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Abstract—Robots are currently mostly found in industrial
settings. In the future, a wider range of environments will benefit
from their inclusion. This calls for the development of tools that
allow professionals to set up dependable robotic applications
in which people productively interact with robots aware of
their needs. Given the co-existence of humans and robots, the
precise analysis—e.g., through formal verification techniques—of
properties related to aspects such as human needs and physiology
is of paramount importance. In this paper, we present a formally-
based, model-driven approach to design and verify scenarios
involving human-robot interactions. Some of the features of our
approach are tailored to the healthcare domain, from which our
case studies are derived. In our approach, the designer specifies
the main parameters of the mission to generate the model of
the application, which includes mobile robots, the humans to be
served, including some of their physiological features, and the
decision-maker that orchestrates the execution. All components
are modeled through hybrid automata to capture variables with
complex dynamics. The model is verified through Statistical
Model Checking (SMC), using the Uppaal tool, to determine the
probability of success of the mission. The results are examined
by the developer, who iteratively refines the design until the
probability of success is satisfactory.

Index Terms—service robots, human-robot interaction, model-
driven development, statistical model checking

I. INTRODUCTION

Over the last few decades, robots have been affecting
humankind from behind the scenes. They have been mostly
employed in industrial settings, contributing to applications
that require a lot of strength or extreme working speed.
Nonetheless, thanks to the recommendations advocated by the
Industry 4.0 paradigm, robots have recently been allowed to
work in close contact with human workers to support them
with dull or fatiguing tasks. The next step is to let robots out
of factories and into service contexts, to relieve practitioners in
these areas from clerical or overly hazardous duties, improving
their work conditions. This could prove a leap forward for
several domains, such as healthcare and emergency response.
Deploying robots in workplaces different from a factory poses
a series of challenges. People do not walk around wearing
protection devices in everyday situations, and they are usually
not trained to safely interact with this kind of machinery.
Although general safety guidelines provided by ISO 12100
[1] and ISO 13849-1 [2] still apply, ISO 13482 [3] specif-
ically targets service robots from the following categories:
mobile platforms, person carrier robots, and physical assistant
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robots [4]. These regulatory documents will be instrumental
in bringing products to market that are designed to operate
safely also in civil contexts. Once the robot is deemed fit
for deployment, additional effort is required to guarantee an
effective interaction with humans. Users will expect robots to
respond to their needs as effortlessly as a human worker in the
same position would do. Otherwise, society will perceive this
injection of robotics as a step back rather than an improvement.
In this paper, we present a formally-based model-driven ap-
proach for the analysis of robotic applications. Each appli-
cation features robots, humans and a robot-controller, and it
involves interactions among the agents in a defined environ-
ment. Though the approach is general, it is tailored towards
the healthcare domain, in that it considers some physiological
features of humans. We have identified a set of significant
interaction patterns that capture usual coordination contingen-
cies established between a human and a robot. The robot-
controller included in the model is necessary to realize such
coordination. The patterns differ from each other based on a
series of criteria—e.g., who initiates synchronization or who is
entitled to end it. Moreover, they are meant to be customized
and reused with little effort by the designer. In fact, creating
a scenario only involves the specification of how many agents
are in it, their basic properties—e.g., speed and acceleration—
and the floor layout. The model includes healthcare-related
aspects, such as physiological features of humans. The robot-
controller drives the mission to success based on efficiency-
related criteria, but also on human needs. This is paramount
when robots interact with humans who are in pain or in
discomfort, as it often happens in healthcare settings. A key
aspect of the work is that humans are not modeled as rational
agents that unmistakably execute their mission; rather, they are
described through a stochastic model of free will that causes
them to occasionally stray from the plan. Hence, designers
have a formal guarantee that the deployed solution will be
able to deal with unexpected turns of events.
The approach relies on Hybrid Automata [5] to model ap-
plication components. The automata are endowed with both
differential equations describing the complex dynamics of the
system, and stochastic elements capturing the variability of the
real world. The model is formally verified through Statistical
Model Checking techniques [6] against a set of relevant
properties. The toolchain automatically generates the model
of the scenario and performs the verification using the Uppaal
tool [7] [8]. To show the effectiveness of the approach, we
present a range of experiments involving different scenarios,
which encompass cases in which the mission is accomplished,



and cases in which it fails. The latter show how the designer
can iteratively refine the application model, until a satisfactory
result is obtained. The experiments are run using a prototype of
the tool [9], which receives in input the set of parameters, then
automatically generates the model and runs the verification.
The paper is structured as follows: Section II reviews related
works in the literature; Section III outlines the tools on which
the work is based; Section IV presents the overall approach;
Section V describes in detail the developed models; Section
VI shows experimental results; Section VII concludes.

II. RELATED WORK

Many works in literature deal with human-robot interaction
modeling. Yagoda and Coovert [10] analyze the case study
of a team of three individuals that operate a miniature UAV
searching for survivors in the aftermath of a disaster. They
select Petri nets as the modeling tool since it is a formal
and graphical language, fit for analysis and explicit-state
modeling. Other works implement formal languages to capture
collaboration: for example, Webster et al. [11] develop Brahms
models of a robotic personal assistant and then perform model-
checking with the tool SPIN. Vicentini et al. [12] use LTL
formulae to model collaborative tasks and develop an innova-
tive risk assessment technique. Some works exploit learning
techniques to develop their model. Amor et al. [13] identify
interaction primitives through imitation learning. This type of
approach is particularly useful when the robot is required to
acquire a certain behavior from the human and reproduce it to
make the interaction more natural. Similarly, Nikolaidis et al.
[14] aim at programming robots to learn the human type of
their teammate from a dataset and adopt their preferred style.
However, this is only feasible in settings where the range of
possible behaviors the robot can get in contact with has a
limited size. Lemaignan et al. [15] present an architecture for
the robot decisional layer based on models of human behavior
and human preferences. In more detail, the authors build upon
the Beliefs, Desires, Intentions (BDI) infrastructure to develop
social robots that can work jointly with humans. Araiza et al.
[16] also exploit BDI agents to model the human, the robot
and their environment using a table assembly task as a possible
application. In this case, models are used to automatically
generate test cases through model checking.
There are also previous attempts at applying SMC to robotic
systems. Arai and Schlingloff [17] exploit SMC to make
predictions on the performance of autonomous transport robots
in production plants. They show how the approach is ben-
eficial when making decisions at design time. Foughali et
al. [18] apply SMC to formally verify real-time properties,
like schedulability and readiness, of robotic software. Herd et
al. [19] explore the area of multi-agent systems, focusing on
swarm robotics: in this case, SMC is needed to deal with the
size of the problem which makes it unfeasible for traditional
model checking techniques.
As this brief survey shows, modeling and verifying systems
that involve robots coordinating with humans is a long-
standing issue. Though it has been tackled through techniques

from several different domains, no works combine sound
formal methods with a proper model of real-world variability.
Formal verification has been applied to specific manifestations
of human behavior, which are handled in a black-box manner
in the work by Askarpour et al. [20]. However, to the best
of the authors’ knowledge the work in this paper is the first
attempt at analyzing human-related aspects, such as free will.
In addition, as mentioned above, service robots will be used
in applications designed by people with potentially many
different backgrounds, who cannot be expected to be able
to create complex models while designing their application.
Hence, the user-friendliness of the design tool is of paramount
importance. The work presented in this paper is a first step
towards filling these gaps.

III. BACKGROUND

In this work we use, as the modeling formalism, Hybrid
Automata (HA) extended with a stochastic component (abbre-
viated as HA+ hereinafter). HA are themselves an extension of
Timed Automata. In Timed Automata, the passage from one
state to another is governed by conditions on clocks, whose
value increases linearly with time unless they are reset [21].
HA locations are additionally endowed with sets of differ-
ential equations, called flow conditions. These constrain the
derivatives of real-valued variables of the model, which make
it possible to model systems with complex dynamics [5]. A
model can include several distinct automata, that can synchro-
nize with each other through channels. When two automata
synchronise on a channel e, two transitions are fired at the
same time, and the current location of both automata changes
synchronously. In particular, the two transitions synchronise if
their guards are both satisfied, and they have complementary
synchronisation labels of the form e? and e!, respectively.
The stochastic behavior can be modeled through probabilistic
transitions. These represent non-deterministic choices of the
system, refined by probability distributions. As in Fig. 1, these
transitions are marked with probability weights, that bias the
evolution of the system [6]. Enriching HA with probabilistic
features makes them analyzable through statistical techniques,
and in particular through Statistical Model Checking (SMC).
The advantage of SMC is that it does not explore the whole
state space, but it applies statistical techniques to a sample set
of executions to evaluate the probability that a certain property
holds. This makes the analysis of the property feasible for

TABLE I: PCTL Syntax

φ ::= a | ¬φ | φ ∨ φ′ | φ ∧ φ′ a ∈ AP atomic proposition
ψ ::= φ | Xφ | φUφ′ | P≥θ(ψ) θ ∈ [0, 1] probability bound

Fig. 1: Example of automaton with a stochastic transition: 0.4 and 0.6
represent the probabilities of reching s2 or s3 from s1.



large and complex systems [6]. The approach also requires a
formal specification of the properties to verify. The formulae
are expressed in the PCTL logic, whose syntax is shown in
Table I. The most significant difference with ordinary CTL
is the P≥θ(φ) operator, which allows us to express properties
with quantitative constraints on probabilities [6]. Given a HA+
automaton and a PCTL property ψ, the possible outcomes of
SMC are: (a) a binary value, 1 or 0, depending on whether
P (ψ) ≥ θ holds or not, where P (ψ) is the probability of ψ
holding, and θ is a threshold; or (b) a probability interval to
which P (ψ) is guaranteed to belong [6]. Section VI shows
various examples of SMC experiments.

The features of HA+ are used in Section V to model the
physiological properties of humans and the robot velocity
profile. The human fatigue model used in our work is the one
proposed by Jaber et al. [22], with alternating exponential fa-
tigue/recovery cycles. As for the robot velocity, we implement
a trapezoidal velocity profile [23] with three phases: accelera-
tion, constant maximum speed, and deceleration. For the robot
battery, we assume a typical lithium battery charge/discharge
cycle [24] with an exponential and a nominal zone.

IV. APPROACH

The main contribution of this paper is a model-driven
approach for the formal analysis of scenarios involving human-
robot interaction. The toolchain is meant to be used by
professional figures who may possess a technical background,
but not necessarily in robotics or in formal methods. Users
may be, for example, clinical workflow analysts [25] designing
the following work shift for robots. The shift will involve a
group of humans requesting a service that implies interaction
with a robot. Serving everybody in the group will constitute
the mission of the robot. Fig. 2 shows the steps, further
described in the following, on which the design process is
built: (A) configuration of the scenario, performed by the
designer; (B) automated model generation and its verification
through SMC; (C) critical assessment of the verification re-
sults, followed by application deployment if the results are
satisfactory, otherwise by model refinement. In this paper,
we focus mostly on the formal modeling, whereas the model
generation phase will be deepened in future works.

A. Scenario Configuration

The input of the tool includes the following parameter
values, depicted in Fig. 3.
A scenario may include multiple humans that need to be

served and multiple available robots. Each robot moves with
a fixed speed and acceleration (vmax and amax in Fig. 3), and
initial battery charge Cstart. An association between a robot
and a battery constitutes a robotic system with its own id. Each
human is served by one robot and in the model is identified
by an id, their walking speed v and one interaction pattern
p, which characterizes the interaction with the robot. Humans
are served in ascending order of id.
The identified patterns correspond to recurrent synchronization
mechanisms in case studies involving a particular subset of

Fig. 2: Diagram representing all the phases of the approach. Different shades
of gray indicate the current progress of implementation: the darker phases are
fully implemented, the lighter ones are to be expanded in the future.

human-robot interaction, suitable for mobile robots with a
predefined set of functionalities. The main elements that set
one pattern from another are: who triggers the action, who can
claim its completion and the condition that determines it, and
how the state of the system evolves during the execution. In
detail, the patterns are:

(i) Human-Follower: the human follows the robot and the
robot moves towards the destination. They stop when they
have reached it. For the sake of free will, the human is allowed
to walk freely and choose whether to follow or not when the
robot issues its command. If they get too far, the robot stops
and waits for them. Robots could guide patients through an
infectious ward, reducing the exposure of healthcare workers.
(ii) Human-Leader: the robot follows the human that moves
towards the destination (unknown to the robot). The human is
free to start and stop whenever they want, the robot follows
accordingly. If the robot ends up ahead of the human, it steps
back and resumes the trailing. The robot could follow a nurse,
identified by a wearable sensor, while carrying tools.
(iii) Human-Recipient: the human, a nurse or a doctor, waits
for the robot to fetch an item, possibly a needed tool, from a
certain location. While the robot is delivering the object, the
human is free to move and the robot should be able to track
them. The real synchronization occurs when the human and

Fig. 3: Class Diagram of the user-customizable portion of the model.



the robot are close and the human stops to pick up the item.
(iv) Human-Pal: both the robot and the human execute an
action until its ending condition, e.g., a nurse and a robot look
for something and stop when either one finds it. Both the robot
and the human are free to start and stop. The synchronization
occurs when one signals that the task has been completed.
(v) Human-Competitor: the robot and the human compete
over a resource. The action is over when the resource is no
longer available, i.e., when either of them has reached the
resource location. An example could be a doctor and a robot
competing over a medical kit: ideally, both of them should be
put in a position to access the item.
(vi) Human-Assistant: whenever a certain situation occurs,
the robot stops and waits for human assistance to proceed.
For example, if a closed door is detected along the trajectory,
the robot emits a signal and waits for a human to open it. The
human signals to the robot when their action is completed.
In this paper, we describe in detail the implementation of (i),
and present experiments with (i), (ii) and (iii). Given the plug-
and-play nature of the approach, the remaining implementa-
tions can be added to the model in a second phase without
undermining the conclusions drawn about the infrastructure.
The operational environment is modeled as a two-dimensional
layout. The designer only specifies the Cartesian coordinates
of the points of interest, i.e., wall corners and doorposts. It is
also mandatory to specify the destinations of all the humans in
the model. The algorithm that simulates the robot navigation
accounts for these variables to prevent collisions, which would
lead to unreliable results.

B. Model Generation and SMC Experiments

After the configuration phase, the designer can automati-
cally generate the model and run the SMC experiment. The
user must additionally choose whether the experiment should
involve a simulation of the system or an estimation of the
probabilities of success/failure of the mission. Section VI
presents three examples of experiments.

C. Results Analysis and Model Refinement

The SMC experiment yields a probability value. If the
probability of success is smaller than a desirable threshold,
the user may opt for one (or more) of the following corrective
measures, therefore performing model refinement: (a) reduce
the workload of a robot, for example, if its current battery
charge value is not sufficient to carry out all the requested
services; (b) change the order in which humans are to be
served, which could improve the overall efficiency, e.g., by
reducing robot movements between one service and the next
one; (c) choose different services to be included in the scenario
(this may not always be an option, for example if a patient has
to be mandatorily served in the following shift); (d) choose a
different robot from the fleet, with different speed/acceleration
parameters or with a different battery charge value. A different
robot model may be useful in case the previous one moved
too fast for the human, whereas issues related to the battery
may involve complete discharge before the mission is done.

V. MODEL

We present the HA+ modeling the components of the sce-
nario: robots, batteries, humans and the orchestrator. The latter
directs the synchronization among all the other components
by sending commands to the targets through channels. The
orchestrator makes decisions based on data about the other
components, and such data are modeled via dense counter
variables. These change over time as a result of transitions
update instructions, but they do not possess an explicit time-
dependency. This mechanism simulates a sensor measuring a
particular physical property (the dense counter) whose value
is periodically updated. In all components, the refresh period
is indicated with the constant Tpoll and a clock tupd measures
the time elapsed since the last update. We assume the building
is equipped with an Indoor Positioning System (IPS) [26] to
locate both the robot and the human in the environment. It is
also required that the battery charge value can be periodically
measured, as it is customary with lithium batteries in electronic
devices. We also assume that the human is wearing a fatigue-
measuring device, as the one proposed by Dong et al. [27].
As mentioned in Section III, the robot movement follows a
trapezoidal velocity profile, whereas the human moves with
constant speed. As for human free will, we have opted for
the straightforward approach [28] of modeling it as a random
phenomenon whose behavior is comparable to a Bernoulli
variable X . Finally, to dampen the complexity of the model,
we assume that humans are only free to choose when to start
or stop, and not an arbitrary trajectory.
Robot: the automaton in Fig. 4 represents the three operating
conditions of the robot, corresponding to idleness, motion and
battery recharging. We introduce two time-dependent variables
V and rdist that model, respectively, the velocity of the robot
at a generic time instant t and the distance covered since the
beginning of the motion. The automaton features locations
ridle, rstart, rmov, rstop, and rrec corresponding, respectively
to: 1) the idleness of the robot with V = 0; 2) the acceleration
phase of the motion, thus V̇ = amax; 3) the travel phase with
constant speed, V = vmax; 4) the deceleration phase with
V̇ = −amax; 5) the battery recharging phase, thus V = 0.
In every location, ṙdist = V holds. When the orchestrator
fires the commands to start or stop recharging (bstart and
bstop), if the robot is at the recharging station, the automaton
transitions from ridle to rrec and back. The switch from ridle
to rstart takes place when the command to start moving

Fig. 4: Robot automaton.



(rstart) is issued. Similarly, the automaton switches from rmov

to rstop when rstop is fired. The robot might start or stop
while it is accelerating or decelerating, so two transitions are
added between rstart and rstop. In rstart, velocity is increasing
linearly from 0 to vmax, thus when V = vmax the automaton
switches to rmov. While decelerating, the robot stays in rstop
as long as V > 0 and goes back to ridle when V = 0. We
model as dense counters the Cartesian coordinates of the robot
in space (rposx and rposy ), and the angle θr for the orientation
with respect to the x -axis. On self-loops, and on all transitions
in Fig. 4 marked with a ξR, the update in Eq.1 is executed.

ξR =

{
r′posx := rposx + V (t)Tpoll · cos(θr)
r′posy := rposy + V (t)Tpoll · sin(θr)

(1)

Robot Battery: the automaton representing the behavior of
the battery is pictured in Fig. 5. The time-dependent variable
in the model is the charge value C . The charge and discharge
cycles are approximated assuming 3 phases for each cycle.
A phase is characterized by a coefficient that defines how
C will change with time, and a charge threshold Cth that
determines when the the following phase must start. The
identified discharge phases, modeled by as many locations,
are: 100% to 80% (b100,80), 80% to 20% (b80,20), 20% to
0% (b20,0). The dual locations modeling the charging phases
are: b0,20, b20,80, b80,100. The coefficients in the linear time-
dependency correspond to parameters: −r1 and r1 in b100,80
and b20,80, −r2 and r2 in b80,20 and b80,100, −r3 and r3
in b20,0 and b0,20. The location bempty models the situation
where the battery is fully discharged and the robot cannot
move again without human intervention. The switch from a
discharging location to the corresponding charging one and
viceversa occurs when the orchestrator decides that a robot
needs to start or stop recharging, firing events bstart and bstop.
The automaton includes a dense counter for the battery charge
(variable bch). The update can be found in Eq.2, where rx is
the charge/discharge coefficient for the current phase.

ξB = b′ch := bch + rx · Tpoll, rx ∈ {±r1,±r2,±r3} (2)

Human-Follower: the model of the first pattern introduced in

Fig. 5: Battery automaton.

Section IV-A is depicted in Fig. 6. We capture two operating
conditions for the human: 1) location hidle models the case
in which the human is still; 2) location hbusy corresponds
to the situation in which the human is moving. The time-
dependent variables are hdist, which represents the distance
covered by the human, and F , which corresponds to the value
of the fatigue at a generic time instant. Time-dynamics are
given in Eq.3: hdist is either constant or increases linearly
with time (with coefficient v, which is the human’s constant
speed) when the human is moving, whereas F adheres to the
model introduced in [22], as explained in Section III.

hidle =

{
Ḟ = −F(τ)µe−µt
ḣdist = 0

hbusy =

{
Ḟ = F(τ)λe−λt

ḣdist = v
(3)

The switch from hidle to hbusy, and back, occurs when the
orchestrator orders it or as a result of the human’s free will.
In the first case, the orchestrator fires hstart or hstop. This
leads to a probabilistic transition (the dashed arrows in Fig.
6) whose possible outcomes represent the human obeying the
order, thus reaching the prescribed destination, or disobeying,
thus staying in the same location. The transition is governed
by the two constant weights obey and disobey. As for the
second case, sample points of the free will random variable X
are observations of local variable fw . A success corresponds
to the decision of the human to start or stop freely, which
occurs when fw > FWth, where FWth is a constant threshold.
Since fw is updated every Tpoll instants with a random value
∈ [0, FWmax], the probability of making an autonomous
decision is E[X ] = p = 1 − FWth

FWmax
. Therefore, if the p-

value is close to 1 humans will behave more erratically, and
vice versa if it is close to 0. Location hfaint models the case
in which the human is too exhausted to proceed. Therefore, it
is reached when F ≥ 1, where 1 corresponds to the maximum
value of fatigue, and it causes the urgent channel [7] hfaint to
immediately fire. The dense counters are hfatigue , and hposx ,
hposy , θh for Cartesian coordinates and orientation of the
human with respect to the x-axis. The update is given in Eq.4:
hfatigue adheres to the model in Eq.3, while hposx , hposy are
the projections of the displacement since last update.

ξH =


h′fatigue := 1− (1− hfatigue)e

−λTpoll , if hbusy

h′fatigue := hfatiguee
−µTpoll , if hidle

h′posx := hposx − vTpoll · cos(θh)
h′posy := hposy − vTpoll · sin(θh)

(4)

Fig. 6: Human-Follower automaton.



Fig. 7: Orchestrator automaton.

Orchestrator: the automaton is displayed in Fig. 7. The
purpose of this component is to orchestrate the synchroniza-
tion among the other agents and drive the system towards
mission accomplishment. This is realized by monitoring the
sensor outputs described in previous sections, and deciding
whether the current state of the system requires a certain event
to be fired. We have identified three operational paradigms
implemented by as many sub-machines: r recharge controls
the recharging phase of the robot; r move controls the start
and the end of the robot movement, when, based on the
interaction pattern between the human and the robot carrying
out the service, it is initiated by the robot; h move controls the
dual case, in which the movement is initiated by the human.
The orchestrator features both r move and h move since both
designs can be included in the same scenario. We describe the
high-level behavior of the automaton, without delving into the
details of the individual sub-machines. Sub-machines in Fig.
7 are endowed with ports: these are not part of the formalism,
and should only be interpreted as visual representation of the
transitions entering and leaving the component. The behavior
of the orchestrator is governed by clock tact that triggers the
system monitoring routine (identified by ξO on the transition
to ochk5

in Fig. 7) every Tint time instants. If one of the guards
γstart in Eq.5 is true when the automaton is in location ochk5 ,
the corresponding sub-automaton is entered, otherwise it goes
back to oidle.

γstart =


ridle ∧ bch < Bth1

(r recharge)

ridle ∧ ¬human leaderid (r move)

hbusy ∧ human leaderid (h move)

(5)

The recharging routine starts when a robot is idle and its
current battery charge bch is below a threshold Bth1

. The
r move sub-machine is entered to initiate the robot movement,
when the robot is idle and the human is not a leader. If the
human is a leader and starts moving, hence its current location
is hbusy, the orchestrator enters sub-machine h move. Upon
entering r recharge, the orchestrator fires rstart to force the
robot to reach the recharge station, then rstop and bstart when
the dock has been reached and the robot can start recharging.
Upon entering r move, the orchestrator fires rstart, and hstart

if the human is a follower. Upon entering h move, rstart is
triggered so that the robot can follow the human. When one
of the guards γstop in Eq.6 is true, the orchestrator switches
to oidle from a location in the active sub-machine.

γstop =


bch > Bth2

∧ rrec (r recharge)

hfatigue > Hth1
∨ bch < Bth1

(r move)

hidle (h move)

(6)

The robot stops recharging, thus bstop is fired, when variable
bch is above a desirable threshold Bth2

. The robot stops
moving (channel rstop) when human fatigue hfatigue exceeds
a maximum tolerable value, described by constant Hth1

, or
when the battery charge drops below the value Bth1 that
calls for recharging. Finally, the orchestrator exits sub-machine
h move when the human stops moving, and it terminates the
robot motion with event rstop. The two locations ofail and
osuccess correspond to the end of the whole mission with failure
or success. The condition to reach ofail can be found in Eq.7.

γfail = bch(t) ≤ 0 ∨ hfatigue(t) ≥ 1 (7)

Failure occurs if the battery charge drops to 0, hence the robot
cannot recover autonomously, or if the human fatigue exceeds
1. Location osuccess is reached when condition γsuccess =
∀h hserved is true. While running the system monitoring
routine, the orchestrator checks whether the current service has
been completed: if so, the boolean variable hserved is set to 1,
0 otherwise. The mission is accomplished when all humans
in the scenario have been served. Therefore, only r move

and h move have outgoing transitions towards osuccess, since
recharging the robot does not contribute to the cause.

VI. EXPERIMENTAL RESULTS

We present experimental results that prove the effective-
ness of our approach. We have selected the JSON format
for the user input. The instances for each experiment are
specified using a constructor-like notation, with the classes and
attributes in Fig. 3: Human(id, v,p), Robot(id, vmax, amax),
Battery(id,Cstart). Note that v and vmax are expressed in
[cm/s], amax in [cm/s2], and Cstart in percentage points.
The portion of the model that is not customizable by the
user is stored in an XML template. The tool automatically
processes the input of the user to generate a verification-
ready version of the HA+ model. The tool selected for the
verification is Uppaal and its extension for SMC [7] [8]. In
this work, we use Uppaal, version 4.1.24, to implement the
automata, and run SMC experiments. As for the latter, we
keep the default set of statistical parameters. For each of the
experiments presented in the following, we want to determine
the probabilities of mission success and failure, i.e., the PCTL
formulae in Eq.8 with probability bounds θ1, θ2 and time-
bound τ which represents the maximum length of paths.

P≤τ≥θ1(� ofail), P≤τ≥θ2(� osuccess) (8)

The experiments are run on a machine equipped with 128
cores, 515GB of RAM and Debian Linux version 10. Perfor-
mance data can be found in Table II.



(a) (b)

Fig. 8: Diagrams representing the outcome of Experiment 1 with sufficient battery charge. The red line is the robot trajectory, whereas the green and blue
lines correspond to h1 and h2 trajectories. The x marks the initial locations. Intermediate points are marked with • and numbered in order of occurrence.

(a) (b)

Fig. 9: Plots of Experiment 2 run without fatigue monitoring in (a), and with the active orchestrator in (b). The blue line represents the human fatigue,
whereas the red steps correspond to mission failure in (a), and success in (b).

The first experiment is run with the floor layout
in Fig. 8, and the following configuration: (a) h1:
id = 1, v = 5,p = leader with destination (1300, 100);
(b) h2: id = 2, v = 10,p = leader with destination
(1300, 500); (c) r1: id = 1, vmax = 20, amax = 5; (d) b1:
id = 1,Cstart = 20. Moreover, we set λ = µ = 0.005
(see Eq.3) for full exhaustion in approximately 15min of
non-stop walking, and r1 = 0.035, r2 = 0.008, r3 = 0.055
which amount to a full discharge cycle in approximately
2.5h. With this value of charge, the property in Eq.8 is
verified with θ1 = 0.9 and τ = 220s. This occurs because the
battery charge drops to 0 before both humans have had the
time to reach their destinations, as per the failure condition
in Eq.7. In this case, the orchestrator cannot stop the motion
to recharge the robot because the human is leading. The
robot is free to start moving towards the recharge station (in
(250, 400) as in Fig. 8) only after h1 has been served. At
that point, the distance to cover exceeds the battery capacity
leading to mission failure. The refinement chosen by the
user could be the deployment of a different robot with more
battery charge, thus: (a) b1: id = 1,Cstart = 50, while all the
other elements are left unchanged. With this modification, the
property in Eq.8 is verified with θ2 = 0.9 and τ = 280s. Fig.
8 depicts the resulting trajectories: h1 reaches the destination
point (point 2 in Fig. 8a), followed by the robot, and then
h2 can start. The robot then correctly starts from its current
position (point 2 in Fig. 8b), and moves back towards h2.
When they meet (point 3 in Fig. 8b) the robot starts following
h2 until they reach the destination (point 4). This proves that
the orchestrator is able to manage the robot recharging policy

coherently with the interaction patterns. It also shows that
the failure of the mission can be predicted, but the user can
refine the model to obtain a successful result.

For the second experiment, we have used the same
floor plan in Fig. 8 and the following setting: (a) h1:
id = 1, v = 19,p = follower with destination (1300, 500);
(b) r1 and b1 are the same as for the first experiment. We
set λ = µ = 0.05, which cause full-exhaustion in about 90s
of non-stop walking. In this case, we have tweaked the fatigue
model parameters and temporarily disabled the monitoring
routine of the orchestrator to show that this causes the failure
of the mission due to human over-exhaustion. In particular,
the property in Eq.8 is satisfied with θ1 ∈ [0.874, 0.974] and
τ = 100s. If the orchestrator is re-activated, the property
in Eq.8 is verified with θ2 ∈ [0.77, 0.87] and τ = 160s,
thus the chances of success rise to an average of 82%. As
Fig. 9(a) shows, in the first case the human is subject to a
single fatiguing cycle since the robot is never forced to stop.
The second plot in Fig. 9(b) shows several fatigue/recovery
cycles, which means that the orchestrator stops the robot
when the fatigue exceeds threshold Hth1

= 0.7. These results
prove that the orchestrator is properly designed and that it is
indispensable to achieve the goals laid down for this work.
In the last experiment, we show a successful execution of the
patterns Human Follower and Human Recipient . The set-
ting is the following, the floor plan is the same as in previous
cases: (a) h1: id = 1, v = 15,p = follower with destination
(700, 300); (b) h2: id = 2, v = 10,p = recipient with object
location (1300, 500). All the other instances are the same
as in previous experiments. The robot leads h1 to the first



TABLE II: Experiments Performance Data

Exp. States Time [ms] Virt. Mem. [KiB] Res. Mem. [KiB]

1 (fail) 648046 153860 166040 124772
1 (scs) 730597 173610 166032 122768
2 (fail) 224826 53620 166140 120844
2 (scs) 4406482 1045290 166136 123944

3 948027 226350 166696 123636

destination, then it fetches the object in the specified location,
and returns to the position of h2, who has never moved away
from the starting location. The battery charge is sufficient to
execute both tasks and neither of the humans exceeds the
maximum fatigue threshold. The property in Eq.8 is verified
with θ2 = 0.9 and τ = 360s.

In conclusion, the tool is able to provide precise predictions
about the scenario based on sound mathematical techniques.
The reliability of the outcome is highly dependent on the
accuracy of the physiological models and on the chosen pa-
rameter values. In the future, we plan on improving this aspect
of the work by introducing a data-driven model refinement
loop. Given the nature of model-checking, verification times
increase exponentially with complex scenarios. Nevertheless,
we have tested the approach with realistic examples and
obtained satisfactory results.

VII. CONCLUSION

In this paper we have presented a model-driven approach for
the analysis of human-robot interaction scenarios in healthcare
settings, based on SMC experiments. In the future, we plan to
extend the model in Section V to all the patterns described in
Section IV-A, to cover a wider range of applications. There are
also two future development directions for the overall approach
presented in Section IV. Firstly, we envisage the creation of
a Domain-Specific Language (DSL) that designers can use
to model the mission, with finer-grained details than what is
possible at the moment. The DSL could include a more refined
model of the human and a richer set of physiological factors.
The designer could choose among different human profiles
that determine how these variables change over time. On the
other hand, we plan on developing the deployment phase
of the toolchain. The robot-controller, i.e., the orchestrator,
could be transformed into executable code with an automated
code generation procedure. This would allow us to test how
effectively the robot can interact with real people, and whether
they feel like, given the human-oriented nature of the model,
their needs are indeed being accomodated.
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