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Abstract— For people who have a mobility impairment and 

find standard wheelchairs unsuitable, a shared-controlled 

approach could provide a potential mobility solution. However, 

state-of-the-art research on shared control wheelchairs mainly 

focus on static environments. In this paper, we present a 

hierarchical design for our shared-controlled wheelchair using a 

velocity-based approach together with probabilistic shared control 

(PSC). By modifying the collision avoidance element and model the 

robot-pedestrian interaction based on their physical distance, we 

extended the implementation of PSC to dynamic environments. 

Our approach was tested in a Unity3D based simulator with 

human participants. It achieved least number of collisions while 

obtaining relatively low computational cost and high user 

agreement comparing with other state-of-the-art methods. 

Keywords—shared control, navigation 

I. INTRODUCTION  

Being able to move around is key to independence and quality 
of life. While wheelchairs provide a mobility solution, current 
designs may not be suitable for people with very high level 
motor impairments, especially when combined with sensory and 
/ or cognitive impairments. To help enable independent mobility 
for people with such complex needs, research in shared control 
wheelchairs is being carried. 

A shared-controlled wheelchair is a standard powered 

wheelchair with a collection of sensors. It has the ability to sense 

its environment and make collision-free actions based on the 

user’s input. In terms of the control strategy, the shared-

controlled wheelchairs can mainly be divided into two categories. 

Escobedo et al. (2013) and Tomari et al. (2012) adopted a 

hierarchical framework where the user was in charge of high-

level tasks such as choosing a desired manoeuvre whilst the 

wheelchair took control of the low-level tasks [1], [2]. The user 

could intervene with the autonomous process by switching the 

operating mode. Similarly, Simpson et.al (1999) proposed an 

automatic adaption strategy, where the motion planner can 

automatically select the correct operating mode [3]. However, 

this strategy only assists in driving in some pre-defined scenarios 

and may not be suitable to deal with uncertainty. 

 
An alternative control paradigm of shared control is achieved 

by continuously blending input from both the user and the 

motion planner  [4]–[7]  . One of the most popular blending 
approaches is linear blending, where the final control command 
is a weighted sum of the user’s input and the command 
computed by the motion planner. As a result, the main focus of 
this approach lies in the weight negotiation between the user and 
the planner in order to optimize certain objectives. However, 
Trautman (2015) demonstrated mathematically that simple 
linear blending may not guarantee a collision-free trajectory and 
may not best describe the user’s intention. To address these 
issues, he proposed probabilistic shared control (PSC) [8], which 
models the human-robot interaction by taking interaction 
uncertainty into account. This approach adds more flexibility to 
the user-wheelchair collaboration startegies, while guaranteeing 
safety mathematically [8]. Following this line of research, Ezeh 
et al. (2017) applied PSC in a wheelchair navigation task and 
demonstrated that PSC is safer than liner blending through 
experiments [4]. However, similar to other state-of-the-art 
research into the shared-controll of wheelchairs, the application 
scenario is limited to the static environment only. For a shared-
control wheelchair to be useable by people in the real world 
avoiding dynamic obstacles such as pedestrians will be essential. 

 In this paper, we first present a hierarchical design for 
shared-control local navigation, which builds on previous 
research on PSC and extends its application scenarios to a 
dynamic environment. We then validate our design in a 
simulator which is based on Unity3D and compare its 
performance with other methods. 

II. REALTED WORK 

In this section, we give a brief overview of related work on 

velocity-based collision avoidance approaches and probabilistic 

shared control, which are the building blocks for our design. 

A. Dynamic Window Approach (DWA) 

The Dynamic Window Approach (DWA) which was first 

proposed by Fox et al. is an obstacle-avoidance method that 

takes into account the dynamic and kinematic constraints of a 

mobile robot [9]. The main idea of this approach involves 

finding feasible and admissible velocities in a velocity search 

space (v,w) which is pruned by using the idea of a dynamic 

window. Among all the candidate velocity pairs, the optimal 

velocity pair is chosen as the one that optimizes certain 

objective functions [9].  



 
Although this approach demonstrates effective obstacle 

avoidance with static obstacles, the original version of DWA 
does not incorporate obstacle velocity information and thus is 
not suitable to be used in a dynamic environment. An extension 
of this approach has been proposed in [10], which was designed 
to overcome the issue of dynamic obstacle avoidance by  
predicting moving obstacles’ future positions using a dynamic 
occupancy map. However, this approach is computationally 
expensive. 

 

B. Generalized Velocity Obsatcle 

 Generalized Velocity Obstacle (GVO) is a velocity based 
collision avoidance approach that was proposed by Wilkie (2009) 
[11]. It is an extension of the original Velocity Obstacle (VO) 
algorithm proposed by Fiorini and Shiller in [12], which allows 
navigating car-like robots among arbitrarily moving obstacles. 
Different from VO which constructs collision cones 
geometrically, GVO calculates velocity obstacles algebraically. 
In detail, for a car-like robot which is assumed to have a constant 
speed 𝑢𝑠  and steering angle 𝑢𝜑 , GVO calculates the future 

position A of the robot at time t with respect to its current robot 
frame as 

𝐴(𝑡, 𝑢) = (

𝐿

𝑡𝑎𝑛(𝑢𝜑)
𝑠𝑖𝑛 (

𝑢𝑠 𝑡𝑎𝑛(𝑢𝜑)𝑡

𝐿
)

−
𝐿

𝑡𝑎𝑛(𝑢𝜑)
𝑐𝑜𝑠 (

𝑢𝑠 𝑡𝑎𝑛(𝑢𝜑)𝑡

𝐿
) +

1

𝑡𝑎𝑛(𝑢𝜑)

) ( 1 ) 

 

Where L is the wheelbase length. 

Obstacles are considered to have linear motion and their future 
position 𝐵𝑖  at time t can be easily calculated as  

𝐵𝑖(𝑡) = 𝒑𝐵𝑖
+ 𝒗𝐵𝑖

𝑡  ( 2 ) 

And the velocity obstacle can be constructed for which  

‖𝐴(𝑡𝑚𝑖𝑛 , 𝑢) − 𝐵𝑖(𝑡𝑚𝑖𝑛)‖ < 𝑟𝐴 + 𝑟𝐵  ( 3 ) 
Where 𝑟𝐴 and 𝑟𝐵 are radius for the robot and the obstacles. As a 
result, a feasible speed can be found which falls outside the 
velocity of the obstacles, and the final command is calculated by 
solving an optimization problem. 

 

C. Probabilistic Shared Control 

In a method proposed by Trautman (2015), probabilistic 
shared control assumes both the user’s input (interpreted as 
velocity pairs) and the candidate velocities (computed by the 
motion planner), follow a probability distribution [8]. The 
process is implemented by taking the joint probability of the 
velocity input from both the user and the planner, and the 
optimal command can be found by maximizing this joint 
probability. It can be formulated as 

𝑢𝑡+1
𝑃𝑆𝐶 = 𝑢𝑡+1

𝑅∗      ( 4 ) 

𝑢𝑡+1
𝑃𝑆𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑡+1

𝑅 𝑝(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 , 𝑢𝑡+1
𝑐 |𝑧1:𝑡

ℎ , 𝑧1:𝑡
𝑅 , 𝑧1:𝑡

𝑐 ) ( 5 ) 

𝑝(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 , 𝑐)

=      𝜑(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 )𝑝(𝑢𝑡+1
ℎ |𝑧1:𝑡

ℎ )𝑝(𝑢𝑡+1
𝑅 , 𝑢𝑡+1

𝑐 |𝑧1̅:𝑡) 
        ( 6 ) 

where 𝑧1:𝑡
ℎ  represents measurements of the user input,  𝑧1̅:𝑡 =

[𝑧1:𝑡
𝑅 , 𝑧1:𝑡

𝐶 ]  in which 𝑧1:𝑡
𝑅  defines measurements of the robot 

trajectory 𝑢𝑅  and 𝑧1:𝑡
𝑐  stands for measurements of obstacles 

trajectory 𝑢𝑐.  

 

𝜑(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 ) captures how “agreeable” the robot trajectory is 

with the intention of the user, while 𝑝(𝑢𝑡+1
𝑅 , 𝑢𝑡+1

𝑐 |𝑧1̅:𝑡) models 

the autonomy of the robot by taking human-robot interactions 

into considerations. 

 

Ezeh et al. (2017) implemented PSC for a wheelchair that was 

able to assist a user navigating in an environment with static 

obstacles [4]. Mathematically, the implementation ignored the 

measurements and distribution of the moving obstacles and thus 

simplifying the problem to 

 

𝑢𝑡+1
𝑃𝑆𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑡+1

𝑅 𝑝(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 |𝑧1:𝑡
ℎ , 𝑧1:𝑡

𝑅 )  ( 7 ) 

𝑝(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 , 𝑐) = 𝜑(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 )𝑝(𝑢𝑡+1
ℎ |𝑧1:𝑡

ℎ )𝑝(𝑢𝑡+1
𝑅 |𝑧1:𝑡

𝑅 )( 8 ) 

 

III. DESIGN 

A. Our wheelchair 

In order to better understand our design structure, we first 
describe our wheelchair platform.  

As shown in Fig.  1, our wheelchair is built on a standard 
Salsa M2 electrical wheelchair with a collection of additional 
sensors. 

 

Fig.  1. Left: Our smart wheelchair with sensors including 12 ultrasonic sensors, 

1 Hokuyo Lidar, 2 wheel encoders, 1 IMU and 1 RGBD camera. On-board 
processors such as Arduinos are places under the seat. Right: 1:1 model in 

Unity3D 

 

In detail, the wheelchair is equipped with two wheel-
encoders and one inertial measurement unit (IMU) which are 
used for dead-reckoning. For perception purposes, ultrasonic 
sensors, one Lidar and one RGB-D camera have been used. In 
terms of short-range sensing, 12 ultrasonic sensors (SR08) haven 
been placed around the bottom frame with 3 of them in each 
cluster. Each sensor has a sensing angle of 45 degrees up to 1.5m. 
For long-range sensing, a Hokuyo URG 2D Lidar has been fixed 
on top of the foot-plate, with a maximum range of 5.6m and 
sensing angle from -120° to 120°. The Realsense RGB-D camera 
was mounted on top of the wheelchair, which is used for moving 
obstacle (pedestrian) detection and tracking. 

This work is funded by EU2020 project CROWDBOT 



B. A hierarchical design 

Our proposed design used a hierarchical framework for 

collision avoidance, which treats static and dynamic obstacles 

separately. The reasons for this are threefold. 

 It allows more flexibility and transparency in control. 

 It reduces computational complexity by pruning the 

subsequent velocity search space for dynamic 

obstacles avoidance. 

 Each sensor only deals with one type of obstacle, 

which allows it to be associated with a different 

probability, thus making it easier to be used within 

probabilistic shared control. 

 

Fig. 2 shows a overview for our collision avoidance and 

shared control algorithm. In detail, we first search the velocity 

space for all achievable velocity pairs based on the wheelchair 

kinematics. Then, the dynamic window approach (DWA) is 

applied for low-level collision avoidance with static obstacles, 

which looks into a time horizon ∆t. In our setting, we found that 

∆t = 0.5s  gave a reasonable result. The resultant admissible 

and achievable speed is further used as the search space for 

generalized velocity obstacle (GVO), which filters out any 

velocity that may result in a collision with moving obstacles. In 

our implementation, the simulated moving obstacles 

(pedestrian avatars) each have a radius of 𝑟𝐵 = 0.33m . The 

wheelchair radius is considered as the maximum length on the 

wheelchair edge from its centre of mass, which is 𝑟𝐴 = 0.6m in 

our case. Additionally, we assign a safety margin 𝑟𝑠𝑎𝑓𝑒 =

0.15𝑚. As a result, the final candidate velocity 𝑢 should satisfy: 

 

‖𝐴(𝑡𝑚𝑖𝑛 , 𝑢) − 𝐵𝑖(𝑡𝑚𝑖𝑛)‖ > 𝑟𝐴 + 𝑟𝐵+𝑟𝑠𝑎𝑓𝑒 ( 9 ) 

 

After this pruning process, a cost function is used to evaluate 

each final candidate, in terms of heading, clearance and velocity. 

This cost is interpreted as the probability associated with each 

candidate velocity, which will be used in the shared control 

stage. 

 

In terms of the shared control blending strategy, PSC is 

served as our theoretical basis where we extend it to deal with 

moving obstacles. We make the following assumptions. 

 As no global planning is involved in the navigation, a 

local goal is defined as 2m ahead of the user’s intended 

trajectory (see next bullet point).  

 The user’s intended trajectory is only based on the 

current input at the most recent time step. This allows 

us to simplify 𝑝(𝑢𝑡+1
ℎ |𝑧1:𝑡

ℎ ) to 𝑝(𝑢𝑡+1
ℎ |𝑧𝑡

ℎ) 

 As a starting point of this research, obstacles are 

currently assumed to have linear motion, and their 

trajectories are only based on the measurements at the 

most recent time step. This allows us to reduce 𝑧1:𝑡
𝑐  to 

𝑧𝑡
𝑐. 

 The motion of the obstacles is assumed not to be 

affected by the robot, only a simple interaction 

function between the moving obstacles and the 

wheelchair has been modelled.   

 

Mathematically, the problem can be simplified to:      

                             

  𝑢𝑡+1
𝑃𝑆𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝑡+1

𝑅 𝑝(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 , 𝑢𝑡+1
𝑐 |𝑧𝑡

ℎ, 𝑧1:𝑡
𝑅 , 𝑧𝑡

𝑐) ( 10 ) 

     𝑝(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 , 𝑐)

=      𝜑(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 )𝑝(𝑢𝑡+1
ℎ |𝑧𝑡

ℎ)𝑝(𝑢𝑡+1
𝑅 , 𝑢𝑡+1

𝑐 |𝑧1:𝑡
𝑅 , 𝑧𝑡

𝑐) 
      ( 11 ) 

 

The agreeability between the user and the planner is modelled 

as: 

 

𝜑(𝑢𝑡+1
ℎ , 𝑢𝑡+1

𝑅 ) = 𝑒𝑥𝑝(−
1

2𝛾
(𝑢̂1+𝑡

ℎ − 𝑢̂1+𝑡
𝑅 )(𝑢̂1+𝑡

ℎ − 𝑢̂1+𝑡
𝑅 )′)( 12 ) 

 

where û1+t
h  and û1+t

R  are normalized user and robot trajectories 

(input). The parameter γ which has a range of γ > 0  models 

how strongly û1+t
h   and û1+t

R  are correlated. As a result, the 

agreeability φ  is between 0 and 1, with 1 being the path 

planner’s decision exactly the same as the user’s intended 

trajectory. Through trial and error, we set γ = 100  in our 

implementation to achieve an acceptable trade-off. 

 

In addition, the autonomy probability can be written as: 

 

𝑝(𝑢𝑡+1
𝑅 , 𝑢𝑡+1

𝑐 |𝑧1:𝑡
𝑅 , 𝑧𝑡

𝑐)

= 𝜑(𝑢𝑅 , 𝑢𝑐)𝑝(𝑢𝑡+1
𝑅 |𝑧1:𝑡

𝑅 ) ∏ 𝑝(𝑢𝑡+1
𝑐 |𝑧𝑡

𝑐)

𝑛𝑡

𝑖=1

          

                     ( 13 ) 

 

where 𝑛𝑡 is the number of moving obstacles been detected by 

the wheelchair onboard sensors at time t. 

 

Ideally, the most common scenario for robot navigation that 

involves moving obstacles is in a human-populated 

environment. As a result, it is important to consider pedestrian-

robot interaction by modelling the interaction function 

𝜑(𝑢𝑅, 𝑢𝑐). In this paper, we assume the pedetsrians’ short term 

motion is not affected by the robot, and model the interaction 

based on robot-pedestrian physical distance.  

 

φ(uR,uc)= ∏ (1-a* exp (-
1

2h
2 |ut+1

R -ut+1
ci |))

nt

i=0  ( 14 ) 

 

where |𝑢𝑡+1
𝑅 − 𝑢𝑡+1

𝑐𝑖 |  is the Euclidean distance between the 

robot and each moving obstacle; a is the repulsion force, which 

can be set between [0,1]; and h is a scaling parameter, which 

encodes  the idea of safety distance implicitly and is set to 0.9. 

The rationale behind this function is that a low probability is 

assigned to candidate robot actions which may result in short 

distance to all moving obstacles that are within the sensor range.    

𝑝(𝑢𝑡+1
𝑅 |𝑧1:𝑡

𝑅 )  models the motion planner’s trajectory 

distribution based on prior information. This can be considered 

as the cost that is associated with each candidate velocity pairs 

that comes from the motion planner. We model the cost function 

as  

 

𝐺(𝑣, 𝑤) = 𝛼 ∗ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤) + 𝛽 ∗ 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑣, 𝑤) + 𝛾 ∗
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝑤)     ( 15 ) 

 



where 𝛼, 𝛽, 𝛾 are weights for each term, ‘heading’ measures the 

alignment of the robot with the goal direction, ‘clearance’ 

represents the distance to the nearest static obstacle on the 

selected trajectory while ‘velocity’ equals to the normalized 

absolute linear candidate velocity. By tuning these parameters, 

different motion behaviours can be achieved by emphasizing 

the relative importance of these competing objectives. These 

parameters together with 𝛾, 𝑎 and h can be further tuned on a 

user basis in order to provide the most suitable assistance to the 

user. Intuitively, we want the wheelchair to run at fast speed if 

possible and keep certain distance to the obstacle so that the 

maneveror will not be too aggressive. As a result, in our test, we 

set 𝛼, 𝛽, 𝛾  to be 0.1,0.3,0.6 respectively which gives a 

reasonable behaviour through trial and error. 

 

 
Fig. 2. Flowchart of our collision avoidance and shared control algorithm. 

 

C. Implementation 

Before implementing our strategy on the actual wheelchair, 

we first implemented and validated it in a simulator which is 

built on Unity 3D.  

 

In order to achieve an accurate evaluation, all sensors (except 

the RGB-D camera) characteristics have been modelled in the 

simulator. Wheelchair dynamics were partly included in the 

Simulator by using Unity physics components. TABLE 1 shows 

some key parameters. The center of mass and moment of inertia 

for the wheelchair body (plus driver), two drive wheels and four 

caster wheels were calculated automatically from the built 3D 

models.  

 
TABLE 1. WHEELCHAIR PARAMETERS IN THE SIMULATOR 

Parameters Value 

Body mass 200kg (Wheelchair + a driver) 

Drive wheel mass 2.6kg 

Caster wheel mass 1kg 

Angular drag 0.05N 

Motor maximum torque 400Nm 

 

The strategy was implemented as if all inputs were from 

actual sensors, which requires minimum modification for it to be 

transferred to a real-world test. The control strategy was 

implemented in a ROS framework and the communication 

between the simulator and ROS is achieved by RosSharp as 

illustrated in Fig. 3. 

 

To begin with, simple sensor fusion is achieved by 

implementing an extended Kalman filter in the 

“robot_localization” package, which takes input from two wheel 

encoders and the IMU to publish an accurate odometry at 20hz. 

In terms of perception, 12 ultrasonic sensors and one Lidar 

senses the surrounding environment, and are used to construct a 

global occupancy grid map which is published at 10hz. In our 

implementation, the map has a size of 40m x 40m with a 

resolution of 0.05m. It is centred at a fixed frame to reduce the 

computational cost. 

 

Our control strategy takes input from the occupancy grid and 

implements DWA for static obstacle avoidance. Resultant 

admissible velocities are used as the search space for the GVO 

which receives information of the dynamic obstacles from Unity. 

In the future, this information would be provided by a pedestrian 

tracker that utilizes the RGB-D camera and Lidar data.  

 
Fig. 3. Structure of the proposed design strategy and its communication with 

Unity3D 

 

The output from GVO is blended with the user input (which 

is received from a keyboard) using probabilistic shared control. 

The final velocity command is published at a rate of 10hz and is 

subscribed by two differential drive PID controllers running at 

50hz, which calculates suitable motor torque for two drive 

wheels so as to achieve desired linear and angular velocity.  

IV. SIMULATION 

A. Simulation Setup 

To evaluate the validity and performance of our proposed 

strategy, we designed an H-shaped course populated with 

moving pedestrians. The course was designed to simulate daily 

wheelchair usage, taking into consideration typical manoeuvres 

from the Wheelchair Skills Test (WST) [13], specifically we 

chose three of the most used skills, detailed in TABLE 2. 
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TABLE 2.  WHEELCHAIR SKILLS THAT HAVE BEEN TESTED 

Number Skills from WST 

1 Roll forwards  

2 Turns while moving forwards (90°) 

3 Avoids moving obstacle 

 

Three pedestrian agents were used in our test. These were 

programmed to move in a simple manner – moving straight in 

the direction of their original heading. Pedestrians were placed 

at three corners of the maze with each instructed to move in a 

different direction at a mean speed of 1.1m/s, this simulates an 

average human daily walking speed [14]. The initial positions 

and walking directions were designed to maximize the potential 

interaction opportunity with the wheelchair. The wheelchair 

started from the origin (shown in Fig. 4 with a blue star) with a 

goal of reaching the upper left corner of the H shaped course 

(shown in Fig. 4 with a red star). The left and right passage of 

the course has a length of 19m and a width of 3m while the mid 

passage was 8m long and 3m wide.  

 

During the navigation, all sensor data were published to 

ROS and a ‘global’ occupancy grid map constructed which was 

fixed at the origin to reduce the computational cost.  

 

 

Fig. 4. Left: Screenshot of the simulation (top view) where blue star shows the 

wheelchair’s starting point and the red star represents the goal. Right: First 
person view 

 

B. Metrics 

Three metrics were used to evaluate the safety and 

assistance for the proposed shared control navigation design. 

These are defined as: 

 C: Number of collisions (with wall or pedestrians) 

This metric is just the count of collisions that occurred 

in the scenario and was reported by the simulator. 

 

 𝑇𝑡: Task completion time (the time that user required 

to reach the goal position from the starting position) 

𝑡𝑐 = 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡   ( 16 ) 

 

 A: Agreement. We define agreement in terms of the 

deviation of the direction of the user’s command from 

the direction of the final shared control’s command. 

Mathematically, it is calculated as: 

𝜃(𝑢) = 𝑡𝑎𝑛−1(
𝑣

𝑤
)   ( 17 ) 

𝑎𝑖 = 1 −
|𝜃(𝑧ℎ

𝑖 )⊖𝜃(𝑢𝑆𝐶
𝑖 )|

𝜋
  ( 18 ) 

𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  
∑ 𝑎𝑖∙∆𝑡𝑖

𝑁
𝑖=0

∑ ∆𝑡𝑖
𝑁
𝑖=0

  ( 19 ) 

 

where 𝑣  and 𝑤  are the translational and rotational 

velocities  𝑢~[𝑣 𝑤 ], 𝑎𝑖 is the normalised agreement 

at time step 𝑡𝑖  and  𝑢𝑆𝐶
𝑖  is the final output of the 

probabilistic shared control. N is the number of 

samples available in which data from the user 

measured input 𝑧ℎ
𝑖  coincide in time with 𝑢𝑆𝐶

𝑖  , and ∆𝑡𝑖 

is the duration of the user’s input command 𝑧ℎ
𝑖 . 

 

C. Results 

Three healthy participants whom are non-wheelchair users 

were recruited and participated in driving the wheelchair in the 

simulator. Two had a background in robotics or computer 

science while 1 participant has an unrelated background. 

Participants were allowed to perform some trial runs to 

familiarize themselves with the setup before the actual test. In 

total, three test trials were conducted where each user drove the 

wheelchair using keyboard arrow keys (to simulate a head-array 

interface).  

 

Fig. 5 to Fig. 9 show the results for one trial from one 

participant (note for these figures, we use a right-hand 

coordinate frame which means the x-axis is the vertical one and 

the y-axis is the horizontal one). As shown in Fig. 5 and Fig. 6, 

the final blended velocity command followed the user’s input 

most of the time, except for when there was a collision risk. In 

detail, the chosen linear velocity at t=11-16s and t=36-38s, 

angular velocity at 10-15s and 35-37s are largely different from 

the user’s intended velocity. This is also reflected in Fig. 8 

which describes the agreement between the user and the final 

chosen command. Fig. 9 shows the avoidance trajectory for the 

wheelchair (plotted in black circles) and the trajectories for 

three moving pedestrians (plotted in red). The largest 

disagreements between the user input and the final chosen 

command are highlighted in Fig. 8 by orange stars.  

 

It can be seen that at t=10-16s, the wheelchair detected two 

moving pedestrians in proximity while the user’s input indicates 

that the user would like to keep moving forward at the 

maximum speed. Under this scenario, the control strategy 

filtered out candidate velocities that may result in collision and 

found the one that guaranteed safety while best obeying the 

user’s intention. As a result, the wheelchair decreased its linear 

velocity and made a right turn by choosing negative angular 

velocities. Afterwards, it stopped for a short time and then 

moved in the user-intended direction. 

  

Similarly, at t=35-39s, the wheelchair encountered a 

pedestrian whom moved across. At about t=35-39s, the user 

kept trying to move straight forward while the controller 

decided to make a small right turn to avoid future collisions. It 

then made a big right turn following the user’s command. 

 
 TABLE 3 provides the test results for each participant. It can 
be seen that overall the agreement is high for all three 
participants and no collision occcured. For Participants 3, a 



slightly longer completion time was observed which could be 
explained by their unfamiliarity with such system. 

 

 

Fig. 5.  Linear Velocity 

 

 

Fig. 6. Angular Velocity 

 

 
Fig. 7. Wheelchair orientation 

 

 

Fig. 8. Agreement between the user's input and the final chosen command 

  

Fig. 9. Wheelchair avoidance trajectory, where the wheelchair detects two 

pedestrians at L1 and one pedestrian at L2, and make certain motion adaption. 
The transparency represents the time (alpha from 0-100 corresponds to the time 

from 0 to 75s). The red arrows represent the moving direction of each pedestrian 

and the green arrows represent the orientation of the wheelchair). 

 
TABLE 3. TESTING RESULTS FOR THREE PARTICIPANTS 

Participant  C 𝑻𝒕(s) A 

1 0 45.15 0.9777 

2 0 46.47 0.9469 

3  0 50.25 0.9882 

 

 In general, we can see that the final command chosen by the 
controller generated safe and reasonable motions, which allows 
the wheelchair to avoid static and moving obstacles while 
following the user’s intention. The parameters were chosen in a 
way that favours high speed while guarantees a safety distance.  

D. Comparison 

We further evaluated our approach (we will call it GVDWA) 

by comparing it with related works, namely PSC with naive 

DWA which was originally implemented by Ezeh et al. [4], and 

PSC with DWA which takes obstacle velocity into account (we 

will call it VDWA)[10]. For a valid comparison, we used the 

same parameters as had been used for our method GVDWA for 

the cost function in all three methods. 

 

In order to examine its performance in different human 

density environments, we designed three scenarios as shown in 

Fig.  10. For each scenario, one user drove the wheelchair three 

times with each control method, and the performance was 

evaluated in terms of average number of collisions (C), average 

computation time (𝑇𝑐) ,average agreement (A) and average task 

completion time (𝑇𝑡 ). TABLE 4 provides a summary of the 

result. 

 

It can be seen that in general GVDWA+PSC exceeds other 

methods in terms of reducing the number of collisions, while its 

computation time, agreement and task completion time are 

comparable with PSC+naive DWA. Of the three methods, 

PSC+naive DWA has the highest number of collisions, which is 

to be expected as it treats moving obstacles as stati and may 

result in moving towards the direction of the obstacle. For S1, 

we further tested the capability of naive DWA+PSC and only 

L2 

L1 



observed collision free avoidance when the speed of the avatar 

was decreased to 0.5m/s.  

 

When obstacles’ velocity information is incorporated in 

DWA, the number of collisions was reduced at the cost of 

increased computation time. Of the three methods, our proposed 

method GVDWA and VDWA both predict moving obstacle 

positions over a  short time horizon based on theirvelocity, where 

VDWA+PSC shows the longest computational time due to the 

use of a dynamic occupancy map.  

 

In terms of agreement, all three methods result in agreement 

greater than 0.9, while naive DWA+PSC shows a slightly higher 

value. This can be explained because in some situations, this 

method moves towards the user’s desired direction despite future 

collision danger with moving obstacles. Although 

GVDWA+PSC has slightly lower agreement, the deviation 

normally occurs when there is a risk of collision. Fig.  11 shows 

the avoidance trajectory with its corresponding velocity for 

GVO+DWA+PSC in H_maze with 6 people. Two obvious 

avoidance can be seen in the two orange star. 

 

As for the task completion time, GVDWA+PSC has the 

value between VDWA+PSC and DWA+PSC. This result is 

consistents with the computational time and the agreement, and 

can be explained as the wheelchair deviated from the user’s 

desired path (potentially the shortest) to avoid obstacles, which 

took longer time.  

 
TABLE 4. COMPARISON RESULTS SUMMARY(Mean±SD) 

 
 

 

S1 S2 S3 

   
Fig.  10. Three test scenarios. S1 has one pedestrian moving towards the 
wheelchair, S2 has three pedestrians moving in different directions in the H 

maze while the number of pedestrians was increased to six in S3. All pedestrians 

move at an average speed of 1.1m/s 

 

 
Fig.  11. Avoidance trajectory of the wheelchair in S3 for using our method. 

Black circle represents the trajectory of the wheelchair and the green arrows 

represent its orientation (starting from bottom right and move towards top left). 

Circles with other colors shows the trajectory of different pedestrians when in 

close proximity with the wheelchair. The wheelchair successfully avoided all 

pedestrians, and the main avoidance points are shown in orange stars.  

 

E. Discussion 

The simulation result indicates the validity of our design, 

which can be seen as a first step towards enabling a shared-

controlled wheelchair to navigate in a dynamic environment. 

Due to the simulator setup and the implementation method, 

minimum code modification is needed to transfer this approach 

onto the actual wheelchair. In the future, the test will be carried 

out in the physical world, where information about the dynamic 

obstacles will be provided by a people tracker.  

However, we would like to point out some limitations of our 

design and how we intend to address them: 

 

1) Computational cost 

The Dynamic window approach is computationally 

expensive. In order to reduce computational time and still allow 

the design loop to be executed in real-time, we have limited the 

velocity search space to those that generate trajectories that fall 

within [-90,90] degrees of the user’s intended trajectory. For 

example, if the user’s intention is going forward, the planner 

will only search for the candidate with 𝑣 ≥ 0 . This 

simplification also takes the user’s comfort into consideration, 

as the user may feel uncomfortable if the wheelchair drives in 

the opposite direction to the way as he or she intended.  

 

In our implementation, we set the horizon for DWA and 

GVO to be 4s. It allows real-time implementation at a frequency 

of 10hz on a 2.6GHz Intel Core i7-9750H CPU. However, we 

expect the computational time to increase when more 

pedestrians are involved and the crowd density increases.   

 

2) Latency 

We observed that there is about a 0.25s latency in the system. 

This is mainly due to the motor latency and the communication 

delay between ROS and Unity. In order to reduce its effect on 

the system, when performing the dynamic window search, we 

assumed the wheelchair keeps moving with its current velocity 



for two time intervals, and the search starts with the new 

wheelchair position. 

 

3) Morphology 

One main limitation for GVO is that it assumes both the 

wheelchair and the pedestrians are circular objects. This poor 

representation of the morphology of the wheelchair may lead to 

over-cautious behaviour when close to other dynamic obstacles. 

We would like to address this problem in the future. 

 

4) Simplified obstacles and interaction function 

As mentioned in Section III, we assume the obstacles’ next 

movement is only based on its current trajectory measurement. 

This may not be true when this “obstacle” is a human. In 

addition, we use a simplified function to model the interaction 

between the obstacles (human) and the wheelchair which is 

similar to a cost function that favours velocity which could 

result in exaggerated clearance. In reality, pedestrians may 

adapt their trajectory to avoid the robot. Recently, a line of 

research focuses on investigating human-robot interaction for 

social navigation using either a modelling [15] or learning [16]–

[18] approach. However, to the best of our knowledge, these 

have not been implemented on a shared-controlled wheelchair 

as the interaction becomes more complex when a human user is 

involved.  

 

In the future, we would like to follow this line of research 

and investigate real-world interactions to better understand this 

problem. 

 

V. CONCLUSION 

In this paper, we presented a hierarchical design for solving 

a shared controlled navigation problem in an environment 

populated with static and dynamic obstacles. We extend the 

PSC implementation to account for the probability distribution 

of dynamic obstacles and their influence on robot navigation. 

The shared control is achieved by maximizing the joint 

probability between the user, the path planner and the 

surrounding obstacles. The performance of our method 

GVDWA  has been evaluated in different simulated scenarios 

and showed the least number of collisions while obtaining 

relatively low computational cost and high user agreement 

when comparing with other approaches.  
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