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Abstract—In privacy-preserving machine learning, individual
parties are reluctant to share their sensitive training data due
to privacy concerns. Even the trained model parameters or
prediction can pose serious privacy leakage. To address these
problems, we demonstrate a generally applicable Distributed
Privacy-Preserving Prediction (DPPP) framework, in which in-
stead of sharing more sensitive data or model parameters, an
untrusted aggregator combines only multiple models’ predictions
under provable privacy guarantee. Our framework integrates
two main techniques to guarantee individual privacy. First,
we introduce the improved Binomial Mechanism and Discrete
Gaussian Mechanism to achieve distributed differential privacy.
Second, we utilize homomorphic encryption to ensure that the
aggregator learns nothing but the noisy aggregated prediction.
Experimental results demonstrate that our framework has com-
parable performance to the non-private frameworks and delivers
better results than the local differentially private framework and
standalone framework.

Index Terms—Privacy-Preserving, prediction, distributed dif-
ferential privacy, homomorphic encryption.

I. INTRODUCTION

Many real-world applications would benefit from collabora-
tive learning among multiple parties. This trend is motivated
by the fact that the data owned by a single party may be
very heterogeneous, resulting in an overfit model that might
deliver inaccurate results when applied to other data. On
the other hand, there is much demand to perform machine
learning in a collaborative manner, since massive amount
of data are often required to ensure sufficient computational
power for test purpose. However, the increasing privacy and
confidentiality concerns pose obstacles to collaboration [1].
For the sake of privacy, most approaches cannot afford to share
the trained models publicly. Even the prediction output by a
trained model can reveal training data privacy through black-
box attacks [2]. Therefore, neither training data, trained model
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nor model prediction should be directly shared. Meanwhile,
these privacy concerns can be largely reduced if appropriate
privacy-preserving schemes can be applied before the relevant
statistic is released.

To mitigate privacy concerns in the distributed setting, in-
stead of sharing more sensitive local data or model parameters
of each party, we examine an alternative approach called dis-
tributed privacy-preserving prediction (DPPP), which allows
parties to keep full control of their local data, and only share
local model predictions in a privacy-preserving manner. In our
approach, each party first trains a local model based on local
training data Di. To answer the prediction query for any test
point x, each party takes local model as the prediction function
f to predict x, which returns the votes for all c classes, i.e.,
f(x,Di) = yi, where yi ∈ {0, 1}c is an one-hot prediction
vector that sums up to 1. Considering individual privacy, we
appropriately perturb model predictions before releasing them
for aggregation. The primitive of this provably private noisy
sum can be referred to [3]. Our contributions include:

• We formulate a distributed privacy-preserving prediction
framework, named DPPP, which combines distributed
differential privacy (DDP) and homomorphic encryption
to ensure individual privacy, maintain utility and provide
aggregator obliviousness, i.e., the aggregator learns noth-
ing but the noisy aggregated prediction.

• We explore the stability of Binomial Mechanism (BM)
and Discrete Gaussian Mechanism (DGM) to guarantee
(ε, δ)-differential privacy in the distributed setting, and
formally provide a tightest bound to date for BM.

• Extensive experiments demonstrate that DPPP delivers
comparable performance to the non-private frameworks,
and yields better results than the local differentially
private and standalone frameworks.
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II. PRELIMINARIES AND RELATED WORK

A. Distributed Differential Privacy

Definition 1 ((ε, δ, γ)-Distributed DP [4]). Let ε > 0, 0 ≤
δ < 1 and 0 < γ < 1, We say that the mechanism M with
randomness over the joint distribution of r := (r1, · · · , rN )
preserves (ε, δ, γ)-distributed differential privacy (DDP) if the
following conditions hold: For any neighbouring databases
D,D′ ∈ DN that differ in one record, for any measurable
subset S ⊆ R, and for any subset K̄ of at least γN honest
parties,

Pr{M(D) ∈ S|rK} ≤ exp(ε) · Pr{M(D′) ∈ S|rK}+ δ.

In the above definition, γ is the fraction of uncompromised
parties, and the probability is conditioned on the randomness
rK from compromised parties, i.e., it ensures that if at
least γN participants are honest and uncompromised, we
will accumulate noise of a similar magnitude as that of
the central differential privacy (CDP) [5]. For differentially-
private aggregation of local statistics, DDP permits each party
to randomise its local statistic to a lesser degree than local
differential privacy (LDP) [6], [7]. The most recent work
introduced amplification by shuffling to lower the privacy cost
of LDP algorithm when viewed in the central model of DP [8],
[9]. LDP with shuffling yields a trust model which sits in
between the central and local models for DP.

B. Homomorphic Encryption

Additive homomorphic encryption allows the calculation
of the encrypted sum of plaintexts from their corresponding
ciphertexts. Although there are several additive homomorphic
cryptographic schemes, we use the threshold variant of Paillier
scheme [10] in our framework, because it not only allows ad-
ditive homomorphic encryption, but also distributes decryption
among parties. In this cryptosystem, a party can encrypt the
plaintext m ∈ Zn with the public key pk = (g, n) as

c = Epk(m) = gmrn mod n2, (1)

where r ∈ Z∗n (Z∗n denotes the multiplicative group of
invertible elements of Zn) is selected randomly and privately
by each party. The additive homomorphic property of this
cryptosystem can be described as:

Epk(m1 +m2) = Epk(m1) · Epk(m2)

= gm1+m2(r1r2)n mod n2,
(2)

where m1, m2 are the plaintexts that need to be encrypted,
and r1, r2 are the private randoms.

In this paper, (N, t)-threshold Paillier cryptosystem is
adopted, in which the private key sk is distributed among N
parties (denoted as {sk1, sk2, · · · , skN}), thus no single party
has the complete private key. For any ciphertext c, each party
i (1 ≤ i ≤ N ) computes a partial decryption with its own
partial private key ski as:

ci = c2N !ski (3)

Then based on the combining algorithm in [10], at least t
partial decryptions are required to recover the plaintext m.

C. Multi-party Privacy

In multi-party scenario where data is sourced from multiple
parties and the server is not trustworthy, individual privacy
has to be protected. Without homomorphic encryption, each
party has to add sufficient noise to their statistics before
sending them to a central server to ensure LDP [7]. Since the
aggregation sums up individual noise shares, the aggregated
noise might render the aggregation useless. To preserve privacy
without significantly degrading utility, differential privacy can
be made distributed by combining with cryptographic proto-
cols, as evidenced in [4], [6], [11], [12].

More recently, Agarwal et al. [13] recalled the Binomial
Mechanism [14] and provided a similar bound as ours in
Theorem 1. However, they focus on the privacy of the gra-
dients aggregated from clients in federated learning, which
is different from the problem studied in this work. More
importantly, they did not offer a complete scheme to protect
against the untrusted aggregator. Note that they did not provide
a complete proof. Instead, we provide a detailed proof for the
tight bound.

Another recent work is Private Aggregation of Teacher
Ensembles (PATE) proposed by Papernot et al. [15]. PATE first
trains an ensemble of teachers on disjoint subsets of private
data. These teachers are then used to train a student model that
can accurately mimic the ensemble. However, PATE assumes a
trusted aggregator, who counts teacher votes assigned to each
class, adds carefully calibrated Laplace noise to the resulting
vote histogram, and outputs the class with the most noisy votes
as the ensemble’s prediction. Therefore, PATE fails to take into
consideration against a potentially untrusted aggregator.

III. PROBLEM DEFINITION

Similar to Shi et al. [4], we consider an untrusted aggregator
who may have arbitrary auxiliary information. For example,
the aggregator may collude with a set of compromised parties,
who can reveal their data and noise values to the aggregator
as a form of auxiliary information. Our goal is to guarantee
the privacy of each individual against an untrusted aggregator,
even when the aggregator has arbitrary auxiliary information.
To achieve this goal, we blind and encrypt the local statistics
of parties before sharing them with the aggregator. Moreover,
like most of the previous works [4], [11], [12], to ensure
the correctness and functionality of the system, we do not
consider a malicious aggregator, as it may not be desirable in
many practical settings, and are not in the commercial interest
of collaborative service providers for prediction service. We
remark that our privacy model is stronger than [4] in the
sense that we allow for party failures. This assumption is often
more realistic, as one or more parties may fail to upload their
encrypted values or fail to respond.

Moreover, we assume fewer than 1−γ = 1/3 of teachers are
compromised – the rest are assumed to be honest. Decryption
can be done by the remaining 2/3 teachers using threshold



Paillier. Since cryptographic protocol requires discrete inputs,
instead of adding floating-point Gaussian noise to each in-
dividual’s prediction, we leverage Binomial Mechanism (BM)
and Discrete Gaussian Mechanism (DGM) to generate discrete
Binomial noise and Gaussian noise.

IV. DDP MECHANISMS

Approaches to DDP that implement an overall additive noise
mechanism by summing the same mechanism run at each party
(typically with less noise) necessitates mechanisms with stable
distributions—to guarantee proper calibration of known end-
to-end response distribution—and cryptography for hiding all
but the final result from participating parties [4], [11], [12],
[14]. DDP utilizes this nice stability to permit each party to
randomise its local statistic to a lesser degree ( σ√

n
) than would

LDP (σ) [6]. In summary, the goal of DDP is to both avoid
the trust on any third party (trusted server in CDP [5] and
trusted shuffler in LDP with shuffling [7]), and achieve better
utility than LDP. On the other hand, if the server colludes with
all the parties except the victim, the privacy guarantee would
downgrade to LDP. We next introduce two representative sta-
ble distributions, including Binomial distribution and discrete
Gaussian distribution, which can be seamlessly combined with
cryptographic techniques.

A. Binomial Mechanism

Binomial Mechanism (BM) is based on the Binomial dis-
tribution B(n, p) parameterized by n, p, where n ∈ N is the
number of tosses, and p ∈ (0, 1) is the success probability. We
now define BM for the prediction function f with an output
space in {0, 1}c, where c is the number of classes, i.e., for each
data point, f returns an one-hot prediction vector with a total
of c elements in {0, 1} that sum up to 1. Consider party i’s
database Di and prediction f : let f(x,Di) = yi be the local
prediction vector produced by party i given data Di, and yji
be the j-th element of yi, i.e., prediction (vote status) for class
j. If party i assigns class j to input x, then yji = 1 while other
elements are all 0’s. The noisy vote count τ on each class j
equals τ =

∑N
i=1 y

j
i + noise, replacing the whole database D

with D′ differing only in one row changes the summation in
each class by at most 1, i.e., sensitivity=1. Bounding the ratio
of probabilities that τ occurs with inputs D and D′ amounts
to bounding the ratio of probabilities that noise = rj and noise
= rj + 1, for different possible ranges of values of rj . Given
prediction function f(x,Di) = yi, the goal of the BM is to
compute the noisy vote count for each class (each coordinate
of the aggregated prediction):

∑N
i=1 y

j
i +rj , where rj = z−np

is the random Binomial noise added to the vote count for
each class j, and Binomial random variable z ∼ B(n, p) is
independent for each class.

Theorem 1. (Tighter bound). For p = 1/2, Binomial Mecha-
nism is (ε, δ)-differentially private so long as the total number
of tosses n ≥ 2

(
2+ε
ε

)2
ln
(
2
δ

)
. Note that this lower bound is

tighter than n ≥ 64 ln
(
2
δ

)
/ε2 given in [14], but they both

share the ln
(
2
δ

)
term.

Proof. For Binomial distribution with p = 1
2 , r = z − n

2
is termed as Binomial noise, where z is a Binomial random
variable sampled from B(n, 1/2) with mean n

2 and success
probability 1

2 by performing coin flipping. To investigate
how we can size Binomial noise, suppose rj is the random
Binomial noise added to the vote count for each class j, then

τ =
∑N
i=1 y

j
i + rj , τ ′ =

∑N
i=1 y

j
i + rj + 1.

For the Binomial random variable with bias 1/2, whose
mass at n

2 + rj is

Pr

(
n

2
+ rj

)
=

(
n

n
2 + rj

)(
1

2

)n
,

ε-differential privacy requires that

Pr

{
n

2
+ rj

}
≤ eε Pr

{
n

2
+ rj + 1

}
=⇒

(
n

n
2 + rj

)(
1

2

)n
≤ eε

(
n

n
2 + rj + 1

)(
1

2

)n
=⇒ n

2
+ rj + 1 ≤ eε

(
n

2
− rj

)
.

To express rj in terms of ε in an algebraically simple way,
we use the inequality 1 + ε ≤ eε:
n

2
+ rj + 1 ≤ (1 + ε)

(
n

2
− rj

)
=⇒ rj ≤ εn− 2

4 + 2ε
<

εn

4 + 2ε
.

Therefore, the Binomial random variable n/2 + rj can ap-
parently achieve ε-differential privacy, as long as rj < εn

4+2ε .
Note:
• n

2 + εn
4+2ε =

(
1 + ε

2+ε

)
n
2 . This equation will be used in

Eq. (4) later.
• This noise upper bound is tighter than Dwork et al.’s

[14].
However, note that when rj exceeds this upper bound, ε-
differential privacy will be violated. Hence, we turn to the
relaxed (ε, δ)-DP, which requires that

Pr

{
n

2
+ rj ≤ n

2
− ξ or

n

2
+ rj ≥ n

2
+ ξ

}
≤ δ,

where ξ
def
= εn

4+2ε . Since the Binomial distribution is symmet-
rical about its mean n/2, the inequality above is equivalent
to

Pr

{
n

2
+ rj ≥ n

2
+ ξ

}
≤ δ

2
,

According to Chernoff bound theorem, for any X ∼
Binomial(n, 1/2), and 0 ≤ t ≤

√
n,

Pr

{
X ≥ n

2
+ t

√
n

2

}
≤ e−t

2/2.

Rewriting ξ =
√
n
2 ·

√
nε

2+ε , and replacing t with
√
nε

2+ε , X with
n/2 + rj , the requirement for (ε, δ)-DP reduces to:

e−t
2/2 ≤ δ

2
=⇒ n ≥ 2

(
2 + ε

ε

)2

ln

(
2

δ

)
. (4)



Therefore, Theorem 1 follows.

It should be noted that when ε � 2, n ≥ 8
ε2 ln

(
2
δ

)
,

providing a constant-factor improvement over the Binomial
Mechanism in [14]. Unlike Laplace or Gaussian Mechanism
used in the original PATE [15], [16], Binomial Mechanism
avoids floating-point representation issues and enables efficient
transmission, thus it can be seamlessly used with a cryp-
tosystem. Furthermore, the stability of Binomial distribution
facilitates noise distribution among multiple teachers.

B. Discrete Gaussian Mechanism

Discrete Gaussian (DG) Mechanism belongs to the category
of Gaussian Mechanism [5], hence it satisfies all the proper-
ties of Gaussian Mechanism. However, in discrete Gaussian
Mechanism, discrete Gaussian noise is sampled from a discrete
Gaussian by the following Definition IV.1

Definition IV.1 (Discrete Gaussian). The pmf of the discrete
Gaussian is proportional to the pdf of its continuous version.
For any x ∈ Z, the pmf of discrete Gaussian is defined as:

P (X = x) ∝ fX(x) = N (x;µX , σ
2
X)

=
1√

2πσX
exp

(
− (x− µX)2

2σ2
X

)
.

Corollary 1 (Stability of Discrete Gaussian). The sum of
independent discrete Gaussian distributed random variables
still follows a discrete Gaussian distribution.

Discrete Gaussian is a stable distribution as its continuous
version (a sum of discrete Gaussian r.v.’s is still discrete Gaus-
sian). The detailed proof for the stability of discrete Gaussian
distribution can be referred to the Corollary A.1. in [17]. Like
Binomial distribution, the stability of discrete Gaussian is ideal
for realising DDP: analysis of overall privacy is made possible
by analysing individuals, while also supporting fault tolerance
if some individuals are compromised. Therefore, we utilize the
stability of discrete Gaussian to distribute the noise generation
among parties. To determine how much optimal noise should
be added, we adopt an analytic Gaussian Mechanism as in
Theorem 2, which eliminates the constraint ε < 1 in the
classical Gaussian Mechanism and removes at least a third of
the variance of the noise compared to the classical Gaussian
Mechanism, thus delivering better utility [18].

Theorem 2. Let f : X → Rd be a function with global L2

sensitivity ∆. For any ε ≥ 0 and δ ∈ [0, 1], the Analytic
Gaussian Mechanism M(x) = f(x) +Z with Z ∼ N(0, σ2I)
is (ε, δ)-DP if and only if

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ. (5)

In order to obtain (ε, δ)-DP for a function f with global
L2 sensitivity ∆, it is enough to add Gaussian noise with
variance σ2 satisfying Eq. 5. We therefore distribute the
discrete Gaussian noise at a level of σ2 among parties.

V. DISTRIBUTED PRIVACY-PRESERVING PREDICTION

In this work, we study the applicability of DPPP to hor-
izontally partitioned databases, where multiple parties each
owns different groups of individuals with similar features.
For example, different hospitals, each holding the same kind
of information for different patients, can collaboratively per-
form statistical analyses of the union of their patients, while
ensuring privacy for each patient. Consequently, hereafter,
instead of training a centralized model to solve the task
associated with the whole database D ∈ R|D|×d,Y ∈ R|D|,
the whole database D is partitioned into N disjoint subsets,
{D1,D2, ...DN} that are held by N parties who are unwill-
ing to make their training data, model parameters or model
predictions public or share them with others. Here |D| refers
to the total number of training records in D, Di and Y i repre-
sent party i’s training data and labels respectively. Individual
models are trained separately on each subset {Di,Y i}.

In the case of prediction for any test point x, each party
applies f(x,Di) = yi, i.e., a prediction function that returns
the prediction yi ∈ {0, 1}c with the position of value 1
corresponding to the predicted class. The aggregate of multiple
predictions becomes:

∑
i f(x,Di) =

∑
i yi, where yi is the

one-hot prediction vector produced by teacher i’s local model
built on individual training data Di, hence the aggregate for
each class equals to the sum of N scalars. In distributed
privacy-preserving prediction (DPPP), the goal is to privately
release the aggregated prediction, i.e., noisy sum:

∑
i(yi+ri),

where ri = (r1i , · · · , rci ), rji = z − mp, z ∼ B(m, p),m =
n/N and p = 1/2 for BM, or rji ∼ DG(0, σ/

√
N) where σ

satisfies Eq. 5 for DGM. Our framework aims to deliver the
differentially private aggregated prediction that is close to the
desired aggregate

∑
i yi, while providing privacy guarantee.
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Fig. 1: Overview of the PATE and DPPP.

To realize this goal, we take inspiration from PATE frame-
work. As illustrated in Fig. 1, both PATE and DPPP first train
an ensemble of teachers on disjoint subsets of the sensitive
data, then the aggregator aggregates their outputs. However,
the main difference between PATE and our DPPP is that
the aggregator is trusted in PATE, so teachers directly share



their non-private labels with the aggregator, while we improve
PATE by eliminating the trust on the aggregator in DPPP.
In particular, the total amount of noise required to guarantee
(ε, δ)-DP of the aggregated prediction is distributed among
teachers by using DDP: each teacher i adds a share of noise
ri to its local prediction yi. The noise shares are chosen
such that

∑N
i=1 ri = r is sufficient to ensure (ε, δ)-DP of

the aggregated prediction, but ri alone is not sufficient to
ensure (ε, δ)-DP of local prediction, thus yi + ri cannot be
directly released to the aggregator. Therefore, it necessitates
the help of cryptographic techniques to maintain utility and
ensure aggregator obliviousness, as evidenced in [4], [11],
[12]. Hence, we combine DDP with a distributed cryptosystem
to achieve this goal. As shown in Fig. 1, in DPPP, each teacher
i first computes the encryption of yi + ri before sending it to
the aggregator. Due to the additive homomorphic property in
Eq. (2), the aggregator can compute the encryption of the noisy
sum of all the local predictions as E = E(

∑N
i=1(yi + ri)).

This aggregated encryption E is then sent back to all teachers
to compute partial decryptions. Finally, the partial decryptions
PDi(E) are forwarded to the aggregator, who combines all
the partial decryptions to get the final decryption, i.e., the
aggregated prediction.

Theorem 3. Suppose D,D′ are neighboring databases that
differ by one record, then each coordinate of the aggregated
prediction, as given by

∑N
i=1 y

j
i , differ by at most 1. Let M

be the mechanism that reports arg maxj

{∑N
i=1

(
yji + rji

)}
.

Then M satisfies (ε, δ)-DP, provided rji = B(m, 1/2) −
m/2,m = n/N, n ≥ 2

(
2+ε
ε

)2
ln
(
2
δ

)
or rji ∼ DG(0, σ/

√
N)

where σ satisfies Eq. 5.

As stated in Theorem 3, the aggregated prediction is (ε, δ)
differentially private, the privacy guarantee stems from the
aggregation of teacher ensemble. If teacher i assigns class
j to input x, then yji equals 1 while all the other elements
are all 0’s. For any test point x, independent noise share
rji is added to each teacher’s prediction for each class yji .
Hence, the aggregated prediction for class j is equivalent to∑N
i=1

(
yji + rji

)
, and the predicted class equals:

arg max
j

{∑N
i=1

(
yji + rji

)}
, (6)

where rji = z − m/2, z ∼ B(m, 1/2),m = n/N , here
n is the total number of tosses in Theorem 1 for BM, or
rji ∼ DG(0, σ/

√
N) where σ satisfies Eq. 5 for DGM. When

there is a strong consensus among N teachers, the label they
almost all agree on (maximum of the aggregated prediction)
does not depend on any particular teacher. Overall, DPPP
provides a differentially private API: the privacy cost of each
aggregated prediction made by the teacher ensemble is known.
Semi-supervised learning can be further used to train a student
model given a limited set of labels from the aggregation
mechanisms [15], [16].

VI. DISTRIBUTED CRYPTOSYSTEM

As part of DPPP, based on the threshold Paillier cryp-
tosystem [19], we design a secure aggregation protocol in
Protocol 1, which can calculate the summation of teachers’
local predictions without disclosing any of them. As we can
see, the protocol mainly executes in two phases. In the first
phase, the aggregator aggregates the encrypted noisy predic-
tions as Epk(

∑N
i=1 ŷi). Then in the second phase, a distributed

decryption process is run to recover the aggregated noisy
predictions

∑N
i=1 ŷi. In this protocol, what the aggregator

received from all teachers are the encrypted noisy predictions
and partial decryptions. Moreover, all the calculations on the
aggregator are conducted on the encrypted data. What the ag-
gregator can know is only the summation of all teachers’ noisy
predictions, based on which each teacher’s local prediction yi
cannot be inferred, thereby providing aggregator obliviousness
and significantly reducing privacy leakage. Note that the key
generation needs to be done only once, hence secret-sharing
protocols can be used for this purpose.

Protocol 1 Secure aggregation protocol

1) Each teacher i encrypts its noisy prediction ŷi as Epk(ŷi)
as per Eq. (1), and sends it to the aggregator;

2) The aggregator computes c = Epk(
∑N
i=1 ŷi) =∏N

i=1Epk(ŷi) based on Eq. (2);
3) The aggregator sends c to the randomly chosen t teachers;
4) Each selected teacher i calculates a partial decryption

based on Eq. (3), and sends it to the aggregator;
5) The aggregator combines all the partial decryptions to get

the summation
∑N
i=1 ŷi.

Fault Tolerance and Collusion. In real system, one or more
teachers might fail to respond or drop out the system at some
point before the completion of the protocol for several different
reasons. We also consider the threat of collusion among teach-
ers, including the aggregator, through the trust parameter t –
the minimum number of honest teachers. Our proposed DPPP
can be made robust to the fault tolerance and collusion of
less than 1/3 compromised teachers by adopting the following
two solutions: (i) (N, t)-threshold decryption [10] requires the
cooperation of at least t = γN honest teachers for decryption,
where γ is the fraction of uncompromised teachers in Defi-
nition 1. If f teachers fail to send their partial decryptions,
(N, t)-threshold decryption ensures that a decryption can still
be computed as long as f < N − t; (ii) during the noise
addition, for BM, each honest teacher sets its binomial noise
as z −m/2, where z ∼ B(m, 1/2),m = 3n/2N ; for DGM,
rji ∼ DG(0, σ/

√
2N/3) where σ satisfies Eq. 5, i.e., leaving

out 1/3 teachers’ randomness is still sufficient to ensure
differential privacy. We remark that the number of honest
parties t could be set as per different applications, and (N, t)-
threshold Paillier cryptosystem requires 2 ≤ t ≤ N . Here
the assumption of less than 1/3 compromised parties is often
practical enough in most real scenarios.



VII. PERFORMANCE EVALUATION

Comparison frameworks. To demonstrate the effectiveness
of our DPPP, we compare it with the following frameworks:
(1) Centralized non-private framework requires all teachers
to pool their training data into the aggregator to train a
global model; (2) Distributed non-private framework excludes
both DP and cryptosystem, teachers directly share their local
predictions with the aggregator; (3) Local differentially private
(LDP) framework excludes cryptosystem but requires each
teacher to add the required level of noise to ensure (ε, δ)-LDP.
The added noise is of the same level as the aggregated noise in
DPPP, hence much more noise is added compared to the noise
added in DPPP; (4) Standalone framework allows teachers to
individually train local models without any collaboration, and
an end user directly sends a test query to one teacher, then
local prediction is released under the guarantee of (ε, δ)-LDP;
(5) PATE which relies on a trusted aggregator to add Laplace
noise to the aggregated vote counts [15].

Datasets. For fair comparison with PATE, we first adopt
MNIST dataset, which consists of 60K training examples and
10K testing examples1. We also investigate the other two real-
world datasets. One is Breast Cancer dataset 2 that contains
total 569 records with 32 features, each record is classified into
two classes: malignant and benign. We randomly sampled 2/3
examples from the whole database as the training set, while
the remaining 1/3 as the test set. The other one is NSL-KDD
dataset used for intrusion detection3, which contains total
125973 records with 41 features, each record is classified into
two classes: anomaly and normal. We select a smaller subset
called NSL-KDD-20 (with 20% train and test data sampled
from NSL-KDD).

Experimental Setup. For MNIST, we follow [15] to use
a convolution NN (CNN) model. Each teacher trains a con-
volutional network with two convolutional layers and one
fully connected layer. For the other datasets, we use SVM
model with RBF kernel. To simulate the situation in which
each teacher constitutes only a limited subset of the whole
database, all the training records are randomly distributed
among multiple teachers such that each teacher receives nearly
the same amount of records. Following the rationales provided
in [15], we empirically find appropriate values of N for all
the datasets by measuring the test accuracy of each teacher
trained on one of the N partitions of the whole training set,
i.e., we trained ensembles of 250, 100, 100 and 20 teachers
for the MNIST, NSL-KDD-20 and Breast Cancer datasets
respectively. How the number of teachers affects privacy cost
can be referred to [15]. We run each experiment for 20
times and report the average result. γ is set to be 1 or
2/3, i.e., assuming no compromised teachers, or at most 1/3
compromised teachers. Since δ in BM and DGM are different

1http://yann.lecun.com/exdb/mnist/
2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Diagnostic)
3https://www.unb.ca/cic/datasets/nsl.html

from the classical DP mechanisms, we choose small values
from 1e{−5,−4,−3,−2}.

Experimental Results. We first fix δ = 1e−3 and report the
prediction accuracy of student queries under varying privacy
budgets ε ∈ [0.01, 1] in Fig. 2. In particular, the result of
the standalone framework is derived by averaging over all
teachers. As evidenced by Fig. 2, DPPP outperforms both
the standalone and LDP frameworks, for all datasets. The
centralized and distributed non-private frameworks achieve
similar accuracy, indicating that the distributed non-private
framework incurs minor accuracy degradation compared with
the centralized non-private framework. Moreover, DPPP yields
comparable accuracy to the distributed non-private framework
when ε ≥ 0.05 for MNIST and NSL-KDD-20 datasets,
which is also comparable to PATE where each query has a
low privacy budget of ε = 0.05 [15]. We also notice that
compared with other datasets, Breast Cancer dataset requires
a higher value of ε to achieve comparable accuracy. One
reason is the limited available data split among smaller number
of teachers, while compensating for the introduced noise in
Eq. (6) requires large ensembles. We also observe that DPPP
with DGM consistently outperforms DPPP with BM, and
achieves comparable performance to the PATE. The extra
noise introduced to guarantee privacy under 1/3 compromised
teachers indeed slightly degrades accuracy, especially when ε
is small. These findings provide empirical supports to guide
the deployment of DPPP framework.

We further show how the values of δ impact the performance
by varying δ ∈ 1e{−5,−4,−3,−2}. We choose MNIST and
Breast Cancer for illustration, and adopt the fixed ε = 0.05 for
MNIST and ε = 0.5 for Breast Cancer. As can be observed in
Fig. 3, the effectiveness of our proposed DPPP persists, and
for the fixed ε, varying δ follows the similar trend as varying
ε. However, there is less difference with different δ, which
agrees with the findings reported in [20]. In contrast, ε has
larger impact on accuracy.

Computation and Communication Overhead. We use
the typical 1024-bit key size and implement a (N, b 23Nc)-
threshold Paillier cryptosystem using Paillier Encryption Tool-
box4. The average computation time at a teacher is indepen-
dent of the number of teachers and remains nearly constant.
On the other hand, the time required by the aggregator might
increase with the number of teachers, but this can be reduced
by running the aggregator and teachers in parallel through
MapReduce. In all cases, the computation overhead is quite
small (within ∼ms), most of which is spent on cryptographic
operations. For communication complexity, a Paillier cipher-
text is estimated as 2048 bits (256 bytes). Therefore, the total
communication cost between the aggregator and any teacher
can be estimated as 256 × c × 3 = 768 × c bytes, where
c is the number of classes and 3 refers to three rounds of
communication in Fig. 1, which is also well within the realm
of practicality as c is usually small.

4http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/

http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://www.unb.ca/cic/datasets/nsl.html
http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
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Fig. 2: Prediction accuracy of student queries for all datasets with varying ε.
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Fig. 3: Prediction accuracy of student queries with varying δ.

Discussion. Different from the typical balanced and IID data
distribution, in real practice, due to the differences in sensor
quality, ambient noise, and skill level, the collected data by
each teacher might be: (1) Unbalanced: due to the capabilities
of different teachers, some teachers may have large training
data, while others have little or no data. For substantially
unbalanced data, most teachers have only a few examples, and
a few teachers have a large number of examples. (2) Non-IID:
the collected data by each teacher might not be representative
of the population distribution.

These two aspects are usually considered in federated
learning, and might affect the accuracy of DPPP, especially
when most teachers have few or extremely unrepresentative
examples. To improve robustness to unbalanced and/or non-
IID data distributions, current methods allow teachers to share
locally trained model updates with the aggregator [21], [22],
but giving the aggregator access to all teachers’ updates clearly
risks privacy leakage. To privately share individual model
updates, Bonawitz et al. [23] proposed a secure aggregation
protocol to securely aggregate local model updates as the
weighted average to update the global model on the aggregator.
However, this incurs both extra computation and communica-
tion costs.

VIII. CONCLUSION AND FUTURE WORK

We have presented a distributed privacy-preserving pre-
diction framework, which enables multiple parties to col-
laboratively deliver more accurate predictions through an
aggregation mechanism. Distributed differential privacy via
Binomial Mechanism or Discrete Gaussian Mechanism and
homomorphic encryption are combined to preserve individual

privacy, maintain utility and ensure aggregator obliviousness.
For the Binomial Mechanism, we offer tighter bounds than that
in the previous works. Preliminary analysis and performance
evaluation confirm the effectiveness of our framework. We
plan to extend our framework to the unbalanced and non-
IID data distribution. We also expect to extend our framework
to various machine learning scenarios beyond classification.
It is also important to investigate how to conduct privacy
accounting for many subsequent queries by using different
DDP mechanisms.
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