
Autonomous Highway Driving using Deep Reinforcement Learning

Subramanya Nageshrao1 and Eric Tseng2 and Dimitar Filev2

Abstract— The operational space of an autonomous vehicle
(AV) can be diverse and vary significantly. This may lead to
a scenario that was not postulated in the design phase. Due
to this, formulating a rule based decision maker for selecting
maneuvers may not be ideal. Similarly, it may not be effective
to design an a-priori cost function and then solve the optimal
control problem in real-time. In order to address these issues
and to avoid peculiar behaviors when encountering unforeseen
scenario, we propose a reinforcement learning (RL) based
method, where the ego car, i.e., an autonomous vehicle, learns
to make decisions by directly interacting with simulated traffic.
The decision maker for AV is implemented as a deep neural
network providing an action choice for a given system state.

In a critical application such as driving, an RL agent without
explicit notion of safety may not converge or it may need
extremely large number of samples before finding a reliable
policy. To best address the issue, this paper incorporates
reinforcement learning with an additional short horizon safety
check (SC). In a critical scenario, the safety check will also
provide an alternate safe action to the agent provided if it
exists. This leads to two novel contributions. First, it generalizes
the states that could lead to undesirable “near-misses” or
“collisions ”. Second, inclusion of safety check can provide a safe
and stable training environment. This significantly enhances
learning efficiency without inhibiting meaningful exploration
to ensure safe and optimal learned behavior.

We demonstrate the performance of the developed algorithm
in highway driving scenario where the trained AV encounters
varying traffic density in a highway setting.

I. INTRODUCTION

Reinforcement learning (RL), is a branch of artificial
intelligence where an agent learns an optimal control strategy
by interacting with the environment. Over the last few years
there are many monumental success stories in RL. The most
spectacular and well-known results involve state-of-the-art
performance in many challenging tasks such as video games
[1], decision making in an extremely complex environments
such as game of Go [2], and continuous control of physical
systems [3], [4].

In recent years autonomous driving has been a subject of
great interest among both researchers and general public.
Autonomous vehicles (AVs) have enormous potential not
only economically but also for enhancing mobility options,
and potentially reducing carbon footprint [5]. As in any
robotic system, autonomous driving also involves decision
making. A typical implementation of AV decision making
is done by solving a number of path planning problems.
They are formulated as a set of optimization problems,
subject to various system and environmental constraints. The

1 Ford Greenfield Labs, 3251 Hillview Ave, Palo Alto, CA 94304, USA
snageshr@ford.com.

2 Ford Research and Innovation Center, 2101 Village Road, Dearborn,
MI 48124, USA, htseng@ford.com, dfilev@ford.com.

solution corresponding to the lowest cost is often chosen as
reference to the low-level controller [6]. This approach is
computationally intensive, additionally due to the real time
constraints on the solver, the obtained reference path may
not result in a comfortable vehicle motion. Compare this
to human driving, where a driver perceives the surrounding
traffic and makes a maneuver decision, such as change lane,
maintain speed, or brake etc. Based on this decision, the
driver then proceeds with steering and throttle/brake pedal
actuation to perform the maneuver with a smooth path. This
approach fits well within the realm of the RL framework.

In this work we develop a Deep Reinforcement Learning
(DRL) agent for highway driving. The DRL agent is designed
by training an ego vehicle (EV) to learn a driving policy
by directly interacting with diverse simulated traffic. The
foundation of our DRL agent is a modified version of the
double deep Q-network (DDQN) algorithm that was first
discussed in [7], [8]. DDQN is considered as one of the
state-of-the art RL algorithm for discrete state and continuous
action space optimal problems. As detailed in [7], DDQN not
only rectifies overestimation problem of DQN [1] but also
improves performance across many benchmark problems.
In this work we customize DDQN from [7] to include the
following distinctive features.

• First, we augment the DDQN learning agent with a
short-horizon safety check. In a critical situation, if
the original DDQN action choice was deemed unsafe
then the safety check will replace it with an alter-
nate safe action, provided there is a safe alternative.
For training, Q-learning often relies on an exploration
policy, such as ε-greedy, as we have experienced and
as one may anticipate, arbitrary exploration without
constraints could frequently lead to scenarios involving
collisions, and in turn, simulation resets. The safety
check augmentation significantly improves the learning
efficiency in avoiding frequent resets during training.
Additionally during inference phase the safety check
can be used as an override authority whenever a non-
safe maneuver was chosen by the algorithm. This rare
situation may occur for example, due to the use of
function approximation such as neural networks. The
safety rules is based on kinematic constraints so as
to minimize the collision risks, they are elaborated in
section III and are similar to the ones proposed in [9].

• Second, we keep the situations that invoke the safety
violation in a collision buffer. As such, the safety check
facilitates a constrained exploration during learning
which enhances learning efficiency and achieves stable

ar
X

iv
:1

90
4.

00
03

5v
1 

 [
cs

.R
O

] 
 2

9 
M

ar
 2

01
9



learning [10], [11]. Use of two buffers is a simpler
version of prioritized experience replay as discussed in
[12].

• Third, the inclusion of safety controller during inference
phase leads to an interesting scenario, where by using
new information the learned agent can be re-trained thus
resulting in continuous adaptation. The new information
can be potentially obtained from real-world data by
deploying the initially trained agent in multiple vehicles.

These changes were found to be essential for both stability
and efficiency of the DRL agent and will be discussed in
detail in Section. IV of the paper.

We demonstrate the usability of the developed algorithm
for highway driving of an AV with varying traffic density in
a simulation environment. In summary, the key contributions
of this work are:

1) We develop a DRL agent and a corresponding control
architecture for highway autonomous driving using
deep Q-network as a decision maker in conjunction
with standard state feedback controllers.

2) We integrate the semantic information of the rules of
the road in the form of a short-horizon safety check
complementing with the statistical inference mecha-
nism used in the DDQN algorithm.

3) We demonstrated the capability of the developed DRL
agent in an adaptive framework in presence of new
data.

The rest of paper is organized as follows. In Section II,
a preliminary introduction on RL for decision making and
control is presented. Following that, in Section. III, the
proposed DDQN based algorithm along with the DRL based
control architecture is explained. The implementation of the
DRL agent for highway driving of an autonomous vehicle
in an varying traffic density is given in Section. IV. Finally,
Section. V concludes the paper with a note on our future
research.

II. PRELIMINARIES: DEEP LEARNING FOR CONTROL

In this section we provide a brief theoretical background
on decision making and control using deep reinforcement
learning. Additionally, we elaborate on the main motivation
for the control architecture presented in this article.

A. Reinforcement learning

In reinforcement learning (RL) an agent learns an optimal
behavior with respect to a cost function by directly interact-
ing with the system. Generally, RL problem is formulated as
a Markov decision process (MDP) which is formally defined
by a tuple 〈S,A, T ,R〉. Where S ∈ Rn is the state-space, A
is the action space, T : S×A → S is the state transformation
function, and R : S×A×S → R is the user defined reward
function.

At each time step t the learning agent selects an action
at according to some policy π based on the current system
state st , i.e., at = π(st). For discrete action space at will be
from a set of feasible actions in A. On applying this action
the system’s state st transitions to a new state st+1, along

with this the environment provides a scalar reward rt+1.
This process is repeated either until Ns samples or the agent
reaches a terminal state, this is called a learning episode.
After the termination, the learning episode is restarted, this
step is repeated either until Ne episodes or convergence.
In RL, it is assumed that the system under consideration
satisfies the Markovian property [13].

The goal in RL is to learn a policy π so as to maxi-
mize the total accumulated reward termed as return Rt =∑∞
k=0 γ

krt+k where the scalar constant γ ∈ (0, 1] is called
the discount factor. For discrete action space the optimal
policy is obtained by solving for the optimal Q function,
called action value function. An optimal Q function satisfies
the Bellman equation:

Qπopt(s, a) = Q∗(s, a) = Es′
[
r + γmax

a′
Q∗(s

′
, a
′
)|(s, a)

]
.

(1)
Any action a that satisfies (1) in state s will be an optimal

action in that state. Since last few years RL has had a
significant success [1], [2], [14], [4], [3]. This can be mainly
attributed to augmenting RL with deep learning techniques
[15].

B. Decision making and low-level actuation

In this section, inspired by an example from [13] (see
Chapter 1.2), we elaborate on the difference between de-
cision making (D’s) and low level actuation (C’s) : Phil
wants to have breakfast, he may chose between having cereal
or a bagel (D1), after deciding he will either walk to the
cupboard or to the counter (C1). Based on D1 he will either
pick a choice of cereal (D2) then walk to fridge (C2) to get
milk or chose a bagel (D3) and walk to the toaster (C3),
etc. This entire process involves a series of decision making
followed by low-level actuation. A high-level decisions (i.e.,
D’s) are decided by reward function such as pleasure or
getting enough nutrition etc. Whereas low level actuation
is characterized by a series of hand-eye coordination.

Any RL methodology that tries to solve both decision
making and actuation simultaneously may require a large
amount of training data. In this work we simplify this process
by having a clear hierarchy between high-level decision
making and low level actuation. Whereas RL is used to solve
the decision making problem, classical feedback control
method such as PID is used for low-level actuation. In a way
the methodology presented here has considerable overlap
with hierarchical RL where both decision making and control
are learned simultaneously subject to a set of related but
different cost functions [16]. For training the decision making
agent we use a modified DDQN algorithm from [7].

C. Need for safety

A key distinguishing component of RL when compared
with other forms of machine learning is the trade-off between
exploration and exploitation [13]. In order to achieve better
reward an agent must try actions that it has not tried prior.
Hence during the initial learning phase the agent will try
all viable actions, unfortunately this curiosity may be fatal



and can become expensive particularly when learning on a
physical platform such as a robotic platform [17]. For exam-
ple while training a highway driving agent, use of unguided
exploration could frequently lead to collision or near-miss
scenarios, which may result in simulation resets, thus slowing
the learning process. Additionally even after convergence,
due to the function approximation by the Q-network, the
trained agent may chose a non-safe maneuver. In order to
address these issues, we augment the DDQN decision maker
with an explicit short-horizon safety check that is used both
while learning and also during the implementation phase.
Safe exploration or safe-RL is an active research topic, for
a detailed survey on inclusion of various safety mechanisms
during learning see [10].

A standard RL approach, such as DDQN, may require
a lot of samples before learning that few actions could be
potentially dangerous in certain states. For example, consider
a highway where one of the lane has been barricaded by
concrete blocks, see Fig. 1a. A standard epsilon-greedy
algorithm may need to collide multiple times before learning
that the action change lane to right when in the right-most
lane to be catastrophic. This may result in significant waste
of learning effort as the agent will spend considerable time
exploring irrelevant regions of the state and action space.
Additionally, by virtue of function approximation there is a
small probability, where the trained DDQN agent may still
chose change lane to right leading to catastrophic outcome.
This can be avoided by including an explicit short-horizon
safety check that evaluates the action choice by the learning
agent and provides an alternative safe action whenever it is
feasible [11].

In the RL algorithm presented in this work (see Section III)
we use a simple safety check based on common sense road
rules. This forces the agent to avoid non-safe actions in dan-
gerous situations resulting in faster learning. Our approach
is similar to a teacher who provides corrective action when
it is necessary [18]. Note that the safety controller may not
be optimal, i.e., an expert in the task under consideration.
Additionally, due to explicit safety check, new data can be
obtained even in the implementation phase which can then
be used for continuous adaption of the learned network, this
is further elaborated in Section III.

III. SAFE AND ADAPTIVE DECISION MAKING FOR AV

The DRL architecture used in this work for autonomous
highway driving is given in Fig. 2.

Unlike the mediated perception method that relies on
complete reconstruction of scene prior [19], [20], we use the
concept of affordance indicators, i.e., state variables based
on the direct perception approach from [21]. For a three lane
highway scenario, the ego vehicle (EV) can be surrounded
by up to six traffic vehicles (TV), see Fig. 1b. To define the
traffic vehicle’s variable we use the following notation

(a) Highway with barricaded right lane.

(b) A three lane highway scenario.

Fig. 1: An example for common sense road rule along with
the ego vehicle perspective considered in this work.

where State can be distance d or velocity v, Lane is either
right lane rl, center lane cl, or left lane ll. Location is either
front f or rear r and Direction is either longitudinal x or
lateral y.

In total the following 24 indicators are used represent the
spatio-temporal information of the six nearest traffic vehicles
(see Fig. 1b), they are formulated from the ego vehicle’s
perspective as:
• The relative distance and velocity, in longitudinal and

lateral direction, to the closest front car in center lane,
i.e., dclfx , vclfx , dclfy , and vclfy . Similarly to the closest
rear car in the center lane, i.e., dclrx , vclrx , dclry , and
vclry .

• The relative distance and velocity, in longitudinal and
lateral direction, to the closest front car in the right lane,
i.e., drlfx , vrlfx , drlfy , and vrlfy . Similarly to the closest
rear car in the right lane, i.e., drlrx , vrlrx , drlry , and vrlry .

• The relative distance and velocity, in longitudinal and
lateral direction, to the closest front car in the left lane,
i.e., dllfx , vllfx , dllfy , and vllfy . Similarly to the closest
rear car in the left lane, i.e., dllrx , vllrx , dllry , and vllry .

Here the lane occupancy of a TV and the closest car to EV
are obtained using the methodology presented in [22]. In
addition to the 24 traffic vehicle states we use longitudinal
velocity vex , lateral position dey , and lateral velocity vey , of
the ego vehicle e. Since the affordance indicators are formu-
lated w.r.t. ego vehicle we do not need a state corresponding
to longitudinal position of the ego vehicle. These variables
are minimal requirement for highway driving, however they
are not sufficient for all highway driving tasks such as use
of restricted lane, on-ramp to enter the highway, off-ramp to
exit, etc.

A total of 27 affordance indicators, i.e., st ∈ R27 are



Fig. 2: DRL agent control architecture: SC is the short-horizon safety check and FBC is the low-level feedback controller.

used as an input to the deep Q-network. The Q-network is
trained by using a customized variant of the deep double Q-
learning algorithm from [7], see Algorithm 1. For decision
making of an AV in a highway driving scenario, we consider
four action choices along longitudinal direction, namely,
maintain, accelerate, brake, and hard brake. Whereas for
lateral direction we assume three action choices, one for
lane keep, change lane to right, and change lane to left,
respectively. This results in 12 unique action choices. For
each of these action choices a numerical value can be
assigned as in [23], for example for longitudinal acceleration
four different discrete choices {a1, 0,−a1,−a2} may be
considered. Alternatively, one can obtain the reference for
the throttle or brake controller either using the intelligent
driver model (IDM) [24] or adaptive cruise control [25], etc.
The reference for the steering controller is self-evident, it is
either stay in lane or change lane to right or left. To obtain
the steering command we use a simple feedback controller
[26]

κcmd = f(kroad, eyoff
, eψ, TLC, vex) (2)

where kroad is the road curvature, eψ is the heading angle
offset, TLC is the desired time to complete a lane change, and
the reference eyoff

is the lateral offset to the desired position.
When the DDQN agent decides to perform a lane change,
the absolute value of the lane offset eyoff

will be set to the
lane width. The inputs to the steering feedback controller (2)
can be considered as additional affordance indicators which
can be obtained from the perception module.

As elaborated in Section II-C, we use an explicit short-
horizon safety check to validate the action choice by DDQN.
For the current action choice, the safety controller verifies
common sense but well known rules of the road such as
ensuring a minimum relative gap to a TV based on its relative
velocity,

dTV − Tmin ∗ vTV > dTVmin (3)

where dTV, vTV are the relative distance and relative velocity
to a traffic vehicle, Tmin is the minimum time to collision,
dTVmin

is the minimum gap which must be ensured before
executing the action choice by the DDQN. If this condition is
not satisfied and when it is feasible, an alternate safe action
will be provided by the short-horizon safety controller. In
this example we use a simple variant of the intelligent driver
model (IDM) [24] to provide safe alternative longitudinal

action, and is formulated as

as =


Hard brake if TC ≤ THB

Brake if THB < TC ≤ TB
Maintain if TB < TC

(4)

where as is the safe action, TC is the calculated time to
collision [27], THB and TB are the thresholds above which
the decision made by the DDQN agent is considered to be
safe.

In particular we use the following safety check prior to
performing an action given by DDQN:

1) Instead of the in-lane longitudinal action by DDQN,
chose a safe action using (4) if (3) is not satisfied and
the ego vehicle is faster than the preceding vehicle.

2) If the ego vehicle is in left most lane then change lane
to left is not valid, similarly for the right lane.

3) For change lane to left continuously monitor (3) for
preceding car, the front and the rear car in the target
lane. If condition (3) fails then lane change is either
not initiated or aborted, similarly for the change lane
to right. Lane abort is initiated by switching to an
appropriate action which is opposite to the current
lateral direction.

Generally in many RL applications after learning, the
trained agent is frozen and used as a feedback controller.
However, in reality the agent may encounter new infor-
mation, additionally there can be a considerable variation
between the training environment and the real-world expe-
rience. Also due of function approximation there can be a
small probability of choosing an unsafe action even by the
trained agent, this can happen even after convergence and in
the absence of any explicit exploration. In order to address
these issues, in the implementation phase we augment the
trained DDQN agent with the short-horizon safety check
that was used during learning. Any new safety violation
data will be added to the collision buffer BufC, by using
the training part of the Algorithm 1 (line 13 until 15) the
learned agent can be re-trained or adapted in a continuous
manner. In the following section we apply the developed
DRL based decision making Algorithm 1 for autonomous
highway driving.



Algorithm 1 A DRL based safe decision maker for au-
tonomous highway driving

1: Initialize: BufS, BufC, Q(θ) and target network Q̂(θ̂)
with θ̂ = θ

2: for episode =1,Ne, do
3: Initialize: {1, · · · , NT} cars randomly, obtain affor-

dance indicator s0
4: for samples t =1,NS, or Collision, do
5: With ε select random action at, else at =

arg maxaQ ((st, a, θt))
6: For ego car: If at is not safe Then store

(st, at, ∗, rcol) in BufC and replace at by safe
action as

7: Apply action, observe st+1 and obtain rt+1 =
ρ(st, st+1, at)

8: if Collision then
9: Store transition (st, at, ∗, rcol) in collision buffer

BufC
10: else
11: Store transition (st, at, st+1, rt+1) in safe buffer

BufS
12: end if
13: Sample random minibatch (sj , aj , sj+1, rj+1) from

BufS and BufC
14: Set

yj =


rj+1 if sample is from BufC

rj+1 + γQ̂
(
sj+1, arg maxaQ (sj+1, a, θt)

, θ̂t

)
if sample is from BufS

15: Perform gradient descent on (yj −Q(sj , aj , θt))
2

w.r.t. θ
16: Every NC episodes set Q̂ = Q
17: end for
18: end for

IV. USE OF DRL FOR DECISION MAKING

In this section we will show the usability of our DRL
based decision making Algorithm 1 for autonomous highway
driving. First, we introduce the vehicle dynamical model that
was used training, following this we will elaborate on the
training environment and evaluate the learned policy.

A. Vehicle dynamics

Each vehicle is modeled using a computationally efficient
point-mass model. For longitudinal equations of motion we
use a discrete-time double integrator,

x(t+ 1) = x(t) + vx(t)∆t

vx(t+ 1) = vx(t) + ax(t)∆t. (5)

where t is the time index, ∆t is the sampling time, x ∈ R
is the longitudinal position, and vx ∈ R is the longitudinal
velocity of the vehicle. For the lateral motion we assume a
simple kinematic model

y(t+ 1) = y(t) + vy(t)∆t (6)

where y ∈ R is the lateral position of the car. In (5) and (6),
the external control inputs ax(t) and vy(t) represents the
longitudinal acceleration and lateral velocity of the vehicle,
respectively.

We assume ax(t) to vary from nominal acceleration, to
hard brake and is discretized into four values, i.e., ax =
{a1, 0,−a1,−a2}, with a1 = 2m/s2 and a2 = 4m/s2.
Only in case of emergency hard braking of ax = −a2 is
applied. The lateral velocity vy(t) provides a reference lane
for the vehicle, we assume a lane change action requires
5 seconds to complete [28], with an option of aborting the
lane change maneuver during each sampling instance. In this
work we use 1Hz sampling.

B. Simulation environment

A schematic of the simulation environment used for
training is given in Fig. 3. It is a three lane circular loop
and is used to approximate an infinite stretch of straight
highway. At the beginning of an episode, anywhere between
{1, · · · , NT} number of cars are placed randomly within a
distance of 250m from the ego car. In this example we chose
NT to be 30.

During learning stage the ego car (for e.g., white Fusion in
Fig. 3) uses an ε-greedy policy to make decisions, whereas
for the traffic vehicles a combination of controllers from [23]
and [22] are used along with an IDM controller. Additionally
the traffic vehicles can randomly chose to perform lane
change. For the traffic vehicles, the system parameters such
as maximum velocity are randomly chosen. This is to ensure
a diverse traffic scenario in training and evaluation. We
assume that all the traffic vehicles take into account the
relative distance and velocity to preceding vehicle before
making a decision, i.e., they will not rear end the preceding
car in the same lane. We use Algorithm 1 to train an agent
for decision making.

Fig. 3: A schematic of the simulation environment used for
training.

C. Decision making for ego vehicle

In order to train the policy π we use a reward function
ρ that consists of a set driving goals for the ego car. It is
formulated as a function of
• Desired traveling speed subject to traffic condition (7),



• Desired lane and lane offset subject to traffic condition
(8),

• Relative distance to the preceding car based on relative
velocity (9),

rv = e−
(vex−vdes)

2

10 − 1, (7)

ry = e−
(dey−ydes)

2

10 − 1, (8)

rx =

e−
(dlead−dsafe)

2

10dsafe − 1 if ex < dsafe

0 otherwise,
(9)

where vex , dey , and dlead are the ego velocity, lateral position,
and the longitudinal distance to the lead vehicle respectively.
Similarly, vdes, ydes, and dsafe are the desired speed, lane
position, and safe longitudinal distance to the lead vehicle
respectively.

Fig. 4 gives an indicative plot of the reward functions
(7)-(9), it is formulated assuming vdes = 30 m/s which
can be achieved in the center lane i.e., ydes = 3.8m with a
minimum safe distance dsafe = 40m. The desired values are
based on the traffic condition and can change depending on
the scenario. For slow/fast moving traffic the peak in Fig. 4c
will be adjusted based on the traffic condition. In this work
we penalize the ego vehicle if it cannot maintain a minimum
time headway of at least 1.3 seconds.

(a) Reward for desired relative distance.

(b) Reward for desired lateral position.

(c) Reward for desired ego speed.

Fig. 4: Reward for the ego car based on traffic condition,
sub goals are weighted equally when calculating the final
reward.

During learning, we evaluate the (partially) trained DRL

controller every 100th episode. Fig. 5 shows the average
reward per decision during the training phase. It takes nearly
2000 episodes for the agent to converge. We train the DRL
agent for a total of 10000 episodes. Where each episode
lasts until 200 samples or collision, whichever is earlier.
Exploration is continuously annealed from 1 to 0.2 over
first 7000 episodes and then kept constant for the remaining
duration of learning. The Q-network is a deep neural network
with 2 hidden layers each having 100 fully connected leaky
ReLU’s [29]. We train the network using Adam optimizer
[30] with a fixed learning rate of 1e− 4.

For the highway driving task, the safety controller was
found to be a key component for learning a meaningful
policy. Fig. 5 shows the mean and confidence bound for
training with and without safety controllers over 200 training
iterations of Algorithm 1. Training a standard DDQN agent
without explicit safety check could not learn a decent policy
and always resulted in collision. Whereas DDQN with ex-
plicit safety check was able to converge to an optimal policy.
Based on (7) - (9), the maximum reward an agent can receive
is zero per decision, the average reward per decision obtained
by our trained DDQN agent with safety check is around
−0.025.

Fig. 5: Average learning curve with confidence bound for
with and without short horizon safety check in Algorithm 1.

In Fig. 6 We evaluate our trained DDQN agent to obtain
average velocity with increase in traffic density. We com-
pare this against modified safety controller from (4), the
modification provides an acceleration command when the
calculated time to collision TC is higher than TA. This is
referred as IDM in Fig. 6. It must be noted IDM controller
from (4) cannot initiate lane change, in order to address this
we integrate IDM with lane change decision making from
[31] and [32]. Fig. 6, clearly demonstrates advantage of RL
for high level decision making when compared to model-
based approaches. With the increase in traffic density both
the trained DDQN agent and the model-based lane change
controller converges to IDM controller. This is anticipated
since lane change is neither safe nor advantageous in higher
traffic density.

Use of two explicit buffers namely BufS and BufC
in Algorithm 1 to store safe and non-safe transitions is
simplified version of prioritized experience reply (PER)
from [12]. Fig. 8 shows the mean and confidence bound
for training with two buffers and PER over 200 training
iterations of Algorithm 1. For the highway driving example
using two explicit buffers provides marginally better policy



Fig. 6: Average speed for simple IDM controller, with lane
change, and trained RL agent.

when compared to PER. This can be due to clear bifurcation
of safe and non-safe transitions.

Fig. 7: Mean learning curve with confidence bound for
Algorithm 1 and prioritized experience reply [12]. In this
work we used the PER implementation from [33].

D. Continuous adaptation

During the implementation phase, we replace the ε-greedy
policy, i.e., πε in Algorithm 1 line 5 by the learned policy
π. Whenever the control decision by DDQN fails the short-
horizon safety check, buffer BufC is updated with additional
data. Using a lower learning rate than the one used for
training, Q-network can be retrained (line 13 until 16). Fig. 8
shows the continuous adaptation result over 30K episodes
and is obtained by averaging the data over 10k episodes
using a moving average filter. Because of filtering, the mean
number of safety trigger increases over first 10k episodes
and stays constant for no adaptation scenario whereas it
monotonically decreases to a smaller value thanks to contin-
uous adaptation. Even with continuous adaptation the mean
number safety trigger never converges to zero, this may be
due to

1) Use of function approximation where a trained NN can
potentially chose a non-safe action,

2) Use of rigid and static safety rules.
In our future work we plan to address this issue.

V. CONCLUSIONS

In this paper, we presented a control architecture based
deep RL framework for safe decision making in autonomous
driving. The Q-network is augmented with a short-horizon
safety control thus embedding few common rules of the road

Fig. 8: Comparison of number of safety trigger after learning
with and without continuous adaptation.

Symbol Description Value
γ Discount factor 0.9
∆t Sampling time 1 sec
TLC Lane change duration 5 sec
Tmin Minimum time to collision 3 sec
THB Hard break threshold 2 sec
TB Nominal break threshold 3 sec
TA Nominal acceleration threshold 8 sec
dTVmin

Minimum gap 15 m

TABLE I: Parameter values used in this work.

into AV decision making. By using well known feedback
controller, high level decision by DDQN is converted into
a low-level actuation vis-à-vis, throttle, brake, and steering.
We have evaluated the learned controller under varying traffic
density, the results demonstrate the superior capabilities of
the learned DRL agent. Finally, by modifying the learning
algorithm we have demonstrated the continuous adaptation
framework that has shown to reduce the number of safety
triggers. In our future work we plan to extend this work to
achieve mandatory lane change, and to perform on-ramp to
off-ramp highway driving.

ACKNOWLEDGMENT

The authors would like to thank Dr. Vladimir Ivanovic for
providing the low-level steering controller.

APPENDIX

Table I lists the parameter values used in this work.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, 2016, pp. 1928–1937.

[5] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[6] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, no. 0, 2018.



[7] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[8] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[9] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a for-
mal model of safe and scalable self-driving cars,” arXiv preprint
arXiv:1708.06374, 2017.

[10] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[11] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” arXiv preprint
arXiv:1708.08611, 2017.

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[14] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” arXiv
preprint arXiv:1710.02298, 2017.

[15] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[16] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman, “Meta learning
shared hierarchies,” arXiv preprint arXiv:1710.09767, 2017.

[17] J. Garcia and F. Fernández, “Safe exploration of state and action spaces
in reinforcement learning,” Journal of Artificial Intelligence Research,
vol. 45, pp. 515–564, 2012.

[18] A. L. Thomaz and C. Breazeal, “Teachable robots: Understanding
human teaching behavior to build more effective robot learners,”
Artificial Intelligence, vol. 172, no. 6-7, pp. 716–737, 2008.

[19] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2174–2182.

[20] S. Hecker, D. Dai, and L. Van Gool, “End-to-end learning of driving
models with surround-view cameras and route planners,” in European
Conference on Computer Vision (ECCV), 2018.

[21] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 2722–2730.

[22] M. Zhang, N. Li, A. Girard, and I. Kolmanovsky, “A finite state
machine based automated driving controller and its stochastic opti-
mization,” in ASME 2017 Dynamic Systems and Control Conference.
American Society of Mechanical Engineers, 2017, pp. V002T07A002–
V002T07A002.

[23] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R.
Girard, “Game theoretic modeling of driver and vehicle interactions
for verification and validation of autonomous vehicle control systems,”
IEEE Transactions on control systems technology, 2017.

[24] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[25] A. Vahidi and A. Eskandarian, “Research advances in intelligent
collision avoidance and adaptive cruise control,” IEEE transactions on
intelligent transportation systems, vol. 4, no. 3, pp. 143–153, 2003.

[26] V. Ivanovic, E. Tseng, M. Hafner, and P. Madhavan, “Analytical and
experimental study of automated lane change control based on lane
centering algorithms,” Internal technical report, Ford Motor Company,
2017.

[27] M. M. Minderhoud and P. H. Bovy, “Extended time-to-collision
measures for road traffic safety assessment,” Accident Analysis &
Prevention, vol. 33, no. 1, pp. 89–97, 2001.

[28] T. Toledo and D. Zohar, “Modeling duration of lane changes,” Trans-
portation Research Record: Journal of the Transportation Research
Board, no. 1999, pp. 71–78, 2007.

[29] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[31] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
mobil for car-following models,” Transportation Research Record, vol.
1999, no. 1, pp. 86–94, 2007.

[32] J. Erdmann, “Lane-changing model in sumo,” Proceedings of the
SUMO2014 modeling mobility with open data, vol. 24, pp. 77–88,
2014.

[33] A. Hill, A. Raffin, M. Ernestus, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/hill-a/
stable-baselines, 2018.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	I Introduction
	II Preliminaries: Deep learning for control
	II-A Reinforcement learning
	II-B Decision making and low-level actuation
	II-C Need for safety

	III Safe and adaptive decision making for AV
	IV Use of DRL for decision making
	IV-A Vehicle dynamics
	IV-B Simulation environment
	IV-C Decision making for ego vehicle
	IV-D Continuous adaptation

	V Conclusions
	References

