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Abstract This paper presents a proactive model and tool for 

traffic analysis and management that integrates deep learning 

for traffic parameter prediction with microscopic traffic 

simulation providing traffic analysts with the ability to visualise 

the traffic network state ahead of time, generate traffic control 

measures, and visualise the consequences of the applied 

measure(s). The model adopts an integrated assess-forecast-

simulate approach in which traffic flow characteristics are 

applied to deep Convolutional Neural Network and Long Short-

Term Memory (CNN-LSTM) stacked autoencoders in order to 

forecast traffic flow and speed, which is subsequently passed on 

to a traffic microsimulation tool  Simulation of Urban Mobility 

(SUMO)  where the predicted parameters are used to generate 

a traffic future state simulation. We test our model using sensor-

collected traffic and weather data from the geographical area of 

Greater Manchester, United Kingdom. The empirical results 

show the benefits of the model for urban traffic analysis. 

I. INTRODUCTION 

Due to economic and demographic growth in urban areas, 
traffic congestion has reached critical levels. This is partly due 
to limitations in the ability to expand the physical capacities of 
road networks in big cities. As a result, advanced traffic 
management systems (ATMS) have been developed in the past 
few decades to efficiently manage the existing road network 
capacity. These systems aim to minimise the negative 
consequences of intense traffic in urban areas, such as 
increases in air pollution levels, road network congestion, and 
noise by providing traffic network managers with capabilities 
for traffic analysis and forecasting [1].  

In this context, research in Intelligent Transportation 
Systems (ITS) and short-term forecasting has emerged, 
leveraging recent advances in deep learning prediction 
methods and techniques. There is a strong focus on traffic 
prediction research applied to offline systems using historical 
traffic data to make forecasts and assess the impact of the 
observed changes/control measures [2][[5]. However, there is 
a dearth of studies that apply historical and real-time traffic 
data for traffic prediction, as well as provide decision-support 
capabilities via the visualisation of the forecasted traffic 
network state. Modelling approaches developed to provide 
such proactive traffic management combining traffic 
parameter forecasting, traffic state estimation, and subsequent 
visualization of the future traffic network state have been 
proposed, such as in [2], [6][[8], but are restricted in their 
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approach towards the future traffic state estimation during a 
particular time interval. For instance, the ability to provide an 
ANSWER TO THE QUESTION IF THERE IS A LANE CLOSURE ON A
motorway due to an accident, snow or flood, what will be the 
TRAFFIC SITUATION MINUTES FROM NOW .N OTHER WORDS WHILE
it is possible to estimate/predict the future traffic state via a 
faster-than-real-time simulation run of the current traffic 
network state, it is essential to include a vast range of 
operational conditions that might affect the transport network, 
such as weather information, significant events such as 
football matches or musical concerts, road construction works, 
etc., which can significantly affect the traffic demand within 
an urban network. Changes in the conditions mentioned above 
affect commuters regularly, which in turn affects the traffic 
situation. For example, if there is an adverse weather warning, 
travellers are likely to cancel, modify their trips, or delay 
departure to avoid severe congestion [9]. The capability of an 
ITS or ATMS to respond in real-time to such disruptions is 
essential for effectively managing urban transport networks. 

This paper proposes a proactive traffic management model 
that integrates deep learning and traffic microsimulation to 
provide decision-making support capabilities relating to 
predicting traffic state in future time-window intervals that can 
be used by traffic network analysts. The system is comprised 
of two distinct stages: (1) a prediction module that is made of 
deep CNN-LSTM stacked autoencoders trained using traffic 
and non-traffic data sources (temperature and precipitation), 
and (2) a traffic microsimulation stage via a simulation tool 
(SUMO), which allows for simulation of future traffic states 
in scenarios involving changes in conditions.  

The contributions of this paper are summarized as follows: 
(1) a novel two-stage deep learning model for proactive traffic 
management that incorporates prediction and 
simulation/visualization, (2) an approach for traffic analysts to 
visualize the future status of the present traffic network state 
for each possible alternative action that can be taken, thereby 
guiding choices of alternative control measures to be applied 
based on 1-hour traffic prediction horizons. We test the model 
on real-world sensor-collected data from A56 (Chester Road), 
Stretford in Greater Manchester, United Kingdom. The chosen 
study area provides a good test bed for our proposed model as 
it serves as a conduit between a residential area and office 
complexes, and also houses Manchester United Football 
Stadium (Old Trafford). 
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The remainder of this paper is organised as follows. 
Section II presents a review of related studies, while details 
about the Deep-PRESIMM model and tool are presented in 
Section III. Section IV briefly describes the input data used, 
while Section V discusses the experimental setup. In Section 
VI, we present the case study and discuss the results and 
findings in Section VII. In Section VIII, we conclude the paper 
and outline future work.  

II. RELATED WORK 

According to [1], the extant literature on short-term traffic 

forecasting is voluminous and has largely considered single 

data points, mainly employing univariate predictive models. 

Many methods and techniques, such as time series analysis, 

neural network models, simulation-based models, and 

Bayesian methods have been applied towards the development 

of traffic forecasting models, leveraging advances in algorithm 
design, data storage capacity and computational processing 

power. The advent of short-term prediction saw the application 

of statistical methods like Auto-Regressive Integrated Moving 

Average (ARIMA), which mainly ignored the spatial 

dependency of traffic evolution, until in the early 2000s [2].  

The second generation of prediction methods saw the rise of 

non-linear predictive models such as neural networks, and 

kernel-based algorithms, which exposed the inherent 

vulnerabilities in classical predictive models. According to 

[3], parametric models such as ARIMA tend to assume 

linearity of the mean and variance of input data, which makes 
them show weaknesses in traffic data, which often contain 

peaks (during rush hour traffic and accidents/events).   

Furthermore, simulation-based methods for traffic 

prediction have been explored in academic literature within 

the last two decades, such as in, [4][[7]. The success of such 

approaches led to an increase in research towards simulation-

based traffic prediction models. For instance, online traffic 

network simulation models have been integrated with real-

time decision support systems for integrated corridor 

management (ICM) [8].  
However, many studies involving simulation-based traffic 

prediction focus on traffic parameter prediction at an 
individual or microscopic level, rather than at the network 
(macroscopic) level [8]. Table I presents a summary of 
existing studies in simulation-based traffic prediction. As the 
table shows, only two models have decision-support 
functionalities. The two simulation-based real-time traffic 
management systems (DYNASMART-X [5] and DynaMIT 
[9]) that provide real-time traffic short-term prediction and 
have decision support capabilities for traffic management, 
however, sacrifice traffic prediction (i.e. network state 
estimation) accuracy for simulation latency, thereby ignoring 
non-traffic input factors capable of significantly affecting 
traffic state, such as rainfall and temperature [10]. Moreover, 
a limited effort is put into the development of real-time 
proactive simulation-based traffic systems with decision 
support capabilities that incorporate robust and accurate non-
linear predictive algorithms, such as deep learning networks, 
due to the computational and data demands of such models.
 The intent of providing a degree of proactive-ness involves 
creating accurate representations of the future traffic state, 

 
1 M: Motorway/Highway, U: Urban 

which is not adequately represented by a simulated current 
network state. We, therefore, propose a system that accurately 
captures the present traffic state using traffic and non-traffic 
input data sources on a deep learning model for short-term 
prediction of the network state. 

TABLE I.  SUMMARY OF RELATED EXTANT LITERATURE 

Paper Area
1 

Decision 

Support2 

Prediction 

Model 

Spatio-

temporal 

Real-

Time? 

[4] M N Entropy 

Maximization 

N N 

[11] M N Kalman Filter Y Y 

[12] M N RNN N N 

[13] U N Fast Simulation N F 

[5] U Y Kalman Filter Y Y 

[14] U N Neural Network Y Y 

[15] U N ARIMA N Y 

[9] M Y Fast Simulation Y Y 

 

III. METHODOLOGY 

Fig. 1 presents the flowchart for the proposed Deep-
PRESIMM model for proactive traffic management. The 
model comprises two distinct stages, prediction and simulation 
respectively. In the next subsections, we will present further 
details about the underlying concepts of the respective stages.  

A. Recurrent Neural Networks (RNN) and Long Short-Term 

Memory (LSTM)  

Recurrent Neural Networks (RNN) [16] are a class of 
traditional neural networks that extend the functionality of 
traditional neural networks by considering the temporal 

2 Y: Yes, N: No 

 

Fig. 1: Flowchart of Deep-PRESIMM  
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dimension of time series data. The basic functioning of RNN 
networks incorporate loops OR RECURRENT COMPONENTS TO
connect the neuron to itself and unfold it many times such that 
it is able to preserve the sequential dimension found in time 
series data. RNNs have hidden states that are updated by the 
sequential information obtained from input time series data 
with outputs that depend on these hidden states. A simple 
mechanism of how the RNN is unfolded into a network is 
shown in Fig. 2.  

In Fig. 2,  and  represent the weights of the hidden layer 
and output layer respectively, while  represents the 
transition weights of the hidden state. The hidden state of the 
network at time  is computed by the element-wise product of 
the input vector and the previous network hidden state . 
This is mathematically computed using (1) 

 (1) 

Where  represents the weight between the input and 
recurrent hidden nodes,  represents the weight between the 
recurrent node and the previous time step of the hidden node 
itself,  and  represent bias and non-linear (sigmoid) 
activation respectively. RNNs display vulnerabilities when 
applied to time series datasets with long lags [17]. From (1), 
the recurrent hidden state  approaches infinity or zero as the 
time interval increases, which leads to a diminishing or 
exploding gradient [18], [19]. This is a vulnerability that is 
encountered when using RNNs for long-term time series 
modelling, which was resolved by the work of German 
engineers Hochereiter and Schmidhuber [20] [ Long Short-
Term Memory RNNs [ which had the primary objective of 
modelling long-term time dependencies in time series. The 
LSTM model replaced the recurrent hidden unit with a 
MEMORX CELL .  

The atomic component of the LSTM neural network with 
one memory block is shown in Fig. 3. The memory block 
contains input, output, and forget gates, which respectively 

represent write, read, and reset functions on each cell. The 
memory cell contains a node that is connected to the recurrent 
edge of the fixed weight node. The multiplicative gates allow 
the model to store information over long periods, thereby 
ensuring that the gradient survives longer time steps without 
vanishing or exploding [20], and eliminating the vanishing 
gradient problem commonly observed in traditional neural 
network models [18].  

 B. Stacked autoencoders (SAE) 

An autoencoder is a type of feedforward network that has 
its input the same as its output. Autoencoders compress the 
input vector to a lower-DIMENSIONAL CODE AND ATTEMPT TO
reconstruct the output from this given code. Fig. 4a shows the 
basic structure of an autoencoder. As can be seen, the 
autoencoder consists of three major components: the encoder, 
the code, and the decoder. The functions of these elements are 
as easy as their respective names suggest. The encoder 
COMPRESSES THE INPUT TO A LATENT SPACE to produce the code, 
which is then decoded by the decoder. In other words, the 
output is reconstructed from the code using the decoder. Fig. 
4b shows the architecture of the SAE used within the 
prediction stage in Deep-PRESIMM. As can be seen, the SAE 
comprises four hidden layers, including two CNN-LSTM 
layers and a fully connected layer tied to a linear output layer.    

The learning process involves layer-wise training to 
minimize the error between the input and output vectors. The 
activation function applied is the Rectified Linear Unit 
(ReLU), which is mathematically defined by (2).  

 (2) 

The subsequent layer of the autoencoder is the hidden layer 
of the previous one, with each of the layers trained by gradient 

 

Fig. 2: Structure of the RNN  

 

Fig. 3: LSTM RNN having one memory block  

a) 

b)  

 

 

Fig. 4. a) Basic structure of the stacked autoencoder b): Proposed 
architecture of SAE layer in Deep-PRESIMM prediction module 
comprising CNN-LSTM layers  for feature and sequential 
learning with a linear fully-connected layer. 
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descent algorithm using an optimization function, which is the 
squared reconstruction error  of the individual autoencoder 
layer.  

   (3) 

Where  represents the squared reconstruction error of the 
single autoencoder layer,  and  respectively represent the 
th value of the input vector as well as its corresponding 

reconstructed version.  represents the training dataset size, 
corresponding to the length of the input time series.  

C. Simulation using SUMO 

[21] refer to two main open-source agent-based traffic 
simulation software: Multi-Agent Transport Simulation 
Toolkit (MATSIM) [22], a toolbox for implementing 
largescale agent-based simulations, and Simulation of Urban 
Mobility (SUMO) [23], a portable microscopic road traffic 
multi-agent simulation package designed to handle large road 
networks. Apart from the two mentioned above, a number of 
multi-agent simulation packages exist, such as VISSIM, 
VISUM, etc. However, after careful consideration, we 
decided to use SUMO as the traffic simulation tool. This stems 
from SUMO being an open-source tool, with space continuous 
and time discreet capabilities, providing individual routes for 
vehicles start and end times and positions and most 
importantly, SUMO allows for import of maps or networks 
from OpenStreetMap3, an open-source online map.  

The first task of the simulation stage using SUMO involves 
the generation of the road network, which was downloaded 
from OpenStreetMap. Once imported to SUMO, the map, 
alongside the predicted speeds and volumes are used to create 
the simulation of the road network in SUMO using a built-in 
application package DFROUTER - which uses inductive loop 
values to compute respective vehicle routes using a variant of 
the classic car-following model [24] developed by German 
transport company DLR [25]. SUMO allows for 
customizations to be performed on the virtual road network 
such as lane closure/opening, traffic light signal alteration, etc. 
which would offer the possibility of performing detailed 
analyses on the future or predicted traffic network state. The 
conceptual control loop showing the traffic control 
operator/analyst, the Deep-PRESIMM model and the 

 
3 OpenStreetMap can be found at: https://www.openstreetmap.org/  

consequent actions are represented in Fig. 5. As depicted, the 
choice of the FINAL  intervention/control measure to be applied 
by the control personnel is made easier by the iterative 
feedback control cycle in PRESIMM, where the control 
PERSONNEL CAN HAVE A NUMBER OF WHAT-IF SITUATIONS BEFORE
arriving at the intervention that is most effective.  

IV. DATA DESCRIPTION 

The traffic data used in this study was made available by 
Transport for Greater Manchester (TfGM) authority. The 
dataset comprised real-time 5-minute-aggregated observations 
of traffic flow characteristics (i.e. average speed, flow, 
density), collected using inductive loop sensors. The study 
period spans from 1st January 2012 to 2nd May 2014. The study 
area is an urban arterial road in Stretford, Greater Manchester, 
UK. The weather data for the study period comprised hourly 
observations of temperature (Celsius) and precipitation 
(measured in millimeters). The weather data was obtained 
from the Centre for Atmospheric Studies (CAS), University of 
Manchester. The weather station is located within a 3-mile 
radius of the study area.  

For this study, the traffic data obtained was aggregated into 
hourly intervals in order to match the weather data aggregation 
level, which were hourly observations. The combined dataset 
comprised hourly observations of traffic flow characteristics 
(speed, flow, density) and weather data (rainfall and 
temperature), resulting in 20,448 observations of five variables 
or features. The dataset was split using a training-testing ratio 
of 70:30. Table I presents the descriptive statistics for the 
dataset used in this study.  

TABLE II.  DESCRIPTIVE STATISTICS OF DATASET 

Statistic Temp 
oC  

Rainfall 

(mm) 

Volume 

(veh/hr) 

Density 

(veh/mi) 

Speed 

(mph) 

Mean 11.1740 0.1043 813.9798 26.8031 26.9 

Standard 

Deviation 

5.2877 0.5056 555.5547 24.6022 4.1803 

Variance 27.9600 0.2557 308641.0 20783.08 25.135 

Minimum -4.5140 0 7 2 15.9 

Maximum 32.6163 5029.67 2627 193.7 35.6 

Count 20448 20448 20448 20448 20448 
 

 

Fig. 5: Conceptual model of Deep-PRESIMM 

 

Fig. 6: Prediction performance of the Deep-PRESIMM prediction 
module 
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V. EXPERIMENTAL SETUP 

Within this study, we adopt the prediction setup as 
described in [26], where a rolling/overlapping sliding window 
approach is adopted for reconstructing the input time series 
data. The predictive model is designed to learn the features 
provided within the historic traffic and weather datasets and 
make multivariate (i.e. speed and volume) prediction. This will 
subsequently be passed as input to the next stage of the model, 
which is the simulation stage.   

A. Model Description 

The prediction stage within our proposed model 
incorporates deep CNN-LSTM stacked autoencoders. The 
LSTMs used are bi-directional (the hidden layer of the 
previous layer serving as the visible/input layer of the next 
layer), with each having 200 hidden units. For all of the inter-
connected layers (except the output layer), the activation 
function utilized is the Rectified Linear Unit (ReLU), which 
introduces non-linearity to the learning process, and defined 
according to equation (2). The overall algorithm for the Deep-
PRESIMM model is presented in Algorithm 1. 

Algorithm 1: Algorithm for Deep-PRESIMM 

Input: multivariate observed sequences  
Output: microsimulation of multi-step predicted value  

1. Split into training and testing data with 70:30 ratio 
2. Randomly initialize model parameters weight  and bias  

3. for each iteration do 

4.     Select lookback steps/batch size  

5.     Generate lookback sequence as  
6. Train using forward greedy layer-wise and bi-directional 

processing 
7. Obtain actual value and compute error (i.e. MSE) 
8. Update model learning by backpropagation algorithm 

using optimizer (Adam in this case), minimizing loss 

function , where  is the predicted 

sequence in the layer. 
9. End for 
10. Reiterate until training set is exhausted 

11. Return multi-step output sequence of speed and volume  
and . 

12. Input predicted values to SUMO and create simulation using 

DFROUTER 
  

 

B. Model Performance Evaluation 

In terms of model evaluation, we use a technique referred 
to as walk-forward validation or back testing [27]. Traditional 
prediction evaluation methods such as k-fold cross validation 
or train-test hold-out data splits do not work when applied to 
time series data, due to the fact that in time series data, the 
sequential or temporal dimension needs to be preserved. 
Therefore, walk-forward validation refers to a method of 
testing the predictive model in a manner wherein the temporal 
dimension is preserved.  

For model accuracy evaluation, we apply two prediction 
accuracy evaluation metrics [ Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE), which are defined by 
the respective equations below. 

 
 (4) 

 

 (5) 

C. Implementation Environment 

The experiment environment used for this study was on a 
single machine in Windows 10 Operating System with Intel® 

ORE Z I -6800K CPU @3.40 GHz, 32-GB Memory, and 
NVIDIA Quadro K420 GPU. The GPU is used for accelerated 
model training due to large computation demand in deep 
learning models. The development was performed using 
Python 3.6.8, R version 3.5.1, SUMO v1.1.0 and Tensorflow 
1.12.0.  

 

D. Prediction Results 

The performance of the prediction module in Deep-
PRESIMM was evaluated by carrying out single-step 
prediction of traffic volume using the available dataset 
described in the preceding section. Fig. 6 illustrates a subset 
(containing 100 time steps) of the results of the predictive 
model, which has been described in Section III above. As can 
be seen, the model accurately predicts the traffic volume, 
indicating its ability to perform adequately. Table III shows the 
summary of the prediction results from the predictive module 
of Deep-PRESIMM. The model achieved an RMSE of about 
40 (veh/hr), which is satisfactory. The most significant time 
taken was during the model training period, which took 723s. 
However, the prediction time or inference time was almost 
negligible (0.32µs), highlighting the capacity of the predictive 
model to perform real-time traffic parameter prediction.  

TABLE III.  SUMMARY OF RESULTS 

Our Model MAE  RMSE  Training Time (s) 

CNN-LSTM-AE 29.8407 39.9207 723 

 

 

Fig. 7: Congested Junction as a result of the incident 
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VI. CASE STUDY 

We evaluated the performance of Deep-PRESIMM using 
a case scenario, which was re-modelled from a real major road 
accident that caused severe traffic congestion along the A56 
road within the city of Stretford, southwest Manchester on the 
2nd May 2014 at 13:04hrs. Accident data was obtained from an 

 
4 https://www.crashmap.co.uk/Search   

online database4, which made available a report containing the 
date and time of the incident, the geo-coordinates of the road 
involved, as well as the cause of the incident. The focus in the 
figures should be on the network of cars, rather than on the 
quality of the screenshots of the figures. The images presented 
are actual screenshots of the results from the simulations 
performed in Deep-PRESIMM. 

Using Deep-PRESIMM, a simulation run of the predicted 
network state at 14:00 (i.e. 1 hour after the time of the accident) 
was visualised, and a screenshot is presented in Fig. 7. The 
figure shows a heavily congested network especially around 
the junction, with slow moving traffic and building queues. As 
a way of controlling or managing the predicted network 
congestion state, we are going to assume the traffic analyst (in 
this case) can only choose from three available traffic control 
measures: (1) Add an extra lane (i.e. free up the bus lane), (2) 
Alter the signal priority for the junction traffic light, and (3) 
Divert upstream traffic to a link road. We therefore created 
visualisations (and revised predictions) of the consequence of 
the applied control measures using Deep-PRESIMM. The 
results of the respective control measures are discussed in the 
subsequent subsections.  

A. Traffic Control (TC) 1: Adding an extra lane  

Most cities introduce bus lanes (Bus Rapid Transit [28]) as 
a means of speeding up public transport to control congestion 
and encourage public transport usage. By this, a dedicated lane 
is set aside for buses and taxis or emergency services. In this 
scenario, the control analyst may decide to free up the bus lane 
(i.e. open it up for use by private vehicles). In our network, this 
is equivalent to adding an extra lane. The simulation run for 
TC-1 showed an increase in the traffic flow (i.e. 
vehicles/hour), indicating that the network reaches its overload 
or saturation point quicker than the in original 1-hour-ahead 
simulation (see Fig. 7). This implies that TC-1 resulted in a 
more congested network 1-hour after its implementation (see 
Fig. 8).  

B. TC 2: Signal Alteration 

 Adaptive Traffic Control Systems (ATCS) are used for 

traffic control by automatically adjusting traffic signals based 

on traffic conditions. The major aim of ATCS is to maximize 

road network throughput [29]. SUMO allows for signal 

alteration, using its interactive interface [ NETEDIT. The 

simulation run for TC-2 is presented in Fig. 9a, with the 

consequence (i.e. 1-hour later) shown in Fig. 9b. The 

simulation showed a network that experiences free flow for a 

short period, accompanied by a rapid increase in traffic flow, 

which results in network overload and congestion in the 

adjacent road link.  

C. TC 3: Road Diversion 

In very congested traffic situations caused by significant 
reductions in road capacity (brought about by accidents or road 
construction works), road diversions are employed to free up 
the network. It is advantageous in that it frees up the congested 
road, but has THE DISADVANTAGE OF TRANSFERRING THE CONGESTION
to the link road. The simulation run for TC-3 is presented in 
Fig. 10a and 10b. The visualisation of the consequence of this 

 

Fig. 8: Consequence of opening up a bus lane (1 hour later) 

 

 

Fig. 9a: Traffic Signal alteration 
run 

 

 

Fig. 9b: Signal alteration causes 
congstion at adjacent road links (1 
hour later) 

 

Fig. 10b: Diversion reduces 
congestion (1 hour after) 

 

 

Fig. 10a: Traffic Diverted to link 
road 
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action can be seen as the affected road is freed up once all 
traffic is diverted to the link road. TC 3 appears to be the most 
viable control measure, even from a non-TECHNICAL COMMON-
SENSE STANDPOINt. This is because the accident caused a 
reduction in the road capacity (by 50% due to the closure of a 
lane), and the intuitive optimal solution would be to divert the 
upstream traffic to a link road.  

VII. DISCUSSION 

This paper presents a proactive traffic management model 
that can be useful to traffic network managers by adding an 
extra visualization layer to typical short-term traffic prediction 
models. The forecasted traffic characteristics are used as input 
to a traffic simulation tool, which can provide guidance in 
decision making to traffic network controllers through 
visualizations of the consequent effects of the actions or 
interventions that are applied in order to control or eliminate 
traffic congestion on given road networks.  

Using a deep CNN-LSTM stacked autoencoder 
architecture applied on historical sensor-collected traffic and 
non-traffic datasets, multivariate (speed and volume) traffic 
prediction was made on a 1-hour prediction horizon. The 
forecasted traffic parameters were used as inputs to SUMO, 
where subsequent simulations of the predicted traffic network 
state enabled the visualisation of the future state of the 
network. We re-modelled a case scenario involving a road 
accident on A56 Chester Road in Greater Manchester, UK. 
Deep-PRESIMM was used to create three WHAT-IF SCENARIOS 
a control operator could apply in a bid to managing the 
congested network. For this study, the number of traffic 
control measures were limited to three (3), and these were 
actualised in Deep-PRESIMM, as well as the visualizations of 
the consequences of the applied control measure, making the 
decision-making process easier.  

However, although the case study presented a scenario 
with the control analyst having only three (3) possible TC 
alternatives, this is not the case in real-world traffic control 
centres, where there are many possible control alternatives. 
Deep-PRESIMM can accommodate any number of possible 
TC alternatives. Traffic analysts will be aware of the control 
measures available to ease congestion. Deep-PRESIMM 
examines these known control measures and evaluates them. 
Deep-PRESIMM performs analysis using real-time data 
collected from traffic sensors, offers 1-hour ahead traffic 
predictions, and therefore is the most accurate representation 
of the predicted traffic state. As such, even though the options 
examined are known to the analyst, Deep-PRESIMM 
presents/visualises the best available one, thereby making the 
choice of traffic control measure easier.   

This model can be an effective traffic management tool, by 
presenting to the control operator information about the future 
state of the network, as well as the likely consequence of the 
actions or interventions applied on the network. For instance, 
when there is traffic congestion due to a temporary issue such 
as accidents, traffic light failure, start/end of a football match, 
or city events such as concerts, etc., traffic analysts will be 
aware of what measure(s) can be applied towards ameliorating 

 
5 https://www/waze/com  
6 https://www.garmin.com  

the situation.  With this model, the traffic management and 
control process changes from a reactive  to a proactive  one, 
where the future state is visualized, alongside with the 
consequences of the interventions. This would make the 
decision-making process for the traffic control personnel a lot 
easier and more objective, rather than on the basis of gut 
instinct , or subjective experience. It is important to mention 
that our research does not claim that experience or domain 
knowledge is irrelevant in traffic analysis and control, nor are 
we proposing a replacement to existing traffic control systems. 
However, the proposed tool can serve as a complementary 
guidance aid towards proactive traffic management and 
control. This model explicitly differs from existing popular 
mobility information provision systems like Waze5, Garmin6, 
and Google Maps7 in that the stakeholders for Deep-
PRESIMM are traffic network controllers/authorities, as 
opposed to road users (end users) serviced by the other systems 
mentioned.  

This study is limited in a number of ways. Firstly, the 
model can be modified to include a self-learning feedback loop 
that is updated by the traffic analyst. This can contain 
information about the feedback obtain from the traffic 
ANALXST S TRAFFIC INTERVENTION WHICH IN EFFECT WOULD INCLUDE
the tacit knowledge of the analyst as well as the feedback of 
the chosen intervention. Secondly, the research study was 
constrained to Greater Manchester, UK dataset. However, 
generalizing it to accommodate for other locations is possible, 
and achievable. The underlying structure and architecture 
would still remain the same, with minimal changes made in 
terms of geophysical information (maps), input datasets, and 
additional nodes on the simulation side. Thirdly, the traffic 
network used in this study was restricted to vehicular traffic 
only, excluding rail, cycle, and pedestrian traffic modes. This 
has the potential to limit the realism of the simulation due to 
omitting the interactions between the other travel modes. 
Finally, the model was constrained to unidirectional (i.e. only 
the affected lane) on the incident road.   

VIII. CONCLUSION AND FUTURE WORK 

This paper presented Deep-PRESSIM, a proactive traffic 
management model comprising two distinct stages [ 
prediction and simulation respectively. This makes it a unique 
tool aimed at providing assistance to traffic network control 
personnel, by proactively managing traffic flow using a 
NUMBER OF WHAT-IF SCENARIOS and consequently visualizing 
the effect of the intervention on the virtual future traffic state. 
The model presented in this paper can be further trained to 
perform on more complex networks and accommodate real-
time traffic inputs. Furthermore, additional test case scenarios 
can be performed, such that the effects of the interventions by 
traffic control officers can be simulated and compared against 
real-time traffic. For instance, actually altering a traffic signal 
in real-time to compare against how this is simulated in 
SUMO. 

Finally, this work can be developed to contribute towards 
ushering in smart cities, where Deep-PRESIMM can be 
integrated into existing ITS such that a number of preset 
interventions on the ITS are made available to the operator (for 

7 https://www.google.com/maps  

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 656 submitted to 2019 IEEE International Conference on

Systems, Man, and Cybernetics (SMC). Received April 17, 2019.



  

instance, lane closure, signal alterations, etc.), so that these 
interventions are also simulated to see their respective 
consequent effects on the traffic situation. This is a step in the 
right direction for the introduction of driverless cars and could 
serve as a stepping stone to effective traffic control and 
management. A proactive traffic management model, such as 
Deep-PRESIMM, could be a step in the direction of providing 
holistic control and proactive management of traffic with 
potential for facilitating the coordination of driverless cars by 
traffic authorities. 
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