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Abstract—In order to fully exploit the advantages inherent
to cooperating heterogeneous multi-robot teams, sophisticated
coordination algorithms are essential. Time-extended multi-robot
task allocation approaches assign and schedule a set of tasks to
a group of robots such that certain objectives are optimized and
operational constraints are met. This is particularly challenging
if cooperative tasks, i.e. tasks that require two or more robots
to work directly together, are considered. In this paper, we
present an easy-to-implement criterion to validate the feasibility,
i.e. executability, of solutions to time-extended multi-robot task
allocation problems with cross schedule dependencies arising
from the consideration of cooperative tasks and precedence
constraints. Using the introduced feasibility criterion, we propose
a local improvement heuristic based on a neighborhood operator
for the problem class under consideration. The initial solution is
obtained by a greedy constructive heuristic. Both methods use
a generalized cost structure and are therefore able to handle
various objective function instances. We evaluate the proposed
approach using test scenarios of different problem sizes, all
comprising the complexity aspects of the regarded problem. The
simulation results illustrate the improvement potential arising
from the application of the local improvement heuristic.

I. INTRODUCTION

In recent years the deployment of multiple robots working

together towards a common goal has gained increasing atten-

tion in various application domains such as agriculture [1],

emergency assistance [2], cleaning work [3] and extraterres-

trial exploration [4]. Multi-robot teams provide many advan-

tages compared to single-operating robots. Tasks can be per-

formed in parallel and the robustness of the system as a whole

increases since malfunctions of single robots can possibly be

compensated by the remaining robots. Furthermore, a team

of heterogeneous robots can create synergies that cannot be

achieved by an individual robot or even a homogeneous team.

This effect is intensified if also cooperative tasks are consid-

ered, i.e. tasks which can only be performed by two or more

robots working together. In order to fully exploit these benefits,

sophisticated multi-robot task allocation (MRTA) algorithms

are of great importance [5], [2, p. 1]. Given a set of tasks

to be performed by a known set of robots, these algorithms

assign each task to a capable robot or a team of robots and

schedule the tasks such that an executable solution results

and an objective function is optimized. In many practical

applications, this has to be done with respect to precedence

constraints that exist between tasks [6], e.g. if the outcome of

one task is a prerequisite for the execution of another task.

MRTA problems are often categorized using the taxonomy

introduced by Gerkey and Matarić [5]. They differentiate

for one thing between single-task (ST) and multi-task (MT)

robots, dependent on whether robots can execute only one task

at a time or multiple tasks simultaneously, and for another

thing between single-robot (SR) and multi-robot (MR) tasks,

dependent on whether tasks only require one robot for their

execution or also cooperative tasks are considered. Instanta-

neous assignment (IA) problems are only concerned with the

assignment problem whereas time-extended assignment (TA)

problems additionally consider the scheduling aspect.

MRTA approaches explicitly considering multi-robot tasks

have been proposed e.g. by Zhang and Parker [6] who intro-

duce a heuristic approach incorporating multi-robot tasks and

precedence constraints. In [7], they investigate the question

of coalition formation, i.e. dynamically finding a team of

robots capable of executing a specific task. Both approaches

are only concerned with task allocation and do not consider

task scheduling. The time-extended problem is covered in [8]

where they introduce heuristics to solve the ST-MR-TA prob-

lem. The drawback of the presented approaches is that they

only allow for a specific objective function and no precedence

constraints are considered.

Liu and Kroll [9] introduce a memetic algorithm with a
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local search improvement heuristic for problems with single-

robot and two-robot tasks also using a fixed objective function.

They are the first to apply an improvement heuristic and

additionally give executability constraints inherent to two-

robot tasks. The criteria they state for detecting and repairing

infeasible solutions though are limited to the two-robot task

problem and do not include the consideration of precedence

constraints.

Local improvement heuristics used to improve initial solu-

tions based on various existing neighborhood definitions are a

common approach in the field of vehicle routing [10], [11]. In

this field of research, similar kinds of problems like in MRTA

emerge. The problem under consideration is to route a fleet

of vehicles to serve distributed customer requests such that a

given objective is optimized and certain constraints are met.

Also extensions to consider heterogeneous fleets of vehicles

differing in velocity, capacity or the ability to serve certain

types of customer requests have already been made (cf. [12],

[13], [14]). Given the similarities to the properties of MRTA

problems, a direct application of the existing neighborhood

operators appears conceivable. Nevertheless, this might lead to

infeasible solutions arising due to a non-explicit consideration

of cross-schedule dependencies. These comprise dependencies

between the schedules of individual robots which influence the

objective function value [15]. They arise for example from the

consideration of cooperative tasks or from waiting times due

to precedence constraints.

In this paper, we propose a two-step solution approach

to heterogeneous multi-robot task allocation and scheduling

problems with cross schedule dependencies arising from co-

operative tasks and precedence constraints. As a basis for our

solution approach we introduce an easy-to-verify criterion for

the feasibility, i.e. executability, of solutions to ST-MR-TA

problems with cross-schedule dependencies. This allows for

an adaption of the relocate neighborhood operator well known

in vehicle routing [16] to make it applicable to the considered

class of MRTA problems. Using the neighborhood operator, we

apply an improvement heuristic to improve the initial solution

found by a constructive heuristic. The constructive heuristic

makes locally optimal choices and works similar to the Min-

StepSum approach presented by Zhang and Parker [8], but

is enhanced to handle precedence constraints. Both heuristics

use an introduced generalized objective function structure,

thus being applicable to many different objective function

instances.

This paper is organized as follows: We introduce the model-

ing and notation used within this paper and give the formal

problem statement in Section II. In Section III we introduce

a feasibility definition for mission plans and state an easy-

to-verify criterion for its adherence. The solution approach

including a greedy constructive heuristic and an improvement

heuristic for the heterogeneous multi-robot task allocation and

scheduling problem with cooperative tasks and precedence

constraints is given in Section IV. We present simulation

results in Section V and give a conclusion in Section VI.
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Fig. 1. Schedule of a robot represented as directed path graph.
Task nodes are represent as circles, the pentagon illustrates the starting
node vs

1
and the triangle the final node ve

1
of the robot r1. The arcs

(vs
1
, t1)1, (t1, t2)1, (t2, t3)1and (t3, ve1)1 determine the task sequence for

robot r1.

II. MODELING AND PROBLEM FORMULATION

We first introduce the notation and modeling used through-

out the paper before giving the formal problem statement.

A. Notation and Modeling

We consider a set of tasks T = {t1, . . . , tn}, n ∈ N, and

a set of robots R = {r1, . . . , rm}, m ∈ N. A set of robot

alliances A = {a1, . . . , ak}, k ∈ N, k ≥ m, with aj ⊆ R,

∀j ∈ {1, . . . , k}, specifies the possible robot coalitions.

For every robot rl ∈ R its sought schedule can be rep-

resented as a directed path graph Gl = (Vl, El). The set of

vertices Vl = {vsl , Tl, v
e
l } contains all tasks Tl ⊆ T that are

assigned to any alliance aj robot rl is part of as well as one

starting node vsl and one end node vel . If a task ti is assigned

to an alliance aj of more than one robots, it is considered

as a vertex in the path graphs of all participating robots, i.e.

ti ∈ Vl, ∀ l : rl ∈ aj . The nodes vsl and vel can be related

to a previously defined state or position of the robot rl at

the beginning and the end of the plan execution, respectively.

Furthermore, each task ti ∈ T can be associated with specific

predefined properties, e.g. a position for its execution. The

sequence in which robot rl performs the assigned tasks is

determined by the edges (v, w)l ∈ El with v, w ∈ Vl. An

example of a directed path graph representing the schedule of

a robot r1 is presented in Fig. 1.

The overall solution, denoted as mission plan M , is de-

termined by the union of the robots’ individual schedules,

i.e. M = (V,E) with V =
⋃

l∈M

Vl, E =
⋃

l∈M

El, where M

denotes the index set of the robots M := {1, . . . ,m}. We

define the set Ein(v) to contain all incoming edges into a

vertex v ∈ V , i.e. Ein(v) includes all edges (w, v)l with w ∈ V

and l ∈ M.

When generating the mission plan M , precedence con-

straints between the tasks might have to be consid-

ered. They are specified by means of a known function

C : T × T → {0, 1} with C(ti, tj) = 1 if task ti must be fin-

ished before the execution of task tj , with ti, tj ∈ T , ti 6= tj ,

and C(ti, tj) = 0 if no such constraint exists. The precedence

constraints can be included as directed edges (ti, tj)C into

the mission plan M , if Cij = 1. We denote the mission plan

extended by the set EC containing all precedence constraint

arcs as M+ = (V,E+) with E+ = E ∪ EC . In Fig. 2 an

example of an extended mission plan with two robots, four
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Fig. 2. Example for an extended mission plan M+ with four tasks, two robots
and a fulfilled precedence constraint. Task t2 is performed by a coalition of the
robots r1 and r2. The black arc (t1, t3)C represents a precedence constraint
specifying that task t1 must be performed before task t3.

tasks (of which one is performed by a coalition of both robots)

and a precedence constraint is depicted.

Analogous to Ein(v) we define E+
in (v) to be the augmented

set of incoming edges to a vertex v ∈ V , additionally

considering the precedence constraint edges in EC , i.e. E+
in (v)

includes Ein(v) and all edges (w, v)C with w ∈ V . Note that

with the knowledge of E+
in (v) all predecessor nodes of v are

known.

B. Generalized Cost Structure

The objective of this paper is to optimize mission plans

while being able to consider cooperative tasks and precedence

constraints. Therefore, an evaluation criterion is required. We

present a generic cost structure considering both costs that are

static and dynamic with respect to the optimization problem.

This allows for the application of the presented solution

approach on a vast number of different individual objective

functions which might be preferable for different problem

instances.

Static costs cstat : T × A → R+ ∪ {∞}, cstat = cstat(ti, aj)
are associated with an alliance aj ∈ A executing task ti ∈ T

and can be determined for every task-alliance pair prior to

the optimization. For example, static costs may consider the

execution duration or quality of alliance aj performing task ti.

Since the edges Ein(ti) incoming to vertex ti determine the

alliance aj assigned to task ti, the static costs can also be

stated as cstat(ti, Ein(ti)).

Cost components cdyn that are dynamic with respect to

the optimization allow for the consideration of additional

costs which might depend on the task sequence within the

mission plan or on the precedence constraints. Examples for

dynamic costs include moving durations and transport energy

as well as idle times resulting from waiting on the coalition

partners or on precedence constraints to be fulfilled. For a

specific vertex v ∈ V the dynamic costs depend on the

incoming augmented edges, i.e. cdyn : V × E+ → R+,

cdyn = cdyn(v, E
+
in (v)).

Remark. The dynamic costs can easily be augmented to

additionally take into account explicitly time dependent cost

components, i.e. cdyn(v, E
+
in (v), τ) with τ being the time. Time

dependent cost components might for example arise from the

consideration of time window constraints.

C. Problem Statement

By means of the introduced notation, model and cost

structure we are able to state the key problem of this paper:

Problem 1. Let the sets of robots R and robot alliances A and

the set of vertices V = {vs1, . . . , v
s
m, t1, . . . , tn, v

e
1, . . . , v

e
m},

as well as the precedence constraint edges EC be given.

We want to find directed edges E such that the resulting

mission plan M = (V,E) is connected and feasible and an

objective function J dependent on the static and dynamic cost

components, i.e.

J(M+) = J
(

cstat(ti, Ein(ti)), cdyn(v, E
+
in (v))

)

for all ti ∈ T, v ∈ V
(1)

is minimized.

As stated in Problem 1, only feasible mission plans are

sought. We define the feasibility of mission plans in the

following section.

III. FEASIBILITY OF MISSION PLANS

The feasibility of mission plans is defined as follows:

Definition 1 (Feasibility of a mission plan). A mission plan M

is feasible, if it can be conducted in finite time. The feasibility

of a mission plan comprises the following aspects:

D1.1 The alliance aj ∈ A assigned to any task ti ∈ T by the

mission plan M , must be capable of its execution.

D1.2 The mission plan M must represent a topological order.

D1.3 The precedence constraints defined by C

a) must be consistent with one another and

b) must be fulfilled by the mission plan M .

The necessity of aspect D1.1 is obvious, since the execution

time of a task will be never-ending if the alliance assigned to it

is incapable of its accomplishment. We present the following

assumption as an easy-to-implement method to check for the

first feasibility aspect D1.1.

Assumption 1. We assume the static cost components for all

ti ∈ T , aj ∈ A, to be of the form

cstat(ti, aj) : T ×A→







∞
if alliance aj is incapable to

execute task ti,

R+ else.

We furthermore present Lemma 1 as an important insight to

examine the aspects D1.2 and D1.3 of Definition 1 necessary

for the feasibility of a mission plan.

Lemma 1. If the mission plan M is feasible, then the directed

graph M+ of the feasible mission plan M extended by the

precedence constraint edges EC is acyclic.

Proof: A topological ordering of a directed graph is

possible if and only if the graph is acyclic (cf. [17, Ch. 4.2]).

Therefore, D1.2 holds if and only if M is acyclic. For the same

reason, the precedence constraints fulfill D1.3.a if and only

if the graph GC = (V,EC) only containing the precedence

constraint edges is acyclic. When adding the precedence



constraint edges EC to M , which results in the augmented

mission graph M+, two cases have to be considered regarding

the feasibility of M :

• The sets of robots assigned to the tasks ti, tj ∈
T which are related by a precedence constraint

edge (ti, tj)C ∈ EC are disjoint. In this case, the

edge (ti, tj)C does not add a cycle to the acyclic graph M

and the precedence constraint defined by (ti, tj)C can al-

ways be fulfilled if the alliance assigned to task tj ensures

to wait with its execution until task ti is finished. Capable

alliance-task-assignments (D1.1) ensure the potential time

increment to be bounded.

• The robot alliances assigned to the tasks ti, tj ∈ T

which are related by a precedence constraint

edge (ti, tj)C ∈ EC are not disjoint. The edge (ti, tj)C
only closes a cycle in M+, if at least one robot rl ∈ R

assigned to both tasks ti and tj violates the precedence

constraint, which means that D1.3.b would not be

fulfilled and M would be infeasible.

Using the results of Lemma 1 and combining it with As-

sumption 1, Lemma 2 gives necessary and sufficient conditions

for the feasibility of mission plans according to Definition 1.

Lemma 2 (Feasibility of a mission plan). Let Assumption 1

hold. Then, a mission plan M is feasible w.r.t. Definition 1 if

and only if

L2.1 the static costs of all task vertexes ti ∈ T are finite, i.e.

cstat(ti, Ein(ti)) <∞, ∀ti ∈ T,

L2.2 and the directed graph of the augmented mission plan

M+ is acyclic.

Proof: With the results of Lemma 1, L2.2 gives a

necessary and sufficient condition for the feasibility aspects

D1.2 and D1.3 to be fulfilled. Since Assumption 1 holds,

L2.1 gives necessary and sufficient condition to ensure that

M fulfills D1.1.

IV. SOLUTION APPROACH

Before presenting our two-step solution approach compris-

ing a constructive and an improvement heuristic in detail, we

assume the following assumptions to hold:

Assumption 2. For a given instance of Problem 1 for every

task ti ∈ T at least one capable alliance aj ∈ A with

cstat(ti, aj) ∈ R+ exists.

Assumption 3. For a given instance of Problem 1 the

graph GC = (V,EC) is acyclic.

Assumption 3 ensures D1.3.a to be fulfilled by the a priori

given precedence constraints. Thus, Assumptions 2 and 3 are

made to assure meaningful problem instances.

A. Constructive Heuristic

The constructive heuristic iteratively calculates the effect

every new assignment would have on the objective function

and chooses the one that increases the objective function the

least until all tasks ti ∈ T have been assigned. The idea is

similar to the MinStepSum algorithm introduced by Zhang

and Parker [8], but we expand it to handle the generalized

objective function given by (1). Furthermore we augment the

method to additionally allow for the direct consideration of

precedence constraints. To do so, we split the tasks into the

sets of executable tasks Λ and non executable tasks Λ with

Λ ∩ Λ = ∅. The set Λ contains all tasks with a nonempty set

of unassigned precedence tasks. The two sets are initialized

with elements ti, where

ti ∈

{

Λ if C(t, ti) = 0 ∀ t ∈ T

Λ else.
(2)

The detailed constructive heuristic is given in Algorithm 1

and works as follows: The algorithm is given the sets R,

A, and V (divided into the sets V \T and Λ, Λ which are

initialized according to (2) such that Λ∪Λ = T ) as well as the

precedence constraints EC . For every robot rl ∈ R, the path

graph Gl is initialized with an empty graph containing only

the robots initial vertex vsl . Using these initial path graphs, the

mission plan is initialized and the initial objective function

is calculated (lines 1.1 to 1.5). For every not yet assigned

executable task ti ∈ Λ and every robot alliance aj ∈ A,

the increment of the objective function resulting from the

respective assignment is calculated by adding ti as leaf to

the path graphs of the respective robots and calculating the

objective function value increment for the resulting interme-

diate augmented mission plan M̃ (lines 1.8 to 1.16). Out of

all possible assignments the one with the smallest objective

function increment is chosen (lines 1.17 to 1.25) . The assigned

task is deleted from the set of executable tasks Λ and all tasks

from the set of non executable tasks Λ that became executable

with the most recent assignment are transferred to the set of

executable tasks Λ (lines 1.26 to 1.31). The procedure repeats

until all tasks have been assigned. The algorithm terminates

by adding the robots final nodes vel , ∀rl ∈ R, to the respective

robots’ path graphs and determining the resulting mission

plan Minit and the respective objective function value Jinit

(lines 1.34 to 1.40).

Remark. Assumption 2 implies that for every task ti ∈ T

an assignment will be found for which D1.1 is fulfilled. Fur-

thermore, the explicit consideration of precedence constraints

by means of the sets Λ and Λ guarantees their adherence

according to D1.3.b and Assumption 3 ensures D1.3.a such

that also D1.3 will be fulfilled by the mission plan resulting

from the constructive heuristic. The adherence of D1.2 is

ensured by the fact that all newly assigned tasks are added as

leafs to the path graphs of the respective robots which means

that tasks assigned to coalitions of several robots are assured

to have the same sequence within the individual path graphs



Algorithm 1 Constructive Heuristic

Require: R,A,Λ,Λ, V \T,EC

1: for all rl ∈ R do ⊲ Initialization: path graphs of robots

2: El ← ∅, Vl ← {vsl }, Gl = (Vl, El)
3: end for

4: M ← ∪l∈MGl ⊲ Initialize: mission plan

5: J ← J(M+) ⊲ Initialize: objective function

6: while Λ 6= ∅ do

7: ∆min ←∞ ⊲ Initialize: objective function increment

⊲ For every executable tasks-alliance pair calculate

cost increment of the assignment:
8: for all ti ∈ Λ do

9: for all aj ∈ A do

10: for all rl ∈ aj do

11: vleaf ← {v ∈ Vl : ∄w ∈ Vl : (v, w)l ∈ El}
12: Ṽl ← {Vl, ti}, Ẽl ← {El, (vleaf, ti)l}
13: G̃l = (Ṽl, Ẽl)
14: end for

15: M̃ ← ∪l∈MG̃l

16: J∆ = J(M̃+)− J

17: if J∆ ≤ ∆min then

18: Mmin ← M̃ ⊲ Remember best assignment

19: ∆min ← J∆ ⊲ Remember smallest objec-

tive function increment
20: tmin ← ti ⊲ Remember assigned task

21: end if

22: end for

23: end for

24: M ←Mmin

25: J ← J +∆min

⊲ Check if tmin was the only remaining precedence

constraint to any ti ∈ Λ:
26: for all ti ∈ Λ with C(tmin, ti) = 1 do

27: if C(t, ti) = 0 ∀t ∈ {Λ ∪ Λ}\{tmin} then

28: Λ← {Λ, ti} ⊲ Add ti to Λ
29: Λ← Λ\{ti} ⊲ Delete ti from Λ
30: end if

31: end for

32: Λ← Λ\{tmin} ⊲ Delete tmin from Λ
33: end while

34: for all rl ∈ R do

35: vleaf ← {v ∈ Vl : ∄w ∈ Vl : (v, w)l ∈ El}
36: Vl ← {Vl, v

e
l }, Ẽl ← {El, (vleaf, v

e
l )l}

37: Gl = (Vl, El)
38: end for

39: Minit ← ∪l∈MGl

40: Jinit ← J(M+
init)

41: return Minit, Jinit

of the robots. Therefore the solution found by the constructive

heuristic given in Algorithm 1 will always be feasible w.r.t

Definition 1.

Algorithm 2 Improvement Heuristic

Require: Minit, Jinit, R,A,C

⊲ Initialization:

1: Jbest ← Jinit

2: Mbest ←Minit

3: while Stopping criterion not fulfilled do

4: for all ti ∈Mbest do

5: for all al̃ ∈ A do

6: if cstat(ti, al̃) <∞ then

7: Determine all possible reassignments

of ti to the path graphs Gl̃ : rl̃ ∈ al̃
8: for all possible reassignments M̃ do

9: Check whether the resulting aug-

mented mission plan M̃+ is acyclic
10: if M̃+ is acyclic then

11: Calculate J(M̃+)
12: if J(M̃+) < Jbest then

13: Mbest ← M̃

14: Jbest ← J(M̃+)
15: end if

16: end if

17: end for

18: end if

19: end for

20: end for

21: end while

22: return Mbest, Jbest

B. Improvement Heuristic

We apply a local search to further improve the initial

mission plan Minit found by the constructive heuristic. In

every iteration the currently best solution is modified using a

neighborhood operator which is based on the relocate neigh-

borhood first introduced by Savelsbergh and Goetschalckx [16]

for the routing problem of a homegeneous fleet of vehicles.

The neighborhood operator given in Definition 2 expands the

original relocate operation to be applicable to mission plans M

for heterogeneous robotic teams with cooperative tasks and

precedence constraints.

Definition 2 (neighborhood of a mission plan). The neigh-

borhood of a mission plan M contains all feasible mission

plans M̃ that result from relocating one task ti ∈ T out of

the path graphs of the alliance aj it is assigned to by M , to

any position of the path graphs of the robots of any capable

alliance al̃ ∈ A.

Using the neighborhood of Definition 2 and the results of

Lemma 2, the local search improvement heuristic is given in

Algorithm 2. The mission plan and the objective function

are initialized with the results of the constructive heuristic

(lines 2.1 to 2.2). In every iteration, the neighborhood of the

currently best mission plan is determined and evaluated and

the best neighboring mission plan is chosen. To determine and

evaluate the neighborhood, for all tasks ti ∈ T , all possible



reassignment positions within the path graphs of the robots

of every alliance al̃ ∈ A that is capable of the execution

of task ti (i.e. the static costs cstat(ti, al̃) are bounded) are

determined (lines 2.4 to 2.7). To assure the feasibility of

the resulting new mission plan M̃ , Lemma 1 is applied and

it is determined whether the augmented mission plan M̃+

contains cycles (line 2.9). If M̃+ is acyclic and M̃ therefore a

feasible neighboring mission plan, its objective function value

is determined and assessed in comparison to the currently

best plan found (lines 2.10 to 2.16). This procedure repeats

until a stopping criterion is fulfilled, e.g. the improvement in

the objective function J between to iterations falls below a

previously determined threshold or a previously determined

maximum number of iterations is reached.

To conduct the acyclicity check (line 2.9), any cycle search

for digraphs can be applied. Since only the statement about

acyclicity and not the potentially existing cycles are of interest,

we implemented an algorithm based on iteratively removing

leafs from the augmented mission plan M+, similar to the

algorithm of Kahn [18].

V. SIMULATION RESULTS

The experimental setup and the structure of the objective

function used to evaluate the introduced MRTA approach are

described in the following section followed by the presentation

and discussion of the simulation results.

A. Experimental Setup

To evaluate the proposed solution approach we set up a

generalized simulation framework for MRTA problems with

precedence constraints and cooperative tasks. It consists of

four different types of tasks and three different mobile robots.

Each task type can be processed by a subset of the considered

alliances A = {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}, {r2, r3}}.
Based on the different task types we define six different

problem classes: 3A1BCD, 3A2BCD, 3A3BCD, 6A1BCD,

6A3BCD and 6A3BCD. The first number in these coded

problem classes describes the number of tasks of type A
whereas the second number denotes the number of tasks of

each type B, C and D. To indicate the type an individual task

belongs to, we add a superscript to the tasks ti. The index i

starting at 1 in ascending order is first assigned to all task of

type A followed be the tasks of type B, C and D. This results

for example in problem class 3A2BCD having the set of tasks

T3A2BCD = {tA1 , t
A
2 , t

A
3 , t

B
4 , t

B
5 , t

C
6 , t

C
7 , t

D
8 , t

D
9 }.

Let |A|, |B| and |C| denote the number of tasks of type A,

B and C, respectively, within a given problem class. For all

problem classes we assume the following types of precedence

constraints to exist exactly once.

• (tA1 , t
A
2 )C : The first type A task must be completed

before processing of the second type A task can begin.

• (tA3 , t
B
|A|+1

)C : The third type A task must be completed

before processing of the first type B task can begin.

• (tC|A|+|B|+1
, tD|A|+|B|+|C|+1

)C : The first type C task must

be completed before processing of the first type D task

can begin.

TABLE I
TASK DURATION IN (S) FOR EVERY TASK-ALLIANCE PAIR

Alliance Type A Type B Type C Type D
{r1} 100 ∞ ∞ ∞
{r2} 100 ∞ ∞ ∞
{r3} 100 ∞ ∞ 200

{r1, r2} ∞ 110 ∞ ∞
{r1, r3} ∞ 100 100 ∞
{r2, r3} ∞ ∞ ∞ 100

To generate specific problem instances for each problem

class, we consider every task to be associated with a position

for its execution. The individual task positions depend on the

task indices i and are located in the Cartesian plane at

x(ti) = L0 cos(θ0(ti)) + L1 cos(θ1) (3)

y(ti) = L0 sin(θ0(ti)) + L1 sin(θ1) (4)

with

L0 = 50m, L1 ∈ [0m, 10m],

θ0(ti) = 2π
i

|T |
+

π

|T |
, θ1 ∈ [0, 2π].

The values for L1 and θ1 are equally distributed with respect

to the given intervals over all problem instances of a certain

problem class. Thus, for each task of a problem class an area

is defined in which the corresponding task must be located.

By these definitions we aim to ensure a high comparability

of all the problem instances of a given problem class. For all

robots rl, l ∈ {1, 2, 3}, their starting node vsl is associated

with the initial position (0, 0) at the origin of the coordinate

system whereas the position of their end node vel is set to be

arbitrary.

B. Structure of the Objective Function

For every task-alliance pair the static cost component

cstat(ti, aj) represents the duration needed by alliance aj ,

j ∈ {1, . . . , 6} to perform task ti ∈ T . The respective values

dependent on the task types are given in Table I.

The dynamic cost components include:

• c1dyn(v, E
+
in (v)): For every edge (w, v)l ∈ E+

in (v) we

calculate the driving time τd,v(rl) needed by robot rl
to travel from the position of its previous node w to

the position of v. To calculate the individual traveling

times we use the euclidean distance between the positions

of w and v and the robot’s individual velocities v(rl),
which are set to be v(r1) = v(r2) = 2m s−1 and

v(r3) = 1m s−1.

• c2dyn(ti, E
+
in (ti)): For every edge (w, ti)l ∈ E+

in (ti) the

waiting time τw,ti(rl) of robot rl resulting from waiting

on coalition partners to reach the position of ti or on

precedence constraints for ti to be fulfilled is determined.

• c3dyn(v, E
+
in (v)): For every edge (w, v)l ∈ E+

in (v) we

calculate the euclidean distance dv(rl) driven by robot rl
to travel from the position of its previous node w to the

position of v.



In the objective function we consider the total mission

duration given by latest finishing time over all robots rl ∈ R,

i.e.

J1(M
+) = max

l∈{1,2,3}

{

∑

ti∈Vl

(cstat(ti, Ein(ti)) + τw,ti(rl))

+
∑

v∈Vl

τd,v(rl)

}

,

(5)

as well as the average finishing time of the robots

J2(M
+) =

1

3

3
∑

l=1

{

∑

ti∈Vl

(cstat(ti, Ein(ti)) + τw,ti(rl)) +

∑

v∈Vl

τd,v(rl)

}

(6)

and the sum over all driven distances divided by the number

of robots

J3(M
+) =

1

3

3
∑

l=1

∑

v∈Vl

dv(rl). (7)

This choice of weighting factors reflects the fact that in

many practical relevant scenarios the minimization of the total

mission duration comes with the highest priority.

To test and validate our approach we evaluated 100 problem

instances for each problem class on an Intel(R) Core(TM) i5-

8250U CPU at 1.6GHz and 8GB RAM with a Windows 10

operating system. Our optimization method was implemented

using MATLAB R2017b.

C. Results

For all tested instances of every problem class, our pro-

posed construction and improvement heuristic yield feasible

mission plans. Fig. 3 shows the resulting mission graph of an

optimized solution of an instance of problem class 3A2BCD.

Additionally to the requirements for assigning cooperative

tasks to capable alliances, which are denoted in Table I, this

problem class requires the precedence constraints (tA1 , t
A
2 )C ,

(tA3 , t
B
4 )C and (tC6 , t

D
8 )C to be fulfilled. The temporal behavior

corresponding to the mission graph depicted in Fig. 3 is

visualized in the Gantt chart in Fig. 4. Herein tasks of the

same type are colored identically. Waiting times are marked

with dashed black lines, while traveling times are represented

by thin lines in the same color as their succeeding task.

An assessment of the proposed improvement heuristic based

on the evaluation of 100 problem instances of each problem

class is given in Fig. 5. It can be seen that applying the

improvement heuristic leads to an average improvement of

around 10% and a maximum improvement of almost 30%.

For the smallest problem class 3A1BCD the average improve-

ment drops to approximately 1.5%.

The computation times for the developed constructive

heuristic and the neighborhood-based improvement heuristic

are given in Table II. It can be seen, that the constructive
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Fig. 3. Resulting mission graph representing a locally optimal solution of an
instance of problem class 3A2BCD. The colored paths are associated to a
robots individual schedule. Black edges illustrate precedence constraints.
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Fig. 4. Gantt chart corresponding to the mission graph depicted in Fig. 3.
Tasks of the same type are identically colored. Traveling times are represented
by thin lines and waiting times as dashed black lines. Gray arrows pointing
downwards indicate the starting time of each task.

heuristic finds valid solutions in 0.01s to 0.05s. The computa-

tional effort for the improvement heuristic increases noticeably

with increasing problem sizes.

D. Discussion

The simulation results show that the constructive heuristic

yields feasible initial solutions independent of the problem

size. The assessment of the improvement heuristic depicted

Problem Class Constr. Heuristic Impr. Heuristic

3A1BCD 0.01s 0.29s
3A2BCD 0.02s 4.10s
3A3BCD 0.04s 19.58s
6A1BCD 0.02s 2.00s
6A2BCD 0.04s 12.04s
6A3BCD 0.05s 36.58s

TABLE II
AVERAGE COMPUTATION TIMES OF CONSTRUCTION AND IMPROVEMENT

HEURISTIC
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Fig. 5. Average improvement of the optimized solution compared to the inital
solution depicted as blue dots. The minimum and maximum improvement are
represented as lower and upper bound of the blue lines.

in Fig. 5 reveals that applying the improvement heuristic

has a high potential to further improve the initial solution

especially for larger problem sizes. Nevertheless, there is a big

gap between the maximum and the minimum improvement of

different instances within a certain problem class. This is most

likely due to the fact that some initial solutions are close to a

local optimum, while others are not. This in turn influences the

improvement that can be achieved by subsequent local search.

To further improve our solution approach modifications to the

neighborhood operator based on our feasibility criterion and

the application of other improvement heuristics, that are able

to escape local optima, are conceivable.

VI. CONCLUSION

In this paper we presented new insights to the feasibility

of mission plans for time-extended multi-robot task allocation

and scheduling problems with cooperative tasks and prece-

dence constraints. We gave an easy-to-implement criterion

to verify the feasibility of mission plans and proposed a

constructive and an improvement heuristic working with a

generalized objective function structure. We demonstrated

the effectiveness of the proposed method by evaluating it

using several generalized problem classes of different size.

The results show that both the constructive as well as the

improvement heuristic yield feasible mission plans and that

the local search in average yields significant improvements. In

future research we will focus on more neighborhood-operators

based on the introduced feasibility criterion and apply more

sophisticated improvement heuristics to further improve the re-

sults. Furthermore, we will put focus on improving calculation

time to allow for solving larger problem instances.

REFERENCES

[1] C. Zhang and N. Noguchi, “Development of a multi-robot tractor system
for agriculture field work,” Computers and Electronics in Agriculture,
vol. 142, pp. 79–90, 2017.

[2] G. A. Korsah, “Exploring bounded optimal coordination for heteroge-
neous teams with cross-schedule dependencies,” Dissertation, Carnegie
Mellon University, Pittsburgh, USA, 2011.

[3] P. García, P. Caamaño, R. J. Duro, and F. Bellas, “Scalable task
assignment for heterogeneous multi-robot teams,” International Journal
of Advanced Robotic Systems, vol. 10, no. 2, p. 105, 2013.

[4] J. Schneider, D. Apfelbaum, D. Bagnell, and R. Simmons, “Learning
opportunity costs in multi-robot market based planners,” in 2005 IEEE

International Conference on Robotics and Automation (ICRA). Piscat-
away, N.J: IEEE, 2005, pp. 1151–1156.
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