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Abstract—This paper presents a “Learning from Demonstra-
tion” method to perform robot movement trajectories that can be
defined as you go. This way unstructured tasks can be performed,
without the need to know exactly all the tasks and start and end
positions beforehand. The long-term goal is for children with
disabilities to be able to control a robot to manipulate toys in a
play environment, and for a helper to demonstrate the desired
trajectories as the play tasks change. A relatively inexpensive 3-
DOF haptic device made by Novint is used to perform tasks
where trajectories of the end-effector are demonstrated and
reproduced. Under the condition where the end-effector carries
different loads, conventional control systems possess the potential
issue that they cannot compensate for the load variation effect.
Adaptive tracking control can handle the above issue. Using the
Lyapunov stability theory, a set of update laws are derived to
give closed-loop stability with proper tracking performance.

Index Terms—Adaptive control, Curve fitting, Novint Falcon

I. INTRODUCTION

Children who have severe disabilities have difficulty playing
with toys because of limitations reaching out, holding, and
manipulating toys. Robots are a potential tool to provide
manipulation because children can control them with residual
functional abilities (i.e., switches, brain signals), but it is
important that play tasks can be changed quickly to keep a
child’s interest. For example, the pickup and drop-off locations
of a toy should be easily reprogrammed, and the type of toy
supported by the robot should be easily replaced. Instead of
reprogramming for every location and toy weight, a child’s
playmate could show the robot the new task requirements.

The problem of learning and imitating a task through
observation is inherently easy for humans, but a robot has
to be re-programmed to perform a different task [1]. Learning
from Demonstration (LfD), also known as imitation learning,
provides an intuitive way to readily teach new trajectories to
a robot. Instead of re-programming every new task, a task
is learned from demonstrations [2]. This means a person can
move the end-effector of the robot along the desired trajectory,
and the robot can learn that trajectory so that it can replay
it independently of the person. In this way, a child who
has a physical disability can instigate the robot trajectory
with whatever action they can (e.g., physical movement at a
control interface or a physiological signal) to manipulate toys
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independently with the robot. When they want to do a new
play task, a helper can demonstrate the new trajectory to the
robot.

As the haptic robot dynamics and the environment contain
various uncertainties and disturbances in practical applications,
one of the effective ways to deal with this difficulty is to apply
an adaptive control. In [3], [4] and [5] a model reference
adaptive control (MRAC) for a constrained manipulator is
applied to reduce model uncertainties. Since joint acceleration
is difficult to measure precisely, in [6] an adaptive impedance
controller is designed without requiring estimates of acceler-
ation.

For the purpose of having higher repeatability and accu-
racy, an adaptive control system is able to adjust parameters
related to the robot model when the end-effector load changes
frequently. In [7] a summary about ”MRAC” shows that
traditional controllers are not able to handle systems where
their dynamic model parameters varies with respect to time.

This paper aims to design a control algorithm to perform
demonstrated tasks online. This algorithm is better at handling
the significant non-linearities in the system and different
weight of toys that usually makes control and estimation tasks
for this class of robots difficult using classical methods [8].

II. EXPERIMENTAL SETUP

We implemented a low-cost device with the idea that a
system could potentially be used in homes. The Novint Falcon
haptic device has a mechanism with three rotational actuators
mounted to a base, and a series of kinematic parallelogram
legs to constrain the motion of the end-effector to only
translational movements. This form has proven itself as an
excellent platform for safe pick-and-place operations due to
the mechanism’s low actuated inertia when compared to serial
counterparts [9]. In [10] the Falcon’s workspace is defined
as a bounded tri-hemispherical region overlapping along the
common longitudinal (z) axis.

In order to obtain motion kinematics from the trajectories
performed as they are made, an interface shown in Fig. 1
between ROS and Matlab was developed. Through a USB
interface, connected to the Novint, one can send the actuation
commands and read encoders data via the interface. Although
Novint has released a closed-source SDK, for this research,
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Fig. 1. Communication diagram between a user and the Novint Falcon

in order to issue torque commands directly to the motor, the
open-source driver “libnifalcon” is employed. The received
encoder values are related to the angular positions (q1, q2, q3).
Using forward kinematics we can obtain the Cartesian points
of the end-effector.

In demonstration mode, a user performs end-effector move-
ments. Through the interface, we get points of the path
followed by the end-effector. These points, along with their
sampling time, are used to fit a curve by smoothing splines.
The obtained curve is derived by time to obtain the veloc-
ity and acceleration of the end-effector in Cartesian space.
The generated trajectory, along with their sampling time,
(q, q̇, q̈, ts) is stored for later use in reproduction mode with
different toys.

III. FALCON ROBOT MODEL

A. Kinematic Modelling
The manipulator kinematics consists of a mapping between

the joints angle and the end-effector Cartesian position. The
Novint Falcon has a unique solution for inverse kinematics,
however, the forward kinematic solution is not straightforward.
To overcome this issue, an iterative procedure based on the
Newton-Raphson method was employed. For the sake of
brevity, interested readers are referred to [11] for the detailed
information about the equations.

The inverse kinematics operation results in three joint an-
gles, θ1i, θ2i, θ3i, for each leg i, which can define a possible
configuration of each leg for the given position of the end-
effector. Finally, the differential kinematics is defined by

~̇q = J~̇x (1)

where ~̇q = [θ̇11, θ̇12, θ̇13] represents a set of actuated joint
angles, J is the Jacobian matrix and ~̇x is a 3-dimensional

velocity vector of the end-effector. It will be shown in up-
coming sections that the time differentiation of the Jacobian
matrix, J̇ , will be needed in some equations. As defined
in [11], the Jacobian matrix J is a function of θij , which
are functions of time. Consequently, J̇ will be a function
of θij and θ̇ij . It should be noted that θ̇ij is obtained by
numerical differentiation of θij , and this approach inherently
has estimation errors.

B. Dynamic Modelling

The dynamic system of the Novint Falcon is described in
detail in [10], where the experimental identification is made
using the open-source “libnifalcon”. The dynamic model is
described as

τ = cm

sin(φ1)sin(~q1 + ϕ)
sin(φ2)sin(~q2 + ϕ)
sin(φ3)sin(~q3 + ϕ)

 + cI(~̈q) + cssign(~̇q)

+ cd(~̇q) + (J)−T (m( ~ap + ~g) + Fext) (2)

where,
τ is the torque applied to the actuators;
cm, ci are constants related to the mass of the links;
m is a constant related to the mass of the end-effector;
cd is the viscous damping of the actuator;
cs is the dry friction coefficient of the actuator;
ϕ Is the offset angle of input link center of mass;
~ap is the acceleration of the end effector;
Fext is the external force applied to the end-effector.



In order to obtain ~ap, one can perform a differentiation with
respect to time of the differential kinematics equation (i.e., (1))
to obtain the equation

~̇ap = J−1q̈ − J−1J̇J−1q̇ (3)

C. Kinematic and Dynamic Parameters

The corresponding kinematic and dynamic parameters are
presented in Table I. It is important to clarify that the estimated
parameters in [10] are not in SI base units, since the torque
commands that are sent to the robot firmware are also not
defined in SI base units. However, it does not modify the
accuracy of the applied control algorithm.

TABLE I
ESTIMATED PARAMETERS OF THE NOVINT FALCON

Parameter Value

cm -192
cI 5.5
cd 33
cs 112
m 486
ϕ π

6
~φ [ 7π

12
, −pi

12
, −9pi

12
]T

~g [0, g, 0]T

IV. ADAPTIVE TRACKING CONTROL

A. Controller Structure

For control purposes, the dynamic model is expressed in
Cartesian coordinates based on (1), (2) and (3). We get

JT τ = Mx(q)ẍ+ Sx(q, q̇)ẋ+Dx(q̇) +Gx(q) + Fext (4)

Fig. 2. Adaptive tracking control scheme

where,

Mx(q) = JT cIJ + Im (5a)

Sx(q, q̇) = J tcI J̇ + JT cdJ (5b)

Dx(q̇) = JT cssign(q̇) (5c)

Gx(q) = JT cm < sin(~φ), sin(~q + ϕ) > +m~g (5d)

Inspired in [8] and [9], we define an error vector s = ė+ Λe,
where e = x − xd represents the unconstrained path-tracking
error, with xd ∈ R3 being the desired trajectory; and Λ =
diag(λ1, λ2, λ3) a diagonal positive definite matrix of tuning
parameters, with λi > 0. We get

ẋ = s+ ẋd − Λe (6)

If there is no robot-environment interaction (e.g., Fext = 0),
the dynamic model of the robot, defined in equation (4), is
rewritten as

JT τ = Mx(ṡ+ ẍd−Λė) +Sx(s+ ẋm−Λe) +Gx +Dx (7)

It should be noted that while grasping an object, the mass
of the end-effector will change. This implies that m is not
known and should be estimated, and to achieve that a matrix
Γ is defined as

Γ = Iγm (8)

where Γ ∈ R3x3 is a symmetric positive definite Matrix;
γ ∈ [0, 1] is a tuning parameter and m is the maximum value
that m can have.

B. Controller Design

The adaptive tracking control scheme, shown in Fig. 2, was
based on the concept of inverse dynamics (e.g., [5], [8]), and
is defined as

τ = JT [M̂x(ẍd−Λė) +Sx(ẋd−Λe) + Ĝx +Dx−Kds] (9)

where,

M̂x = JT cIJ + Γ̂,

Ĝx = JT cm < sin(~φ), sin(~q + ϕ) > +Γ~g (10)

represents the estimate of Mx, Gx respectively. The estimate of
γ is represented in Γ̂ by Γ = Imγ̂. Observe that by combining
(7) and (9) the following dynamical system is obtained:

Mxṡ+ (Mx − M̂x)[ẍd − Λė] + Sxs+ (G− Ĝ) +Kds = 0,

Mxṡ+ (Γ− Γ̂)[ẍd − Λė] + Sxs+ (Γ− Γ̂)~g +Kds = 0
(11)

where (Γ − Γ̂) = Imγ̃ and γ̃ = γ − γ̂. If we design and
appropriate update law such that Γ̂→ Γ, then (11) becomes

Mxṡ+ Sxs+Kds = 0 (12)

Now, in order to proceed with the stability analysis, the
following Lyapunov function is defined by

V (s, γ̃) =
1

2
sTMxs+

1

2
γ̃2k (13)

where k is a positive constant related to the adaptive law. Since
Mx is a positive definite matrix, V (s, γ̃) is, likewise, positive
definite. Additionally, notice that sTMss → ∞ as ‖s‖ → ∞
and γ̃2k → ∞ as ‖γ̃‖ → ∞, which proves that V (s, γ̃) is
radially bounded.

The time derivative of V (s, γ̃) along the system trajectory,
described in (13), can be computed as

V̇ (s, γ̃) = −sT γ̃[m(ẍd−Λė)]−sT [kd+JT cdJ ]s+kγ̃ ˙̃γ (14)



where γ̃ is replaced by −γ̂. Therefore, under the assumption,

˙̂γ = −1

k
[sT (m(ẍd) + ~g)] (15)

equation (14) becomes,

V̇ (s, γ̃) = −sT [kd + JT cdJ ]s (16)

Therefore (s, γ̂) are uniformly bounded and
V (s, γ)≤0 ∀(s, γ) ∈ R3×R1 with V̇ (s, γ) = 0⇔(s, γ) =
(03, 0). Hence, we can conclude that s ∈ L∞∩L2. From (11)
we conclude that ṡ is bounded; as a result, according to the
Barbarat’s lemma, the asymptotic convergence of s can easily
be proven. This further implies that the error e = x − xd
converges, which completes the proof.

V. PROCEDURE

The procedure was as follows:
- We performed a trajectory from the point (0.005; -0.052;
0.108) to the point (0; 0:05; 0:14) without supporting a toy.
The interface tracked this trajectory, and extracted information
such as position, velocity, etc.
- The controller had as input the demonstrated trajectory
information (velocity, position and acceleration), and followed
this trajectory. The parameters of the proposed adaptive track-
ing controller scheme (e.g., (9) and (15)) were selected as
Kd = 20I3, k = 500, γ̂0 = 0.5, where γ̂0 is the initial
parameter of γ̂.
- In the reproduction phase, after approximately 1.5 seconds
a toy was added to the end-effector of the robot, and taken
off at approximately 5 seconds. The controller estimated this
variation, and modified its internal parameters, and thus, the
use of an adaptive controller is supported.
- The error between the demonstrated trajectory (without a
load variation) and the reproduced trajectory (that supported
the load) was calculated. Finally, the parameter λ, which is
related to the end-effector load (as seen in equation (8)), was
estimated.

VI. RESULTS

The position and velocity vectors (~x(t), ~̇x(t)), where ~x(t)
was expressed as (x, y, z), related to the performed tasks, were
stored as a function of time as shown in Fig. 3.
Figure 4 shows the demonstrated and reproduced end-effector
trajectories in 3 dimensions. It is possible to observe that the
demonstrated trajectory is accurately reproduced by the end-
effector even when supporting the toy.

The time evolution of the error module ‖s‖ is shown in Fig.
5. It can be seen that the error increased slightly when the
toy is added (1.5 s) and removed (5 s) but settles to minimal
quickly. The time evolution of the parameter λ, increases and
decreases related to the end-effector load (i.e. the small toy),
as shown in Fig. 6.

Therefore, as can be seen in Fig. 4 and Fig. 5, the re-
produced trajectory follows the demonstrated path very well,
as well as the load variation is accurately estimated by the
adaptive controller, as shown in Fig. 6.

Fig. 3. Comparison between demonstrated (solid line) and reproduced (dotted
line) position and velocity of the end-effector in Cartesian x (left panel), y
(middle panel) and z (right panel) coordinates

Fig. 4. Cartesian 3D plot of the end-effector movement in the demonstrated
(solid line) and reproduced (dotted line) trajectories

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a robust Novint Falcon
controller that can adapt to different trajectories and payload
weights. In this way it can support spontaneous play tasks
and different toys for children with disabilities. The suitable
performance of the control scheme is supported by the stability
analysis in the Lyapunov sense.

For its practical implementation, a numerical differentiation
of variables (i.e. ~q, J) are required, which will inherently

Fig. 5. Time evolution of error module ‖s‖



Fig. 6. Time evolution of parameter λ

generate error in the controller’s performance, as can be seen
in Fig. 3, where the velocity is not tracked as well as the
position was. In order to avoid this issue, a set of gyroscopes,
which gives an accurate measurement of the angular velocities,
should be used by placing them on the actuator’s legs.

Future work will support inputs such as brain computer
interfaces and single switches so that the user can instigate
the reproduction of the trajectory independently. In addition,
we will develop an impedance adaptive controller to reproduce
smooth movements over a trajectory. After implementing these
steps, the system can be tried by children to enhance their play
experience and safety.
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