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Abstract—The paper proposes to employ deep convolutional
neural networks (CNNs) to classify noncoding RNA (ncRNA)
sequences. To this end, we first propose an efficient approach
to convert the RNA sequences into images characterizing their
base-pairing probability. As a result, classifying RNA sequences
is converted to an image classification problem that can be
efficiently solved by available CNN-based classification models.
The paper also considers the folding potential of the ncRNAs
in addition to their primary sequence. Based on the proposed
approach, a benchmark image classification dataset is generated
from the RFAM database of ncRNA sequences. In addition, three
classical CNN models have been implemented and compared
to demonstrate the superior performance and efficiency of the
proposed approach. Extensive experimental results show the
great potential of using deep learning approaches for RNA
classification.

Index Terms—RNA classification, convolutional neural net-
works, image classification.

I. INTRODUCTION

In 2007, with the development of high-throughput sequenc-
ing, a large amount of new RNA were discovered [5]. Many of
these RNA were found not to be involved in protein creation
and are thus called noncoding RNA (ncRNA). Noncoding
RNA plays many important roles in cell processes [26].
For example, microRNA (miRNA) performs posttransciptional
regulation of gene expression, while long noncoding RNAs can
regulate epigenetic modification and gene expression [26]]. The
classification of ncRNAs seeds to categorize ncRNA elements
into families based on their sequence and structure to facilitate
their functional annotation and prediction [26].

The molecular function of ncRNA is implemented through
both of its sequence and structure [S]]. Classification of ncR-
NAs purely using their sequences is insufficient, as ncRNAs
with conserved secondary structures may share low sequence
identitiy due to the presence of covariant mutations. Therefore,
modern methods for ncRNA clustering use both the primary
sequence and secondary structure features [[19]. However, the
consideration of the secondary structure increases the time
complexity for pairwise ncRNA comparison, from O(I?) with
pure sequence to O(I*) with both sequence and secondary
structure. The high time complexity thus makes clustering
of large amount of ncRNA elements infeasible. To address
this issue, we turn to machine learning approaches, whose
classification phase is very efficient when the model is trained.

In this paper, we propose a new approach to general RNA
family classification using image processing techniques. For a
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Fig. 1: Top: an example of interior loop of an RNA sequence.
Bottom: Corresponding dot-plot matrix of the sequence.

given ncRNA element, we computed its base-pairing probabil-
ity matrix (BPPM) using RNAfold from the Vienna Package.
We then convert the BPPM into an gray-scale image, using the
intensity of each pixel to represent the base-pairing probability
of the corresponding bases. We then apply three different deep
CNN algorithms (VGGNet-19, ResNet-50, and ResNet-101) to
classify these images. We tested our approach using the RFAM
database [7], and showed an 85% classification accuracy.
The main contribution of this paper include:

1) We propose, for the first time, to convert the problem of
RNA sequence classification into an image classification
problem.

2) We propose an efficient approach to convert two RNA
sequences into an image and generate an image dataset
for RNA sequences from the same and different families.

3) We implement three classical deep learning-based classi-
fication models and compare their performance in RNA
classification. The results demonstrate the feasibility of
the advantages of the proposed approach.

The rest of this paper is organized as below. Section
IT reviews some related work on RNA analysis and image
classification. Section III presents the approach and process
to generate the image dataset from RNAs. The implemented
CNN models and experimental results are presented in Sec-



tions IV and V, respectively. Finally, the paper is concluded
in Section VI.

II. RELATED WORK

Analyzing RNA by secondary structure: There are several
methods that are used for classifying RNA by its secondary
structure. Some utilize context-free grammars, often paired
with hidden Markov models, such as QRNA[LS]. Many will
use secondary structure comparisons based on minimum free
energy model like RNAfold [6] and Mfold [27]], by predicting
the conserved structure of RNA based on its thermodynamic
stability [22], or with a folding algorithm like Sankoff-style
simultaneous alignment and folding algorithm [17] used by
CARNA [20]. Several approaches comparing graph represen-
tations of the secondary structure such as GraphClust [3] and
[8]]. Lastly, by combining sequence alignment techniques with
a partition function, like the McCaskill Partition function [12]],
to compare the primary and secondary structures at the same
time, such as LocaRNA-P [23] and DotAligner [19]. Before
LocaRNA, classifiers struggled to accurately analyze ncRNA.
DotAligner uses both the primary sequence and secondary
structure to discover sequence motifs in IncRNAs [19]. DotAl-
igner first aligns the sequence, then applies a partition function
to calculate the most likely secondary structures, and then
maps the alignment to the predicted secondary structure to find
sequence motifs to make predictions on RNA clusters, catch-
ing classifications that just a sequence comparison approach
would miss. In this study, we propose to solve this from a new
perspective of image classification using deep neural networks.
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Fig. 2: Four dot-plot examples of RNA secondary struc-
ture RFAM families a) 5S rRNA, b) C0719, ¢) snR63, d)
S_pombe_snR42

Image classification and CNNs Recently, researchers have
applied CNNs to many different fields of applications, in-
cluding image classification [2], translation [24]], object de-
tection [11], depth estimation [4]], crowd counting [16], and
medical image analysis [13]. AlexNet applied CNNs to image
classification and won the ILSVRC-2012 competition with
a top-5 error rate of 15.3% [9]]. GooglLeNet introduced the
inception module which employs 3 x 3 and 5 x 5 convolution
masks followed be 1 x 1 convolution masks for dimensionality
reduction and reduce the total number of parameters required
to be trained by the network [21]. VGGNet showed how larger
convolutional filters could be implemented more efficiently as
stacked 3 x 3 convolutional filters, and achieved the first place
in localization and the second in classification at ImageNet
Challenge 2014 with a top-5 error rate of 7.3% [18]. ResNet
introduced the residual mappings to CNNs which allowed
training much deeper networks without overfitting, achieving
the first in ILSVRC 2015 classification task with a top-5
error rate of 6.71% [3]. After ResNet created significantly
deeper networks, wide residual networks showed that similar
results could be achieved by greatly increasing the number of
parameters in a shallow network and utilizing dropout layers
[25]. Because of their success in image classification and
popularity in deep learning, we chose to use both VGGNet
and ResNet deep learning models for RNA classification.

Very few study has been performed for RNA classification.
CNNclust [1]] utilized one-dimensional CNNs for ncRNA
sequence motif discovery. Similar to DotAligner, CNNclust
used both the sequence and the secondary structure to more
accurately find sequence motifs and then use those to make
accurate classifications. However, CNNclust utilized one-
dimensional convolutions over the primary sequence and base-
pair probability as opposed to using partition functions like Lo-
caRNA and DotAligner. Instead of applying one-dimensional
convolutions, we convert the secondary structure into an image
so we can take advantage of image classification CNNs. These
CNNs employ stacked layers of convolutional filters to extract
the feature maps, then analyze these features with a fully-
connected network to classify the image.

III. DATASET GENERATION

The dot-plot matrix is generated by letting any cell (4, 7)
represent the probability that a bond exists between the ith and
jth nucleic acid in the RNA secondary structure (excluding
bonds amongst neighboring nucleic acids). Generating a dot-
plot matrix from the secondary structure gives a matrix that is
symmetric along the diagonal, as shown in Fig. 1. The dot-plot
matrix is then converted into an image by treating each cell
as a pixel where the probability of a bond forming is treated
as an intensity between 0 and 1, as illustrated in Fig. 2. This
process creates a grey-scale, symmetric image representation
of the secondary structure of any given RNA.

One important research in RNA classification is to deter-
mine two RAN sequences are from the “same family” or
“different family”. To solve this problem, we need to build
a network with two inputs for the two RNA sequences, which



is practically hard to implement and train the network since
there are numerous RNA sequences. In this study, we propose
to convert the problem into an image classification problem.
As illustrated in Fig. 3, we make use of the symmetric property
of the dot-plot of each sequence and generate one single
image from the two sequences, with the top-right half from
sequence 1 and the lower-left half from sequence 2. Some
generated examples are shown in Fig. 4. In this way, the
problem is converted to determining if the generated belongs to
the category of “same family” or “different family”. Therefore,
we can make use of all available image classification models
from RNA classification. We can also see from Fig. 4 that the
images from the same family have better symmetric property
than those from different families, however, the differences are
very small. The models are trained to distinguish these small
changes.
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Fig. 3: Combine two dot-plot matrices into one image for
classification.

[¢ d

Fig. 4: Sample images from two RNA sequences. (a) and (b)
are examples of two RNAs from the same family; (c) and (d)
are example of RNA from different families.

To train and evaluate each deep learning model, a large
dataset is required. In this paper, we select all RNA families
from the RFAM database that had a sequence length between
200 and 260 for the convenience of study. We resize the dot-
plots of all sequences to 224 x 224 so as to combine each pair
of them into an image. There were 168 families in this range.
If we create the dataset exhaustively to cover all possible RNA
combinations, the resulting dataset will have over 17 million
images, which is not necessary for model training as there
are a lot of redundant information in the dataset. The largest
family size in this set was 712 while many of the families
only had 2. In order to further reduce the dataset and balance
the varying family sizes, each family larger than 30 RNA was
truncated to 30. The 30 RNA picked from each family were
chosen randomly. This reduced the total number of images to
slightly greater than 2.5 million. The 168 families were split
into the train/val/test set at a ratio of 70:10:20, resulting in a
family split of 121/19/28, as shown in Table 1.

Set # of Families | Class Image Count
Train | 121 ls)eil?fl;ent ;gos,i(z)o

va |19 it | 65,882

Test | 28 ls)einf]f]eerent ?’7582,202

TABLE I: Final image count of the dataset before the iterative
random image selection algorithm was applied.

In table I, we have generated the images using all possible
combinations of the RNA sequences except for the training
data of different families. With 121 families in the training set,
we can generate over 2.4 million training images for sequences
from different families is we use all possible combinations
of RNAs. However, in our experiments, we found that the
models converged quickly without using all the training data.
To increase the representativeness and reduce the size of the
training data, we adopt the following approach to create the
training images of different families. First, we randomly select
an RNA from each family. Then, we randomly pick an RNA
from every other family and combine them together to generate
a training image of different families. We repeat this process
20 times and generate a total of 290,400 different family
images of the final training set.

IV. CLASSIFICATION MODELS

Convolutional neural networks (CNN) contain two parts, a
feature extractor and a fully-connected network. The feature
extractor is composed of convolutional layers mixed with
activation and pooling layers. The convolutional layers, serv-
ing as feature extractors, are each followed by an activation
layer, typically ReLU activation, to allow for the extraction of
nonlinear features [10]. The pooling layers, which typically
come at the end of the convolutional layers, or at the end
of a block of convolutional layers depending on the model



design, reduce the spatial resolution of the feature maps,
making the model more robust to input distortions [14]]. The
fully-connected network is a densely connected network that
interprets the feature representations extracted by the feature
network.

In the experiment, two classical CNN-based classification
models were implemented: VGGNet [[18] and ResNet [3].
VGGNet was showed how larger convolution filters could be
implemented more efficiently using stacked 3x3 convolutions.
It achieved first in the ImageNet Challenge 2014 localization
task and second in the classification task with VGGNet-19
scoring 7.5% top-5 error rate. We selected the largest VGGNet
model, VGGNet-19, a network with 16 convolution layers and
3 fully-connected layers, because it has the best performance
of all the VGGNet networks.

ResNet [3]] is an improvement on the VGGNet [[L8] based
scheme. ResNet introduced the concept of residual mapping in
the deep learning field. Convolutional Neural networks attempt
to approximate a function, but as the network gets deeper
they can become increasingly hard to train. By inserting these
residual maps throughout the network, ResNet was able to
achieve significantly deeper networks than its predecessors.
Two ResNet models were picked, ResNet-50 ResNet-101.
ResNet achieved first in the ImageNet 2015 classification task
with ResNet-50 and ResNet-101 scoring 5.25% and 4.60%
top-5 error rate respectively. ResNet also achieved first in the
ImageNet 2015 detection and localization tasks.

V. EXPERIMENTAL ANALYSIS

In the experiments, we compared the performance of three
models: VGGNet-19, ResNet-50, and ResNet-101. All models
employ the SGD optimizer with a momentum factor of 0.9.
The initial learning rates of ResNet and VGGNet-19 are set at
0.01 and 0.005, respectively, and the learning rates are reduced
by a factor of 0.25 every 50 iterations. The batch size is set at
320. At each iteration, the model is trained on 320 images,
selected randomly from the training dataset. Each training
iteration took 18 seconds (all training was done on an nvidia
k40 GPU). The models are validated every 50th iteration
on the entire validation set. Each validation epoch took 15
minutes. Training for each model took approximately six
hours. Both ResNet models were trained for 600 iterations, and
VGGNet-19 was trained for 700 iterations. After training, we
choose the model with the best performance on the validation
set. Then, we evaluate their performance using the average
class accuracy on the test set.

As shown in Table I, the two classes of the dataset are highly
imbalanced. The size of different-family images is much larger
than that of the same family. In order to reduce the influence
of the class imbalance in the training set, we choose different
class ratios at the training stage. We choose three Different-
same ratios: 1:1, 2:1, and 4:1, as shown in Table II. At the ratio
of 1:1, for the batch of 320 training images at each iteration,
we randomly select the same number of images from the two
classes. However, at the ratio of 4:1, we randomly selected
256 and 64 images from the classes of different-family and

Accuracy
Model VGG-19 | ResNet-50 | ResNet-101
Diff-Same Ratio: 1-1
Train 92.3% 94.7% 96.9%
Val 78.2% 78.8% 80.0%
Diff 80.0% 83.0% 84.0%
Test | Same | 85.0% 82.0% 83.5%
Avg 82.5% 82.5% 83.5%
Diff-Same Ratio: 2-1
Train 91.9% 92.8% 96.6%
Val 79.2% 81.5% 80.8%
Diff 84.0% 86.0% 86.0%
Test | Same | 84.0% 84.0% 83.0%
Avg 84.0% 85.0% 84.5%
Diff-Same Ratio: 4-1
Train 90.0% 95.6% 95.6%
Val 77.5% 80.5% 80.0%
Diff 87.0% 89.0% 90.0%
Test | Same | 78.0% 81.0% 80.0%
Avg 82.5% 85.0% 85.0%

TABLE II: Comparative results of different models trained on
different dataset ratios.

same-family respectively so as to ensure more different-family
images are involved in the training process. The different ratios
only apply to the training, while for validation and test, we
always use the same ratio in our experiments.

The comparative results can be found in Table II. Both
ResNet models achieved a similar average class accuracy,
84.5% and 85% for ResNet-50 and ResNet-101 respectively.
The VGGNet-19 model performed slightly worse with a
top accuracy of 83%. As evidenced in the results, a higher
Diff:Same ratio resulted in the model improving its accuracy
on the different classes while decreasing its performance on
the same class. It is difficult to directly compare our network
to other approaches because of the differences in datasets. The
closest approach in the literature is the most recent CNNclust
[L], which employs one-dimensional convolutions on the pri-
mary and secondary sequences to look for common patterns
in both. CNNclust only achieved 75.2% clustering accuracy
when tested on ncRNA families not from the training set [1].
We are able to achieve better performance by utilizing two-
dimensional convolutions on just the secondary structure. Once
the models are trained, the models can process around 80 RNA
comparisons per second. However, traditional approaches are
very time-consuming since they have to perform pairwise
alignment on their base-pairing probability matrices, which
has a time complexity of O(I*) while [ is the lengths of the
ncRNA sequences.

This study demonstrates the potential of applying CNN-
based image classification models to RNA classification. In
order to further improve these results, a few measures can be
taken. One approach is to increase the dataset to include more
RNA families by removing the limitations on sequence length.



The distortion caused by increasing the disparity in sequence
length may lower the accuracy. However, RNA sequence
length amongst families does not vary much so it is more likely
that the CNN’s feature network recognizes this distortion
as a strong indicator of different classes. Another possible
measure is applying a clustering algorithm to the classification
results. These clusters can be determined by groups of RNA
with a high percentage of same-family classifications amongst
themselves. Clustering would also give more meaningful data
to tune the hyper-parameters. We can also adopt a better
approach to handle the imbalance issue of the dataset. As
shown in Table II, when we choose 4-1 Diff:Same ratio, the
test accuracy for different families is close to 90%, which
means there are still rooms to further increase the performance
of the CNN models.

VI. CONCLUSION

In this work, we have presented a new approach for
classifying RNA based on their secondary structure through
image classification. By treating the BPPM representation
of the secondary structure as an image, our approach takes
advantage of the high speed and powerful feature extraction
capabilities of CNNs. We have demonstrated this approach to
be a promising way to advance RNA analysis by providing
a tool for more accurate and faster RNA classification. The
developed dataset can be taken as a benchmark set for any
learning-based research on RNA classification. Since the im-
ages generated from RNA sequences have a special property
that is significantly different from the natural images, we are
currently working on developing new deep learning models
that can exploit this property more effectively.
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