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Abstract—This paper presents a novel distributed proba-
bilistic framework based on movement primitives for flexible
robots assembly implementation. Since modern advanced in-
dustrial cell usually deals with various tasks that are not fixed
via-point trajectories but highly reconfigurable application
templates, the industrial robots used in these applications
must be capable of adapting and learning new skills on-
demand, without programming experts. Therefore, we propose
a probabilistic framework that could accommodate various
learning abilities trained with different movement-primitive
datasets, separately. Thanks to the fusion theory of the
Bayesian Committee Machine, this framework could infer new
adapting trajectories with weighted contributions of every
trained datasets. To verify the feasibility of our proposed imi-
tation learning framework, state-of-the-art movement learning
framework Task-parameterized GMM is compared from several
crucial aspects, such as generalization capability, accuracy
and robustness. Moreover. this framework is further tested on
the YUMI collaborative robot with a rivet picking assembly
scenario. Potential applications can be extended to more com-
plicated industrial assembly manufacturing or service robotic
applications.

Index Terms—Task-parameterised, Learning from demon-
stration, Distributed probabilistic framework, Bayesian Com-
mittee Machine, Assembly

I. Introduction
In modern advanced manufacturing, the industrial

robots are widely used in assembly tasks, such as peg-in-
hole [1], bolt screwing [2] and pick-and-place [3]. For flex-
ible manufacturing applications, industrial robots are re-
quired to perform several tasks with various end-effectors
regarding different assembly environments. Therefore
robots must generate various trajectories according to
different targets identified by machine vision, respectively.
Assistant measurement devices, i.e., machine vision system
and metrology [4], could provide a feasible target for the
robot controllers. Nevertheless, they can only be applied
in the certain region of interest, which more or less limits
the generalisation of retrieving novel trajectories.

Generally, the core idea of assembly is to generate or-
dered operations consisted of a set of movement primitives,
which bring individual components together to produce a
novel product. Similarly, an excellent operator does have

the prime skills in terms of performing assembly tasks,
which promotes a feasible scenario for robots to learn from
human demonstration.

The remainder of the paper is organised as follows:
Section II presents the related works. Section III outlines
the overall distributed probabilistic framework, including
human demonstration encoding and multiple movement
primitives learning. Section IV presents the comparison
between the task-parameterised GMM and our proposed
learning framework, along with an assembly task using
ABB YUMI robot in order to verify the application
feasibility. The conclusion is reported in Section V.

II. Related Works
In the context of learning from demonstration, sev-

eral algorithms, i.e., probabilistic movement primitives
(ProMP) [5] and dynamic movement primitives (DMP)
[6], have been proposed to generate desired trajecto-
ries regarding different modulations. Both ProMP and
DMP introduce various weight coefficients and factors
to describe basis functions and govern explicit dynamic
equations, separately. As a time-driven algorithm, the
weight parameters of the basis function are learned to-
wards an optimal function value without addressing high-
dimensional inputs.

In order to address high-dimensional issues and alleviate
specified trajectory equations, Gaussian Mixture Model
(GMM) [7] is applied to model several Gaussian distri-
butions of demonstrations probabilistically using the EM
algorithm. Combining with Gaussian Mixture Regression
(GMR) [8], the novel predicted trajectories are derived
from a weighted conditional Gaussian distribution. How-
ever, the capability of generating trajectories is limited
by the similarity (Euclidean distance in the covariance
function) [9] of the demonstration and the desired input.
A similar kernel-based framework, such as movement
primitives with multi-output Gaussian Process [10] and
Kernelised Movement Primitives [11] could be seen as the
variations of GMM/GMR, which take advantage of the
kernel function to retrieve more flexible trajectories.
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Although robots are usually supposed to generate feasi-
ble trajectories in a wide range of various circumstances,
human demonstrations could only provide limited sets
of learning instances. Therefore, in addition to above-
mentioned learning from demonstration (LfD) algorithms,
several modified versions have been proposed to add more
advanced properties in order to enhance the capability
of generating adapting trajectories. Based on ProMP, a
probabilistic human-robot interaction methodology is pro-
posed in [12] collaboration with an operator. Moreover, the
spring-damper dynamic behaviour regarding impedance
control is discussed in [13] which is derived from DMP.
A task-parameterised formulation extended from GMM
is presented in [14], which essentially models movement
behaviours with a set of task parameters, and therefore
improving generalisation capability.

III. Distributed Probabilistic Framework
We start Subsection III-A by introducing a Gaussian

process regression model that maps the Cartesian task
parameters to GMM parameters. Also, the proposed
framework for multiple movement-primitive datasets is
carefully addressed in Subsection III-B.

A. Task-parameterised model
The individual primitive model is encoded with GMM

clustering and GMR regression [7]. A graphic explanation
of encoding the human demonstrations is given in Fig. 1.
Therefore, the learned individual primitive model based
on several human demonstrations can be represented by
GMM parameters Θ = {πk,µk,Σk}Kk=1. Inspired by [14],
if a connection between the GMM parameters and the
task-specific feature is established, an individual primitive
model could generate more extensions.

In order to encode the relationship between the task
parameter Q and the GMM parameters Θ, we consider a
regression model based on Gaussian process

Θ = f(Q) + ω,ω ∼ N (0,Σω), (1)

with the Gaussian white noise ω and the variance Σω.
The regression model can be fully specified by mean

function mf (·) and semi-positive covariance function
kf (·, ·). Moreover, the kernel covariance is defined as

k(Qi, Qj) = σ2
f exp(−

1

2
(Qi −Qj)Λ

−1(Qi −Qj)
T )δij + σ2

ω,

(2)
with the length-scales Λ = diag (l21, ..., l

2
n), the signal

variance σ2
f , and the noise variance σ2

ω, which are defined
as the GP hyper-parameters θ = {li, σf , σω}.

Given desired task parameters Qd, the new GMM pa-
rameters derived from conditional probability of Gaussian
distribution are defined as

mf (Q
d) = kT

∗ (K + σ2
ωI)

−1y, (3)
kf (Q

d,Qd) = k∗∗ − kT
∗ (K + σ2

ωI)
−1k∗, (4)

where k∗ = k(Q,Qd) and k∗∗ = k(Qd,Qd).

(a) Initialisation. (b) Step 12. (c) Step 24.

(d) Step 36. (e) Step 48. (f) Regression.

Fig. 1. The graphic explanation of encoding human demonstrations.
In the initialisation step, seven Gaussian distribution models are
initialised with K-means. After 48 steps training with EM algorithm,
the expectation of GMM converges to predefined interval. Therefore,
the trajectory is hence retrieved using GMR as shown above.

In [14], the covariance kf (Q
d,Qd) of conditional prob-

ability is neglected and only the mean mf (Q
d) is used to

retrieve novel trajectories. As the hyper-parameters are
not optimised, the covariance may have a negative value.
In the proposed framework, The covariance kf (Q

d,Qd)
is seen as the crucial information that is utilised to
indicate the confidence interval in the data fusion. The
hyper-parameters of the Gaussian process model should
be optimised and therefore, the covariance could have a
meaningful value which indicates a positive connection
among different GMM parameters.

After choosing a flat p(θ), the posterior distribution is
only proportional to the marginal likelihood

p(Θ|Q) =

∫ ∫
p(Θ|Q, f,θ)p(f |θ)p(f |θ)p(θ)dfdθ,

=

∫
p(Θ|Q,θ)p(θ)dθ.

To optimise the vector of hyper-parameters θ, we follow
the recommendation from [15]. Particularly, the log-
marginal likelihood can be given as

log p(Θ|Q, f,θ) = log

∫
p(Θ|Q, f,θ)p(f |θ)df

= −1

2
ΘT (K+σ2

ωI)
−1Θ− 1

2
log |K+σ2

ωI|−
D

2
log(2π),

(5)

Therefore, the hyper-parameter is set by maximising the
marginal likelihood. Consequently, we define the partial
derivatives of the marginal likelihood w.r.t the hyper-
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Fig. 2. Twelve movement-primitive datasets and corresponding retrieved trajectories. Each dataset generated randomly has four movement
primitives. The task frame and origin frame contain the information of position and orientation shown in green and pink, respectively.

parameters θi [9]
∂

∂θi
log p(Θ|Q,θ) =

1

2
ΘTK−1

σ

∂K

∂θi
K−1

σ Θ−1

2
tr(K−1

σ

∂Kσ

θi
).

(6)
where Kσ = K + σ2

ωI. In the above equation, the two
terms usually refer to the data-fit term and the model
complexity. The gradient technique aims to seek the trade-
off between the data-fit and model complexity.
B. Distributed Learning

The obtained covariance kf (Q
d,Qd) of Gaussian dis-

tribution shows the confidence interval of the predictions,
which could be seen as the robustness of Gaussian process
regression. In this paper, the covariance of prediction is
used as a data fusion indicator.

Owing to independence assumption, the marginal like-
lihood could be factorised into several individual terms

p(Θ|Q, θ) =

M∏
k=1

pk(Θ
(k)|A(k), θ), (7)

where each factor term pk depends on the k-th individual
GP regression model as discussed in Subsection III-A.

The following information details how to combine M
individual primitive models to form an overall prediction
with the Bayesian Committee Machine (BCM) [16]. As we
can see, the BCM explicitly combines the GP prior p(f)
when making prediction.

Given M individual primitive models, the predictive
distribution can be generally defined by

p(f∗|D(1), ...,D(M)) ∝ p(D(1), ...,D(M)|f∗)p(f∗), (8)
with p(f∗) the prior over functions and D(k), k = 1, ...,M
the M dataset. Under BCM conditional independence
assumption, the predictive is rewritten as

p(f∗|D(1), ...,D(M)) ∝ p(f∗)
∏
k

p(D(k)|f∗), (9)

=

∏M
k=1 p(D(k), f∗)

pM−1(f∗)
(10)

∝
∏M

k=1 pk(f∗|D(k))

pM−1(f∗)
. (11)

Therefore, given a input x∗, the posterior predictive
distribution is defined as

p(f∗|x∗,D) =

∏M
k=1 pk(f∗|x∗,D(k))

pM−1(f∗)|x∗
, (12)

Then the mean and the precision are

µ∗ = (σ∗)
2

M∑
k=1

σ−2
k (x∗)µk(x∗), (13)

(σ∗)
−2 =

M∑
k=1

σ−2
k (x∗) + (1−M)σ−2

∗∗ , (14)

separately, with σ−2
∗∗ the prior covariance of p(f∗).

IV. Evaluation
In order to verify the feasibility of the proposed proba-

bilistic framework, several experiments are implemented in
this section. In Subsection IV-A, the Task-parameterized
GMM is compared from several aspects, such as, general-
ization capability, accuracy and robustness. Furthermore,
the assembly task rivets picking is given in Subsection
IV-B to further demonstrate the real-world application
feasibility.

A. Comparison with Task-parameterized GMM
The proposed distributed probabilistic framework aims

to mutually combine and simultaneously accommodate
various movement primitives in a overall scenario, and
therefore augments the generalization capability and
makes great use of every single movement primitive. In
this subsection, we would like to explore more functions
both from Task-parameterised GMM and our proposed
framework in terms of generalization capability, accuracy
and robustness.

Generalization capability: For exploring the generaliza-
tion capability, twelve movement primitive datasets are
generated randomly as shown in Fig. 2. Each dataset
accommodate four movement primitives with three GMM
components. Moreover, the origin frame and task frame
are recorded in pink and green separately for further
analysis. It is worth pointing out that basically each
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(a) Task frame (green) and the retrieved trajectories of the twelve movement-primitive datasets.

a b c d e f
g h i j k l

(b) Task frame (green) and the retrieved trajectories of the twelve movement-primitive datasets.

Fig. 3. The retrieved trajectories of the movement-primitive datasets. The generalization capability is tested with two different task frames
given in green. The initial frame is shown in pink and three GMM components corresponding to each movement primitive are presented in
blue, yellow and purple. In addition, each retrieved trajectory could be seen as the prediction of the Task-parameterized GMM.

dataset could be seen as a Task-parameterized GMM
model.

(a) (b)

Fig. 4. The retrieved trajectories of our proposed distributed
probabilistic framework. For a group of twelve movement primitive
datasets given in Fig. 3(a) and Fig. 3(b), our proposed framework
could accommodate all the primitive datasets together and predict
novel trajectories regarding the desired task frame.

Two different task frames are presented for testing the
generalisation capability, as shown in Fig. 3(a) and Fig.
3(b). Particularly, for a desired task frame in green, each
dataset retrieves its own predicted trajectories. Moreover,
three GMM components are displayed with the mean in
black dot and the covariance in blue, yellow and purple
ellipses.

As shown in the Fig. 3, although all the movement
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Fig. 5. The confidential interval and weights corresponding to each
movement primitive dataset in Fig. 3. The weights adn the confiden-
tial interval are derived from Equ. 13 and Equ. 14, respectively.

datasets give its own predictions, some of these predictions
do not match the desired task frame in terms of position
and orientation. This is because a single movement dataset
has a limited generalisation capability. If the desired
task frame is too far from the task frames of the data
sample, the Task-parameterized will have a poor pre-
dicted trajectory. In addition, our proposed probabilistic
framework could bear poor prediction derived from several
datasets, and meanwhile output with a satisfying results
as presented in Fig. 4.

Accuracy and Robustness: In order to provide a more
comprehensive analysis, the weights and prediction inter-
vals of each dataset are presented in Fig. 5 derived from
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Fig. 6. Human demonstrations of rivet picking. We record a set of snapshots where the YUMI picks up the rivets. Also the top view of the
rivet block is presented in Fig. 9.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re
d
ic
ti
on

er
ro
r

Pri. datasets Proposed framework

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re
d
ic
ti
on

er
ro
r

Pri. datasets Proposed framework

(b)

Fig. 7. The comparison of the prediction accuracies. The prediction
accuracies corresponding to two groups primitive datasets are shown
in yellow, along with the prediction accuracy of the proposed
framework given in green.

Equ. 13 and Equ. 14, separately. Moreover, the prediction
accuracies of each primitive dataset and our proposed
distributed framework are compared in Fig. 7.

As shown in Fig. 5, the confidential interval in red bar,
shows the prediction range of each movement dataset. If
the confidential interval is large, then the corresponding
movement dataset would lose its confidence in predicting
novel trajectories. On the contrary, if the confidential
interval is narrow, then the movement dataset has more
faith in its own prediction.

As shown in Fig. 7(a), the prediction error of each
primitive dataset is nearly proportional to the confidential
intervals in Fig. 5(a). The similar situations can also be
observed in the other three group simulations, i.e., Fig.
7(b) and Fig. 5(b). This is why we use the information
of the confidential intervals of each primitive datasets are
used to quantitatively explain the weights applied in Equ.
13. In addition, the proposed distributed framework shown
in green, gives a better prediction accuracy compared with
the accuracy from each primitive datasets shown in yellow
according to the two prediction errors given in Fig.7(a),
and Fig. 7(b). In order to obtain a better prediction,
sometimes we could choose high-weight predictions from
several datasets [17], [18], which will make our distributed
framework more effective.

B. Assembly Tasks
After addressing all the key issues of our proposed

distributed framework in Subsection IV-A, in this sub-
section, the feasibility with real world experiments should
be verified. As presented in Fig. 8, we test our proposed
framework with ABB YUMI robot. The YUMI is a two-

arm collaborative robot with industrial camera mounted
on the wrist of the right arm and the payload is 0.5kg
for each arm. To amplify the function of the YUMI
and compensate the picking accuracy, two grippers are
equipped with two arms, respectively.

Fig. 8. The experimental platform. We test our proposed distributed
framework with ABB collaborative robot, YUMI. The rivet block is
at the left side of the YUMI, while the picking board is located at
the right side.

Rivet picking: The experiment implemented in this
subsection is picking rivets from the rivet block as shown in
Fig. 9. We collect twelve groups of human demonstrations
as given in Fig. 6, along with the trajectories in Fig.
10(a). As shown in Fig. 10(a), the collected demonstrations
have some inaccuracies. Particularly, the demonstrations
are not smooth enough and some of them may not be
successfully inserted into the holes of rivet block.

Fig. 9. The top view of the rivet block. The rivet block is designed
to locate the rivets. In addition, the diameter of each hole is 3mm.

Each of the primitive-dataset group is trained with
three GMM using EM algorithm as presented in Fig.
10(b). Moreover, it is observed in the Fig. 10(b) that if
the training dataset is decentralised, the GMM ellipsoid
is large and the Gaussian process model has a wide
distribution and verse versa.

Besides, we construct a Gaussian process regression be-
tween the task frames of twelve groups primitive datasets
and corresponding GMM model parameters. Under our
proposed distributed framework, the twelve novel trajec-
tories are inferred in Fig. 10(c), along with the desired
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 10. The learning process of our proposed distributed prob-
abilistic framework. The training trajectories are collected in Fig.
10(a). Then, the trained GMM components of each dataset using EM
algorithm is given in Fig. 10(b). The retrieved trajectories inferred by
twelve movement primitive datasets are shown in Fig. 10(c) and the
desired frames are given in green markers. Finally, the confidential
interval of each three consecutive trajectories according to GMR are
given in Fig. 10(d), Fig. 10(e), Fig. 10(f) and Fig. 10(g).

task frames in square black and green makers and the
origin frames in square black and yellow makers.

To reveal further details, each three consecutive pre-
dicted trajectories are separated in four figures as repre-
sented in Fig.10(d), Fig. 10(e), Fig. 10(f) and Fig. 10(g).
Additionally, the confidential intervals derived from GMR
are plotted in green.
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Fig. 11. The prediction errors of the rivet picking experiments.

The prediction errors are given in Fig. 11. As we can
see in the figure, all the prediction errors are below
0.35mm. Most of the prediction errors are lower than
0.2mm, which is the reference assembly precision of the
aerospace manufacturing. However, we still notice that the

prediction error of the ninth hole is larger than 0.2mm
and the second is even higher than 0.3mm. This is mainly
caused from the accuracy of the human demonstrations.
If all the human demonstrations are far from the de-
sired target, the prediction will have a poor retrieved
trajectories. We would like to point out that the above
precision or prediction errors are enough accurate for
picking applications, such as picking rivets. Theoretically,
the proposed distributed framework can manage to keep
the prediction errors below 0.2mm with more accurate
demonstrations.

V. Conclusion
In this paper, we propose a novel distributed prob-

abilistic framework, which combines various movement
primitives together in a weight-based scenario. In order to
automatically optimise the GMM models, the regression
model based on the Gaussian process are trained with
Evidence Maximisation. Given a desired task frame, the
retrieved trajectories are predicted using Bayesian Com-
mittee Machine. The assembly tasks experiments show
the application feasibility of the our proposed framework.
Future work will focus on the movement primitives library
as well as the enhancement of the precision.
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