that requires a relatively large dataset with
accurate landmark points annotations.

Second, these methods, except [14], assess pain from static
images. Pain expression is a dynamic event that unfolds
in a particular pattern over time. Therefore, it is important
to analyze the pain expression over time using temporal
methods. In case of adults, various works [15], [16] reported
that LSTM is an effective way for conveying the temporal
information of pain expression. The experimental results
of Rodriguez et al. [15] method, which combined VGG16
CNN with LSTM, showed that using LSTM improves the
performance of detecting pain from videos.

In this paper, we propose a novel multi-channel deep
neural network framework for detecting neonatal pain from
videos. The proposed framework continuously observes two
different pain indicators, facial expression and body move-
ment, and feeds them into a convolutional neural network
and LSTM. The major contributions of this paper can be
summarized as follows:

• We present a multi-channel CNN-based network for de-
tecting pain in neonates. To the best of our knowledge,
this paper is the first to explore neonatal pain assessment
using a multi-channel CNN network.

• We present a landmark-free approach to assess the
neonatal pain from the face and compare this approach
to a previous landmark-based approach [14].

• We investigate the correlation between face and body
and show how these two pain indicators can be used

jointly to provide better representation of pain.
• We incorporate recurrent neural network (LSTM) to the

multi-channel network to model the temporal changes
of neonatal pain expression.

• We evaluate the proposed framework on a challenging
dataset collected from neonates while they were hospi-
talized in the NICU.

• We compare the proposed framework’s performance
with the performance of several handcrafted methods
as well as existing CNNs architecture such as VGG-16
and ResNet50.

The rest of this paper is organized as follows. Section
II provides background of the CNN and RNN architectures
that are utilized to develop our framework. Section III
presents our novel framework for assessing neonatal pain
using a temporal and multi-channel network. We provide a
description of the dataset and the experimental results of the
framework in Section IV. Finally, we conclude and discuss
future research directions in Section V.

II. BACKGROUND

This section presents the architectures of the networks that
are used to build the proposed framework. These networks
are YOLO, VGG16, and LSTM.

A. YOLO

YOLO (You Only Look Once) [18] is one of the state-
of-the-art real-time object detection algorithms. It is a deep
CNN architecture that can effectively: 1) find out the location
(bounding box) of a desired object in the entire image and 2)
provide the corresponding class label of the detected object
with a confidence label. YOLO takes an image as input and
divides it into a grid of cells. Each cell predicts a number
of bounding boxes in the image. For each bounding box,
the model provides relevant confidence about the bounding
box as well as the confidence of the object class surrounded
by the bounding box. Using a non-maximum suppression
techniques, YOLO removes all bounding boxes with low
confidence scores and outputs the bounding boxes with the
high confidence score.

Recently, YOLO has become the de facto network for
object detection due to its high accuracy and fastness. In this
paper, we used two trained YOLO detectors, face detector
and body detector, to detect the face and body regions of the
neonates. One YOLO was used for neonate’s face detection
and another one used for neonate’s body detection. For face
detection, YOLO was trained using the WIDER FACE [19]
dataset that contains 61 event classes and 32,203 face images.
This benchmark face dataset is popular due to its robustness
in terms of scale, pose, and occlusion. As for neonate’s body
detection, we used another YOLO detector, trained on the
popular COCO [20] dataset, which has 80 object categories
and 330K images.

B. VGG16

VGG16 [21] is a well-known CNN architecture for visual
classification. VGG16 was the runner-up of the ILSVRC



2014. This network was built by modifying AlexNet architec-
ture [22]. Specifically, VGG16 replaces the large kernel-size
filters of AlexNet with several 3× 3 kernel-size filters. The
main argument was that multiple smaller size kernels can
provide multiple non-linear layers that lead to learning more
complex features. In VGG16, a series of 3 × 3 kernel-size
filters are used multiple times to extract more representative
features. The network starts with a 64 depth and increases
by a factor of 2 after each pooling layer. Finally, 3 fully-
connected layers are used before the final classification layer.
The first and second fully connected layers have 4096 units
and the last layer performs classification using a Softmax
function.

In this paper, two pre-trained VGG16 models are used to
extract deep features from neonates’ faces. To extract deep
features from the neonatal face, we used a VGG16 model
trained on the VGGFace2 [23] dataset. VGGFace2 is the
upgrade of previous VGGFace [24] dataset which is more
robust across pose and age. Another pre-trained VGG16
model, trained on popular ImageNet [25] dataset was used
to extract deep features from the entire body of the neonates.

C. LSTM

Traditional Neural Networks can not capture the temporal
changes over time. Hence, RNN (Recurrent Neural Network)
was introduced to incorporate temporal information to the
traditional Neural Networks. RNN performs prediction or
classification using current and past information. The issue of
long term dependencies is one limitation of RNN networks.
To solve this issue, LSTM (Long Short Term Memory)
[26] was introduced as a special kind of RNN that is able
to handle long-term dependency. LSTM has controlled cell
consisting of input, forget, and output gate. These gates deter-
mine how much previous information should be remembered
and used to predict the current state. In this paper, we added
LSTM network after the CNN model to train sequential video
frames.

III. METHODOLOGY

The proposed framework is a multi-channel neural net-
work that simultaneously and temporally assesses neonatal
pain from face and body regions. Prior to pain assessment us-
ing our proposed framework, face and body regions detection
should be performed. Neonatal face detection in the NICU
is a challenging task due to several external factors such
as illumination variations and partial occlusions (e.g., tapes
or pacifier). As discussed in [10], several facial landmark
trackers faced difficulty when applied to detect and track the
face of infants.

In this paper, we used two pre-trained YOLO models to
detect the face and body of neonates. The first YOLO de-
tector was trained on WIDER Face [19] dataset to detect the
faces of neonates. The second detector was trained on COCO
[20] dataset to detect the body of neonates. After detecting
the face and body regions from the input image, the proposed
multi-channel neural network was used to extract features
from face, body, and from both face and body together

(shared representation). This architecture allows to extract
shared features from both face and body in addition to the
features extracted from them individually. After extracting
the features from each frame, an LSTM model is used to
capture the temporal information over the frames. The details
of the framework are shown in Figure 2.

A. Mutli-channel Shared Network

Different pain scales such as NIPS [3] and NPASS [4] are
used to measure the neonatal pain in the NICU environment.
Every scale provides a score for each pain channel or indica-
tor such as the face, body, sound, and physiological signals.
The final pain label should be decided by taking into account
the scores or labels of all pain channels/indicators. Although
pain assessment can be performed using a single channel,
using multiple channels provides better pain assessment. This
can be attributed to the fact that pain and other human
emotions are expressed through multiple channels (e.g., see
Figure 1). Therefore, we believe investigating the correlation
between different pain channels and assessing neonatal pain
using these channels together is important.

The proposed multi-channel CNN network can extract
deep features from face and body individually as well as
shared deep features from both face and body. We fine-tuned
the model by freezing the layers of the pre-trained VGG16
model. Overview of the multi-channel shared CNN network
is presented in Figure 3. For this CNN network, all the layers
of VGG16 were frozen and only the upper layers of the
proposed model are fine-tuned using Adam optimizer with a
learning rate of 0.0001 and a batch size of 16 [27].

As shown in Figure 3, the multi-channel shared CNN
network used two pre-trained VGG16 based models. The first
model was trained on VGGFace2 [23] dataset and used to
extract features from the face of neonates. The second model
was trained on ImageNet [25] dataset and used to extract
features from the body of neonates. Each VGG16 model gets
an RGB image of size (224×224) as input and extracts deep
features from the input image using a set of convolutional
and max-pooling layers until the last convolutional layer of
VGG-16 CNN architecture. Note that the green layers in
Figure 3 represent the last convolutional layer of VGG-16
CNN architecture. After extracting deep features from face
and body individually using VGG-16 models, the extracted
features are sent to a dense (FC) layer of size (7 × 7, 32)
followed by a max-pooling layer of size (3× 3, 32).

The down-sampled representations from face branch and
body branch are then concatenated together into a single
feature vector, which represents the shared representation.
This shared representation is sent to a dense layer and flat-
tened. To get the body feature vector, the down-sampled body
representation is flattened. Similarly, the down-sampled face
representation is flattened to get the face feature vector. After
generating the face vector, body vector, and shared repre-
sentation vector, these vectors are merged together followed
by a dense or fully connected layer. Finally, the last layer
performs binary classification using Softmax. The initial total
number of training parameters was 29,474,818. Performing



Fig. 2. Overview of the proposed temporal and multi-channel network for assessing neonatal pain

Fig. 3. Overview of the multi-channel network for feature generation

fine-tuning by freezing the VGG16 network reduces the total
number of training parameters from 29,474,818 to 45,442.

B. Integrating Temporal Information Using LSTM

The multi-channel shared CNN network presented above
is used to extract features from individual video’s frames.
To incorporate temporal changes into the model, we added
LSTM layer to our proposed network to capture the changes
in pain over time. We added two LSTM layers followed by
a dense layer. We conducted two experiments: frame-level
classification and video-level classification.

As for the frame-level classification, a sequence of frames

TABLE I
DETAILS OF THE RNN ARCHITECTURE

LSTM Unit 16
Activation = Tanh, Recurrent Activation = Hard Sigmoid

LSTM Unit 16
Activation = Tanh, Recurrent Activation = Hard Sigmoid

Dense 16, Relu
Dense 16, Relu

Dense 2, Sigmoid
Total parameters = 49,841

is sent to the LSTM layers for frame-level training and
prediction after extracting the deep features (feature length
720) from the merge layer of the multi-channel neural
network (Section III.A) from each frame. Each sequence has
16 consecutive frames. For example, if the first sequence
is S0 = {f1, f2, ..., fn}, then second sequence is S1 =
{f2, f3, ..., fn+1}, where fn represents the n-th time frame.
The label of the last frame for each sequence represents the
final label of that sequence. Note that a total of 16 frames
per sequence was determined empirically.

For the video-level classification, we used the entire se-
quence of frames to predict the label of the given video.
The LSTM model was designed using a sigmoid function
to predict pain confidence. Experimentally, we found that
sigmoid function works better with LSTM than the cross-
entropy error. To train the LSTM model, we used Adam
optimizer [27] with a learning rate of 0.0001 and a training
batch size of 16. The details of the RNN network are shown
in Table I.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

The dataset used in this paper was collected in the NICU
at Tampa General Hospital, FL, USA. The dataset has a
total of 31 neonates with age ranges from 32-40 gestational



TABLE II
FRAME LEVEL PERFORMANCE OF NEONATAL PAIN ASSESSMENT

Approach Channel Preprocess Dependency Accuracy (%) AUC
ResNet50 Face Facial Landmarks 85.83 0.84
VGG-16 Face Facial Landmarks 89.47 0.89
Proposed CNN + LSTM Face + Body Object Detection 91.41 0.89

TABLE III
VIDEO LEVEL PERFORMANCE OF NEONATAL PAIN ASSESSMENT

Approach Channel Preprocess Dependency Accuracy (%) AUC
Geometric + SVM Face Facial Landmarks 88.32 0.82
LBP-TOP + SVM Face Facial Landmarks 88.87 0.89
Motion + KNN Body Body Detection 84.64 0.77
Proposed CNN + LSTM Face + Body Object Detection 92.48 0.90

weeks (Mean age = 35.9 GW). Among the neonates, 12%
was Asian, 19% was African American, 43% was White, and
26% was Caucasian.

All the neonates were recorded using a GoPro camera
while undergoing different procedural painful procedures
such as heel lancing and immunization. We divided the data
recording into eight-time periods. These periods are: the
baseline period (T0), the procedure preparation period (T1),
the painful procedure period (T2), and post-painful procedure
periods (T3 to T7). The ground truth labels for each period
was provided by two NICU using NIPS [3] pain scale.

NIPS scale provides a pain score of 0 or 1 for face, body,
and vital signs and a score of 0, 1, or 2 for crying sound.
To get the final pain label, the scores from all modalities are
added together followed by thresholding; i.e., a total score
of 0-2 represents no-pain, a total score of 3-4 represents
moderate, and a total score >4 represents severe pain. The
Kappa coefficient and Pearson correlation of the agreement
between two caregivers were 0.85 and 0.89, respectively.

Before proceeding further, it is worth to mention that
COPE dataset [11], which consists of 204 static images of 26
neonates, is the only dataset we are aware of that is publicly
available for research use. We have not used this dataset for
building or evaluating the proposed framework since COPE
images show only the neonates’ face and the body region is
wrapped with a blanket. Our proposed approach requires the
presence of both face and body as inputs.

B. Preprocessing & Evaluation Protocol

We evaluated the performance of the proposed framework
using the aforementioned dataset. We performed two exper-
iments: frame-level classification and video-level classifica-
tion. Prior to running the experiments, we converted all the
videos in the dataset to 5 fps for evaluation. Because the
length of the labeled videos in the utilized dataset is 10
seconds, we used 10 seconds video sequences. In this paper,
we did not perform any level of augmentation.

YOLO object detectors were then applied to each video’s
sequence to obtain the face and body regions in each frame.
We then re-sized the images to 224 × 224 to accommodate
with CNNs images size requirement of VGG-16 model (244

x 224 x 3, RGB images). In our experiments, we used leave-
one-subject-out cross validation protocol for evaluation.

C. Results Analysis

Table II and Table III present the experimental results of
the proposed framework for frame-level and video-level, re-
spectively. We compared the performance of our framework
with the performance of similar existing works [28], [29],
which used the same dataset presented in Section IV.A.

Table II presents the results of our frame-level classi-
fication and comparison with existing work [28]. In [28],
Zamzmi et al. used the popular ResNet50 and VGG16 archi-
tectures to classify static images or frames as pain or no-pain.
Our proposed framework achieved 91.41% average accuracy
and 0.89 AUC. As shown in the table, the AUC of VGG-16
[28] is the same as of the proposed framework. However, the
proposed framework achieved better accuracy. Moreover, the
proposed framework was trained using a smaller number of
parameters and does not depend on facial landmark points.
As reported in [28], the authors had to manually label
facial landmark points in the failure frames. Usually, any
facial tracker highly relies on face detection whereas YOLO
based method works with different bounding boxes with
confidence. Based on our experiments, we observed that
YOLO detector performs better than facial tracker in several
cases and has less time complexity.

Table III shows the performance of the proposed frame-
work in video-level classification as well as a comparison
with existing works [29]. Instead of using deep learning
based approach, the state-of-the-art handcrafted methods
were used to perform video-level classification in [29]. As it
can be seen from the table, the proposed framework achieved
better average accuracy (92.48%) and AUC (0.90) than
three handcrafted methods used in [29], namely geometric
and LBP-TOP methods for face analysis and motion based
method for body analysis. Moreover, the performance of
existing works highly depends on the performance of the
facial landmarks detected from the face. The overall per-
formance of the proposed framework is better than existing
works which were evaluated on the same dataset. We believe
this performance can be further improved with proper data
augmentation. These results are encouraging and prove the



feasibility of using the proposed framework for assessing
neonatal pain.

V. CONCLUSION AND FUTURE WORK

Accurate neonatal pain assessment is difficult, yet, very
important task because inaccurate assessment can lead to
over- or under- treatment. Due to partial or complete oc-
clusion (e.g., medical tapes or oxygen mask), illumination
variations, immature facial muscles, detecting and tracking
facial landmark points can become very challenging. In this
paper, a facial-landmarks-free deep learning based frame-
work is proposed to assess neonatal pain from videos. The
proposed framework, which is called temporal and multi-
channel network, integrates multiple channels (face and
body) and temporal information using LSTM to investigate
the correlation between different channels over time. Pre-
liminary experimental results demonstrate the feasibility of
using the proposed framework for assessing neonatal pain.

In the future, we plan to follow four main directions.
First, we plan to perform spatial (frame-level) and temporal
(sequence-level) augmentation to enlarge the training set.
Second, we want to explore methods for increasing the
number of the minor class to get a relatively balanced dataset.
Third, we plan to integrate other pain modalities such as
crying sound and vital signs into the current framework.
Finally, we would like to evaluate the proposed framework
on a dataset collected from neonates while they were ex-
periencing postoperative pain. At present, we have a small
postoperative dataset collected from 9 subjects, which can
be used for evaluation, but not enough for training. We are
currently involved in an ongoing effort to collect a larger
pain dataset from neonates during postoperative pain.
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