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Abstract—How can  there be  Human-In-the-Loop-
Learning (HILL) if datasets aimed at building -classifiers
have ever more dimensions? We make two contributions. First,
we examine the few early results on the effectiveness of HILL
for building autonomous classifiers and report on our own
experiment that validates the merits of HILL. Second, we
introduce a HILL system (by using parallel coordinates) for
learning of decision tree classifiers (DTCs). DTCs importantly
emphasise the relevance of attributes and enable attribute
selection, and therefore are appreciated for their transparency.
The proposed system addresses a number of the shortcomings
of the many HILL systems and allows for easy exploration
of datasets. In particular, we incorporate parallel coordinates
effectively in our tool for visualisation of high dimensional
datasets. We can not only focus the learning on the accuracy of
classifiers, but we can enhance performance in other important
factors such as system’s interpretability and the ability to gain
insight into datasets. Finally, we show the advantages of our
HILL system in the application area of mobile robotics using
the case study of image segmentation in robotic soccer.

I. INTRODUCTION

The prevalence of Machine Learning (ML) in all application
areas imaginable is increasing dramatically year after year.
ML models usage is increasing because they can very quickly
and accurately make predictions. While there has undoubtedly
been considerable success in adoption of these methods, this
does not come without its own problems. Many are starting
to recognise that the high levels or accuracy and predictive
power are coming at the cost of transparency and interpretabil-
ity of the predictions of these models. Therefore, predictive
accuracy is no longer the sole focus by data analysts and
data scientists. Other criteria have emerged for evaluation of
supervised learning methods [1]], [2]. In classification tasks,
the models often considered the best performers (because they
can achieve such high levels of accuracy) are methods such
as Convolutional Neural Networks (CNNs), ensembles and
Support Vector Machines (SVMs). These types of models
are considered to be “black box” models that can hardly
be interpreted by the user [1], [3[]. However, improving the
comprehensibility of classification models is considered an
important research direction [1f], [2]].

Some researchers have attempted to address this issues. One
common strategy has been to first produce accurate black-box
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models and then try to find ways of explaining them [4], [5].
This strategy generally takes one of two forms. One approach
is to produce surrogate interpretable models that try to closely
match the output of the black-box model while focussing on
measurable quantities such as cluster size for explanation [6]]
The second approach is to generate an explanation for a
particular instance being classified [[7] or instances belonging
to a subset of the feature space [J§]].

Others have strongly argued that if we really want inter-
pretability, we need to learn interpretable models to begin
with [9]. We take this latter approach with our proposal of
Human-In-the-Loop-Learning (HILL) of decision-trees. Unlike
black-box models, one remarkable feature of decision trees is
they are interpretable by human users [[1]], [10].

Moreover, under the name of Interactive Machine Learning
(IML) [11f], the knowledge and expertise of human profes-
sionals is elicited and hopefully transported using HILL for
autonomous classifiers. That is, not only datasets are the source
of knowledge but IML also taps into the experience of humans
in the field [[12].

Decision-tree learning is perhaps one of the earliest and
most well-established methods of constructing a predictive
model from supervised instances in order to map new instances
(whose class is unknown) to a target value. This technology
has become ubiquitous in statistics, data mining, and ML.
In fact, a particular form under the name C4.5 [13] was
listed first among the top 10 most used algorithms in data
mining [[14], but it is acknowledged that the underlying ideas
originated much earlier with CLS [[15] and ID3 [16]. Also
among the top 10 algorithms in data mining appears CART
(Classification and Regression Trees) [[17]], which is also a
decision-tree approach.

In this work we aim to build a system to facilitate learning
interpretable models with explainable outputs that are also
accurate. To achieve this, we use decision trees in conjunction
with two often overlooked techniques. One technique is the
understanding gained by visualisation [[18]]. For visualisation
we make use of parallel coordinates [[19] which is highly
effective at visualising high dimensional datasets. We believe
that parallel coordinates have great, but relatively unexploited
potential in the machine learning and explainable AI com-



munities. The second technique we argue for is the poten-
tial insight that can be provided by human experts in the
construction of the predictive model. There is so much to
gain by incorporating HILL in machine learning tasks, even
validation or new knowledge elicitation by contrasting with
previous insights [20]—[22]. In this paper, we aim to steer
research in these two directions. We first provide a more in-
depth evaluation of the WEKA [22] package for HILL by re-
assessing the experiment where humans build classifiers. We
stress that such earlier evaluations did not use the much larger
participant pool we report here. Second, we propose a new
system using parallel coordinates for exploration of datasets
and HILL construction of decision-tree classifiers (DTCs). This
newly proposed system addresses a number of shortcomings in
many other HILL systems. With this new system we emphasise
the importance of not only accuracy but also the ability of a
human user to contribute their domain knowledge to a model,
understand a learnt classifier and gain insights into datasets
that the classifier is learnt from.

In the next section, we review why there are applications
where HILL can benefit computer-vision systems and intro-
duce motivation for a case study in robotics. In Section
we follow the motivation for said case study with a review of
the most salient HILL systems. We find there is almost no ex-
perimental evaluation of the effectiveness of HILL for building
autonomous classifiers. Therefore, in Section [[V] we describe
our own experiment, which has a much larger user pool than
any earlier experiment of the same type. In Section we
introduce a HILL system (by using parallel coordinates) for
interactive learning of decision tree classifiers (DTCs). The
proposed system address a number of the shortcomings of the
HILL systems we review and discuss in Section [l1l} Section
explains the context of our case study and the results we obtain
with our system.

II. HUMAN VISION AND COMPUTER VISION

Although there are many application areas that can benefit
from HILL, we show the power of our approach in the field
of mobile robotics. In mobile robotics, sensors that detect and
recognise objects or landmarks are crucial for many robotic
tasks. Versatile robots in human environments are required
not only to identify their human partners, but also the objects
that are associated with missions involving robots and human
participants. For the recognition of all these objects, the
advances in deep learning and convolutional neural networks
(CNNSs) have proven to be revolutionary [23].

However, there are several issues with applying deep learn-
ing techniques. Some of these issues respond to the possibility
of robust attacks to computer vision systems based on deep
learning [24]. Others are related to the need to reach explain-
ability criteria. In any case, using deep learning and convolu-
tional neural networks is usually computationally expensive on
two fronts; firstly, the construction of the classifiers and vision
segmentation networks out of large data sets and secondly, the
actual execution of the deep learning classifiers may be costly

on board robots. Techniques have thus been developed to scale
down the deep learning classifiers.

We exemplify deep learning issues here through a case
based on object tracking from the RoboCup soccer competi-
tion. Mackworth’s [25] classical proposal that a soccer compe-
tition of teams of robots represents an unprecedented challenge
to artificial intelligence architectures and computer vision
highlights how far we are to this day in artificially matching
human capabilities. In particular, the real-time computer vision
challenge at RoboCup is elevated each year [26] with less
colour coding and artificial landmarks in a progressively
larger soccer field. Thus, competing teams have changed in
tandem their vision pipelines and vision methods, from human
engineered [27] to increased use of on machine learning. Deep
learning approaches appeared as a validation phase after a
colour segmentation phase [28]]. Although more sophistication
has been achieved in this practical setting, usage of CNNs still
requires a separate object proposal method. More importantly,
the quality of the object recognition system largely depends on
the efficiency of the algorithm used to generate candidates for
classification (whether CNNS are used for binary classification
tasks [29] or to detect several relevant object categories [[30], or
to detect robots (humanoids) [29]]). Obviously, ball recognition
has received the most attention [31]]. Ball-only CNNs had
input size massively reduced to be ported to typical robots
for the humanoid league [32]. Even the so-called Visual
Mesh technique [33]] that uses multiple scales to improve the
performance of neural networks requires a method to propose
sub-regions. The classifier performs a crucial role in proposing
a sub-region. Therefore our case study focuses on HILL of
classifiers to identify candidate locations of the desired object
within the image.

We argue that human input is of key interest here, as
RoboCup aims at matches involving humans and robots, and
thus, the objects of relevance are colour-coded for human
accessibility. For instance, white objects, such as line marks
on the ground and goal posts are such that pixel colours
have semantic meaning where humans can incorporate their
knowledge that such objects are white.

III. RELATED WORK

Given decision trees’ nature of easy interpretability, a num-
ber of different HILL systems have been proposed to learn
DTCs. Ankerst et al. proposed PCB [21] and later introduced
their bar visualisation HILL system [34]. We highlight a
number of limitations of this approach. Firstly, when the
dataset is represented by bars, the user can no longer see
actual values of attributes or the magnitude of difference
in values. We argue that the missing information on values
and the lack of representation of relative difference between
values could limit human users’ ability to contribute human
knowledge effectively. This is because such relevant aspects of
the human domain knowledge are omitted. Secondly, the bar
representation also limits any rules to strictly univariate splits.
The user also can not see any potential relationship between
attributes with this type of representation.



We argue here for the increased use of parallel coordi-
nates [19] for HILL classification systems. Parallel coordinates
were innovative in IML with an algorithm named Nested
Cavities [[35]], [36] (or NC). The construction of classifiers
with NC is similar to decision-trees, because both approaches
follow Conditional Focusing (37, Figure 8.3] and recursive re-
finement [|16}, Page 152 Chaper 4] that results in a decision-tree
structure [38, Page 407]. But, to the best of our knowledge,
there are no user-focused evaluations of IML with NC.

In a parallel-coordinates visualisation, each attribute of
the dataset is shown as a parallel axis. Each value of the
dataset is then shown as a poly-line that crosses each axis
at the normalised value for that attribute. Unlike most other
visualisation techniques, parallel coordinates are not restricted
to showing only a certain number of dimensions. As the
number of dimensions grows, more coordinates are displayed
by packing them on the side. Eventually, an extremely large
number of dimensions (over 100) becomes unmanageable.
However, as pointed out in the same source, one should be
sceptical [39]] about decisions being based on over 100 vari-
ables and expect them to be interpretable and understandable.
This point illustrates our proposal: to use the computing power
to suggest the attributes that shall be displayed (as parallel
coordinates) and suggested to the human user whilst allowing
the human to choose the window they are comfortable to
inspect.

Although some in the machine learning community have
investigated the use of parallel coordinates in this area, none
seem to have realised its full potential. Teoh and Ma present a
dataset visualisation and decision tree construction techniques
called StarClass [40] and later PaintingClass [41].
StarClass represents a dataset using a star-coordinates
system. Although star coordinates do allow for a user to
visualise a number of attributes in a relatively small amount
of screen real-estate, we argue that it suffers some of the
same issues as bar visualisation. Since the position of each
point in star coordinates is determined by the value of all
attributes, users cannot easily determine a subset most relevant,
influential or predictive, let alone the ranges of values in a
subset of attributes that discriminate between classes. Thus,
users are prone to miss separation boundaries between classes
provided by few(or even one) attributes. However, these types
of separations between classes are flagrantly visible with
parallel coordinates.

Moreover, if users’ domain knowledge is that they know
a subset of influential attributes or they would like to ex-
plore a desirable subset, there is no possibility to represent
this with star coordinates (except to project the data into
the subset of attributes a priori, but then why bother with
the other dimensions). Thus, it may not be surprising that
PaintingClass [41] is an extension of StarClass [40]
so the user can use a visualisation on parallel coordinates.
However, despite the power offered by parallel coordinates
for visualisation of high dimensional data, the authors restrict
the use of parallel coordinates to only categorical attributes,
while still using star coordinates for numerical attributes.

PaintingClass uses a modified version of parallel coordi-
nates for categorical attributes where categorical values are
spread out a long the axis according to their order in the
dataset. This produces a visualisation with unintended bias.
The system also has no means of algorithmic support for the
user. It could be argued that it is not HILL.

Choo et al. also argue for the use of parallel coordinates
for classification using their iVisClassifier system [42].
This approach also relies on full human involvement in build-
ing classifiers. However, it does involve computer power in the
construction by using linear discriminant analysis (LDA) to try
to minimise the number of attributes. Therefore, the number
of the parallel coordinates displayed is reduced to the most
influential LDA features. However, by using LDA, the system
essentially creates another type of human understandability
barrier. It is difficult, if not impossible, to interpret the new
LDA features. The system does offer a tool to mitigate this
obstacle for its focus application of face-recognition. For each
LDA feature, a heat-map visualisation over the image frame
is produced. Sadly, these visualisation of LDA features do not
seem to have any human interpretable semantics, and result
in the iVisClassifier being too tailored for the task of
front-human-portrait face-recognition.

Probably one of the most well known systems for IML and
HILL of DTCs is the UserClassifier system, available as
a package in WEKA [22]. The UserClassifier system,
allows a user to construct a decision-tree classifier (DTC)
by hand. The system visualises the dataset by showing two-
dimensional scatter plots of up to two attributes at a time. To
help the user decide what attributes to inspect, small bars for
each attribute are included, showing the distribution of classes
when sorted by that attribute. For each internal node in the
tree a user makes a rule by selecting a region on the two-
dimensional plot. The user can also see the current tree as a
simple node link diagram in a different view.

IV. THE WEKA USER CLASSIFIER

Despite increasing interest in the machine learning com-
munity to include human experts in the learning process of
autonomous classifiers, the evaluation of IML or HILL systems
appears to be severely limited. The only IML system that
reports on an experiment measuring the effectiveness with
human users is WEKA’s UserClassifier system and the
experiment involved only five participants [22].

To compare how effective humans are at learning decision-
tree classifiers, we conducted a new experiment aiming to
establish unequivocally the claims that HILL offers explain-
ability and interpretability. Our focus is to test the most
genuine system of the type, namely, the original WEKA
UserClassifier system [22].

In our experiment, an invitation was sent out to university
students to participate.There are several reasons why students
are considered suitable participants for experimentation with
not overly complex tasks [43].Among these reasons is that
students are not individuals who have worked with one par-
ticular tool for a long time. Their inexperience provides a



TABLE I. Datasets used.

TABLE II: Results from five datasets.

Dataset Attributes | Classes | Instances | Instances

(Train) (Test)
Iris (Example Dataset) 4 3 100 50

Letter 16 26 15000 5000
Satellite 36 6 4435 2000
Segmentation 19 7 210 2100
Shuttle 9 7 43500 14500
‘Waveform 40 3 500 4500

clean slate and a measure to asses the learning curve and
difficulty of tools and instruments [43].However, our subjects
did have some elementary background in machine learning
and DTCs and were not completely novice. Participants in our
experiment were undergraduate and masters students enrolled
in a database systems course which included topics on data
mining. Participants had completed an earlier course in intelli-
gent systems which emphasised machine learning techniques.

We ran our experiment as a practical laboratory towards the
end of the second course after they had recently completed
the theory component of the course on data mining and
DTCs. The participants were all given a document containing
instructions and an installation of the WEKA software. None
of the participants had used the WEKA software before. The
instructions directed the students through the process of using
the UserClassifier system tool for constructing a DTC
using the Iris dataset. Students were encouraged to explore
the software using this dataset before constructing any further
classifiers. Once participants were familiar with the WEKA
software and completed a strong classifier for the Iris dataset,
they were asked to make a DTC for five additional datasets.
Table [l shows the details of these datasets.

The experiment was run over a number of sessions. After
gaining feedback from users in some of the initial sessions,
the letter dataset was omitted. Participants commented that
the large number of classes made this dataset very tedious
and time consuming to work with. Since participation was
voluntary, subjects aborted their engagement because deal-
ing with this dataset seemed much more laborious. Since
we observed many incomplete classifications and frustrated
participants, our analysis does not include the incomplete work
with the letter dataset. We take this opportunity to highlight
that this confirms that not all classification tasks are necessarily
suitable for HILL. The letter dataset (which is an optical
character recognition task) is a good example of this. There is
perhaps only little insight that could be given by humans since
eliciting human knowledge in this domain is more challenging
than achieving the high-accuracy rates possible with artificial
systems. Nevertheless, we stress that in many other areas
transparency is crucial.

Table [[I] displays a summary of the results. A total of 50
students took part in the experiment. Since not all participants
completed all tasks for all of the datasets, we removed affected
work from consideration. Work submitted by participants was
excluded for the following reasons.

« Not completing all datasets

Dataset
Shuttle

Metric
(Average)

Method

Satellite Segment Waveform

74.39(34)
0.68(34)

45.64(34)
1273(30)

62.49(29)
0.61(29)
25(29)
492(26)

Accuracy %
Present user | ri
study

82.47(35)
0.82(35)
2391(35)
599(32)
86.07(5)
82.2(5) 31(5)
3144(5) 1584(5)

95.06(32)
051(32)
21.81(32)
470(28)

Tree Size

Time(seconds)

Original
study
results [22]]

Accuracy % 80.72(5) 99.89(5)
25.4(5)

1584(5)

70.82(5)
27.4(5)
1332(5)

Tree Size

Time(seconds)

Accuracy % 85.2 91 99.95 71.87
J48 (default | m 0.83 091 0.84 0.72
settings)

Tree Size 443 25 43 85

# |

Waveform -

Shuttle

T

Segment

Satellite |- } { R

\ \
0.2 0.4

| |
0.6 0.8
Fig. 1: Box-plots showing distribution of F1 scores for each
dataset

o Not submitting the correct files

o Automatically learnt models (no human intervention)
o Using the class of the dataset as an attribute to test on
o Using the test set to train the model

o Using more than 2 hours to build a classifier.

Each item in the table also includes in brackets the number
of data points for that result. Table [[I] also includes results
from the original study conducted by Ware et al. [22] Results
from an automated DTC learning algorithm is also included
as a baseline comparison. Along with overall accuracy, we
include F1 scores for our results which take into account class
imbalance issues.

Our results have some level of consistency with those
reported in the original paper by Ware et al [22]. However,
our results show that, in general, our participants grew slightly
less accurate but smaller trees and in a shorter amount of time.
We stress that the trade-off of shorter/smaller models, although
less accurate, is a long debate in machine learning regarding
the quality of the learning.

In any case, we believe these results establish the potential
for HILL of DTCs. While the UserClassifier system is
a good starting point, we argue that the interactions provided
(on the data set and on the model) by the system limits
the humans’ ability to gain a broader understanding. We put
forward the following limitations.



o The user can only see two attributes at a time, this is
critically restrictive in the new world of big-data sets.

o The display of region bars is extremely small, making it
difficult for users to decide what attributes to examine.

o There are no suggestions from the system of what at-
tributes to select and where to create a split.

o Users can not visualise the tree unless they depart from
the attribute visualisation window (losing context of the
current splitting task).

o The visualised tree does not make use of colour, size, or
any visualisation technique to communicate any proper-
ties of a node or an edge, or any relationship between a
node and the dataset under analysis.

V. CONSTRUCTING DECISION TREES WITH PARALLEL
COORDINATES

We now present our system for HILL of DTCs. Our system
aims to address the identified shortcomings of the HILL system
examined in the previous section as well as the shortcomings
of the systems examined in Section The proposed system
uses parallel coordinates to visualise the training set. Figure 2]
shows our system when visualising the Statlog (Landsat Satel-
lite) [44]] dataset.

Each attribute of the dataset becomes one axis in the parallel
coordinates display. We represent each instance of the data by
one of the coloured poly-lines in the visualisation, where the
colour represents the class of the instance. On datasets with a
large number of attributes, we enable the user to scroll left and
right to shift a window of visible attributes. The system also
gives the user the ability to change the order of axes as well as
duplicate and flip axes. The system can suggest attributes to
include in the visible window because of higher information
gain or correlation with another attribute. All these operations
are analogous to OLAP operations on a data-cube allowing
users to visually explore and identify possible relationships
between different attributes as well as the predictive power of
attributes for classification. This last aspect is enabled by the
concentration of colour.

Thus, our system offers visual exploration opportunities for
the human’s ability to spot patterns and to further investigate
possible sophisticated relationships that are directly and trans-
parently translatable to classification rules (see Section [V-A).
A user constructing a tree is simultaneously constructing a rule
by selecting a range on one or more axes. As the user builds
the classifier, the system displays the decision-tree on the left
half of the screen. In the spirit of Hunt’s generic recursive
construction, the user can select any tree-node 7' to further
refine (grow the tree deeper) from node 7. Moreover, our
system suggests nodes in two ways:

1) The colouring pattern of nodes provides feedback to the
user about the purity of the node (and directly associates
with accuracy of classification). The depth of node 7" in
the tree is correlated with the generality and applicability
of the rule derived from the path to 7". Node depth also
correlates to understandability and interpretability.
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Fig. 2: Screenshot of the developed system being used to learn
a decision-tree classifier for the satelite dataset
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Fig. 3: Different splitting techniques. Split (a), a simple binary
rule, selecting all instances that have a value greater than z
for attribute A,;. Split (b), a range based rule, selecting all
instances that have a value between x and y for attribute A,.
Split (c), our proposed region based split for a rule, selecting
all instances that pass through the specified region between
attribute A, and Ap,;.

2) Values of predictability power of attributes, such as
information gain, are delivered by the system.

A. Rules in the Plane

We also include in our system a type of rule-split proposed
in our previous work [45]. This type of rule relies on the
unique characteristics of the parallel coordinates plane for rule
visualisation. Figure [3] shows the most common rule splitting
techniques currently used as well as our proposed new method.
Rather than selecting a split based on a particular axis, the split
is described by a region in the parallel coordinates plot. The
point-line duality in parallel coordinates dictates that a point
in a parallel coordinates plot represents a line in the Cartesian
plane [[19]. If the split was based on a particular point in the
parallel coordinates plane this shall be interpreted as a rule
that requires points to follow closely some linear correlation
between two attributes. Given that, in any real dataset, there
is some distortion involved, the region-based construction of



a rule is interpreted as a rule that requires points to follow
closely some linear correlation between two attributes with
also some margin for error. The margin of discrepancy from
exact linear correlation has an interpretation as well, namely it
is directly proportional to the the size of the region drawn by
the user in the parallel-coordinates plot. We stress that all the
drawn elements and their margins (in an analogous sense to
support- vector-machine margins) in the visualisation have an
interpretation as classification rules. This greatly contributes to
the interpretability of the resulting classifier. Simultaneously,
the involvement of only a few attributes (one or two attributes)
contributes to the understandability of the rule (as opposed
to full oblique test [46]] which are linear combinations of all
dimensions and hard to understand by humans [47]).
Therefore, our system offers several interesting effects when
users manipulate the shape and size of the rectangle that
defines the split and formation of a classification rule. We refer
the reader to our previous work [45]] for further discussion on
these effects. Suffice to say that we stress here that our rule
splits also allow for the increased expressivity over the axis
parallel splits of traditional DTCs, because they offer oblique
splits but only on a few and the most relevant attributes to
the human user. This also has the advantage that the user can
view the entire dataset or subset in the context of each rule.

B. Algorithmic Support

Similar to systems such as PCB [34], algorithmic support
is included in our HILL system to assist the user with insights
from metrics and indicators of machine learning algorithms.
Whenever a user selects a node in the tree, only the subset
of the dataset that matches the rules of all parent nodes is
shown. Importantly we also order the parallel coordinates axes
depending on the maximal information gain achievable using
each attribute. By showing attributes first that the systems
perceives as having the best potential for a good split we can
effectively use both the human and the machine for learning.
Each time a user selects a node for a split, the user can request
to visualise our system’s suggestions for a possible split on
an attribute. These are splits from information gain, gini-
index and other heuristics and strategies for fully autonomous
construction of DTCs. The user can also request a suggestion
of a parallel-coordinates region to define the rule, and the
system calculates this using differential evolution [45]]. Users
can choose to use such machine-learning suggestions, modify
a suggestion slightly, or disregard the suggestion completely
and build their own rule. The user can also request that the
system atomically grow a sub-tree from a selected node. The
user can choose whether the rules produced in this generated
sub-tree have the standard axis-parallel splits or take the form
of our proposed parallel-coordinates region rules. This allows
the user to interpret and validate the sub-tree and investigate
the choices of the system for the attributes involved in the
split. Thus, the user gains insights into the structure of the
phenomena coded in the training set instances. Recall that one
virtue of decision trees is that attributes higher in the tree have

Adtibute 14

Atwribute 15 Attribute 16 Atribute 17

Fig. 4: An example of a situation where HILL can produce
better models. The selected region on attribute 14 is the split
recommended by the system while visually a user can quickly
see a better alternative using attribute 17.

higher predictive power, while lower in the tree, they have
conditional predictive power.

The user can then opt whether or not to use this generated
sub-tree, but also we offer the option to use part of the
generated sub-tree. The addition of this algorithmic support
mechanism strikes a good balance between user insight and
machine number crunching into the learning process. Without
such a mechanism, manually learning the entire classifier
would be tedious and time consuming. Nevertheless, the user
always retains full control on how the tree is learnt. We argue
that humans’ advanced pattern-recognition capabilities and the
user’s ultimate say result in both high accuracy classifiers and
more understandable classification.

We believe that in many cases, this human assistance can
allow more accurate and intuitive models to be constructed.
Figure ] shows one example where it can be seen that the
system recommends a rule to split out the brown class. Indeed,
this is a split that results in the highest possible gain ratio.
However, for a human, it is obvious that a better split is
possible, since the visualisation highlights such a split in a
subset of the data. As indicated in the figure, a different
attribute can also separate out the brown class. Although a split
on this attribute has the same gain ratio, since it is not a better
gain ratio than the first split found, the system recommends
the first split. Visually, it can be seen that this second split
would likely be much better as the brown class is glaringly
separate from any other class.

C. Visualising The Tree

As the user constructs the DTC, they can always see the
current state of the tree on the left half of the screen. This
half of the screen is fully interactive and a user can click on
any node in the tree. This will show the subset of training
data reaching the node in the parallel-coordinates display, as
well as any rules for this node. We also make use of colour
and metrics to increase the user’s understanding of the dataset
and facilitate the model learning process. Each node in the
tree shows a histogram reflecting the number of instances of
each class in the training set that reached the node. Therefore,
the size of a coloured area in a node is in direct proportion



to the number of training instances of the corresponding class
reaching that node. Thus, as we mentioned, users can quickly
identify which nodes are sufficiently pure and do not need
further refinement. We also show both the absolute number of
training instances reaching this node as well as the percentage
relative to the size of the training set.

VI. RoBOTICS CASE STUDY

We have argued (along with others [11], [12], [21], [22],
[40], [41], [48]) that there are many application areas where
HILL for machine learning is highly beneficial. We now
present a case study from robotics to highlight some of the
advantages to our approach using HILL. For our case study,
we look at the open problem of image processing in real-
time on board a NAO robot for the purpose of playing robotic
soccer in the RoboCup SPL competition. Specifically, we look
to address the problem of finding a soccer ball on the field
using the NAO’s cameras during a game. The current rules of
the SPL specify that the ball is a standard pattern of black
and white. A good way to identify candidate locations for
a CNN to look for a soccer ball in an image is to detect
the black sections of the ball. The ball is the only object
on the field that has distinctive patterns of black. Thus, this
is human knowledge to incorporate; namely, finding a sub-
region of black pixels in an image suggests a high likelihood
of a ball in that portion of the image. The difficultly comes
in reliably detecting these black pixels. The SPL competition
has progressed to allow for varying and more natural lighting
conditions. This means that the dark green of the field can
often provide pixels that appear black in an image. We propose
using our HILL system to create a DTC to colour-segment
pixels in an image with a particular focus on identifying black
pixels of the ball.

We collected images using the NAO’s cameras during
a match of the SPL competition. Using specially designed
software, humans labelled regions of each image indicating
a dominant colour. Only three colour labels were used: green
for pixels belonging to the field, black for the black spots
of the ball, and white for the white spots of the ball and the
field lines, with everything else remaining unlabelled. We con-
figured a dataset for a vanilla machine learning classification
task. This is, in fact, an image segmentation task where the
raw pixels (their colour values) are the independent variables
and the class label(green, black or white) is the dependent
variable. The colours of each pixel were encoded as YUV
values which makes up the three attributes of the dataset. The
dataset contained 6,370 instances in total. The dataset was
randomly shuffled and 600 instances were removed to be used
as a test set. One of the advantages of our HILL system is that
the human driver can specify what is most important in the
model, whereas a traditional learning algorithm would only try
to optimise for a quantitative goal such as overall accuracy.

We use our HILL system to create colour segmentation
DTCs for two different situations. The first situation is where
a soccer playing robot has no information about where the
ball previously was and is not currently in any game-critical

C
R
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az

(a) High recall DTC (b) High precision DTC

Fig. 5: Screenshot of the developed system being used to learn
a DTC that has either a high precision or high recall for the
black class(coloured blue)

situation. In this case, the robot can afford to spend more time
applying a CNN to more and larger sub-regions, hoping to find
the ball. For this situation, we create a DTC that focuses on
high recall of the black class i.e. the number of false negatives
for the black class should be low. The second situation is
where the soccer playing robot has previously seen the ball
close by or is in a situation where it needs to prioritise CPU
time for other tasks. In this situation, the main priority should
be to reduce and limit the number of candidate sub-regions.
We shall not waste resources on many sub-regions with little
probability of holding the ball. For this second situation, we
create a DTC that focuses on high precision of the black class
i.e. the number of false positives for the black class should
be low. The results demonstrate the efficacy of this approach.
Figure[5a shows the first DTC constructed with the aim of high
recall for the black class. This classifier manages a recall of
0.95 and precision of 0.85 for the black class. Figure [5b|shows
the second DTC constructed with the aim of high precision of
the black class. This classifier manages a recall of 0.42 and
precision of 1.0 for the black class.

VII. CONCLUSION

We have argued for the benefits of bringing the human
into the loop for learning models for classification tasks. With
a HILL system not only can we take advantage of human
users’ advanced pattern recognition capabilities, we can also
include their domain knowledge and expertise directly into
the model. At the same time, we added transparency and
understandability to the models that are created along with
insight into the datasets they are trained from. We argue that
decision trees, which are widely used within the machine
learning community, are an outstanding model for HILL
classification. They naturally lend themselves to easy human
interpretation while maintaining the ability for competitive
levels of accuracy. Despite the lack of attention that parallel
coordinates have received by the machine learning community,
we argue it is an effective method of visualisation for HILL
tasks. We showed this potential by proposing a system for
HILL of DTCs. Finally, the example of colour segmentation



for a mobile robot highlights how bringing the human into the
loop can greatly benefit the learning process.

ACKNOWLEDGMENT

We would like to thank the members of the MIPAL team
for their support.

[1]

[2

—

[3]

[6

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

REFERENCES

A. A. Freitas, “Comprehensible classification models: a position paper,”
SIGKDD Explorations, vol. 15, no. 1, pp. 1-10, 2013.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys (CSUR), vol. 51, no. 5, pp. 1-42, 2018.

A. Moore, V. Murdock, Y. Cai, and K. Jones, “Transparent tree ensem-
bles,” in The 41st Int. ACM SIGIR Conf. on Research & Development
in Information Retrieval, ser. SIGIR ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1241-1244.

Q. V. Liao, M. Singh, Y. Zhang, and R. K. Bellamy, “Introduction to
explainable AL,” in Extended Abstracts of the 2020 CHI Conf. on Human
Factors in Computing Systems, ser. CHI EA *20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 1-4.

W. Samek and K.-R. Miiller, “Towards explainable artificial intelli-
gence,” in Explainable Al: Interpreting, Explaining and Visualizing Deep
Learning. Cham: Springer International Publishing, 2019, pp. 5-22.
A. Blanco-Justicia and J. Domingo-Ferrer, “Machine learning explain-
ability through comprehensible decision trees,” in Machine Learning and
Knowledge Extraction. Springer, 2019, pp. 15-26.

W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Miiller,
“Evaluating the visualization of what a deep neural network has learned,”
IEEE Trans. on Neural Networks and Learning Systems, vol. 28, no. 11,
pp. 2660-2673, 2017.

H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Faithful and
customizable explanations of black box models,” in Proc. of the 2019
AAAI/ACM Conf. on Al, Ethics, and Society, ser. AIES *19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 131-138.
C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, pp. 206-215, 05 2019.

J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens, “An
empirical evaluation of the comprehensibility of decision table, tree and
rule based predictive models,” Decision Support Systems, vol. 51, no. 1,
pp. 141-154, 2011.

S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to
the people: The role of humans in interactive machine learning,” Al
Magazine, vol. 35, no. 4, pp. 105-120, Dec. 2014. [Online]. Available:
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2513

J. A. Fails and D. R. Olsen, “Interactive machine learning,” in Proc.
of the 8th Int. Conf. on Intelligent User Interfaces, ser. IUI °03. New
York, NY, USA: Association for Computing Machinery, 2003, p. 39-45.
J. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. McLachlan, A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach, D. Hand,
and D. Steinberg, “Top 10 algorithms in data mining,” Knowledge and
Information Systems, vol. 14, no. 1, pp. 1-37, January 2008.

E. Hunt, J. Martin, and P. Stone, Experiments in Induction. New York:
Academic Press, 1966.

P-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Reading, MA: Addison-Wesley Publishing Co., 2006.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterrey, CA: Wadsworth and Brooks, 1984.

C. Mues, J. Huysmans, J. Vanthienen, and B. Baesens, “Comprehen-
sible credit-scoring knowledge visualization using decision tables and
diagrams,” in Enterprise Information Systems VI. Springer Netherlands,
2006, pp. 109-115.

A. Inselberg, Parallel Coordinates : Visual Multidimensional Geometry
and its Applications. NY: Springer, 2009.

V. Estivill-Castro, “Collaborative knowledge acquisition with a genetic
algorithm,” in 9th Int. Conf. on Tools with Artificial Intelligence, ICTAI
’97.  Newport Beach, CA, USA: IEEE Computer Society, November
3rd-8th 1997, pp. 270-277.

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel, “Visual classification:
An interactive approach to decision tree construction,” in Proc. of the
Fifth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, ser. KDD "99. New York, NY, USA: ACM, 1999, pp. 392-396.
M. Ware, E. Frank, G. Holmes, H. M. A., and 1. H. Witten, “Interactive
machine learning: letting users build classifiers,” Int. J. Hum.-Comput.
Stud., vol. 55, no. 3, pp. 281-292, 2001.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Computer Vision
— ECCV 2016. Cham: Springer International Publishing, 2016, pp.
21-37.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in 2018 IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2018, pp. 1625-1634.

A. K. Mackworth, “On seeing robots,” University of British Columbia,
Vancouver, BC, Canada, Canada, Tech. Rep., 1993.

K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-time
computer vision with OpenCV,” Commun. ACM, vol. 55, no. 6, pp.
61-69, Jun. 2012.

I. Schwarz, M. Hofmann, O. Urbann, and S. Tasse, “A robust and
calibration- free vision system for humanoid soccer robots,” in RoboCup
2015: Robot World Cup XIX. Springer International Publishing, 2015,
pp. 239-250.

D. Albani, A. Youssef, V. Suriani, D. Nardi, and D. D. Bloisi, “A deep
learning approach for object recognition with NAO soccer robots,” in
RoboCup 2016: Robot World Cup XX. Cham: Springer International
Publishing, 2017, pp. 392-403.

M. Javadi, S. M. Azar, S. Azami, S. S. Ghidary, S. Sadeghnejad, and
J. Baltes, “Humanoid robot detection using deep learning: A speed-
accuracy tradeoff,” in RoboCup International Symposium.  Cham:
Springer International Publishing, 2018, pp. 338-349.

S. O’Keeffe and R. Villing, “A benchmark data set and evaluation of
deep learning architectures for ball detection in the RoboCup SPL,” in
RoboCup Int. Symposium. Cham: Springer International Publishing,
2017, pp. 398-409.

A. Gabel, T. Heuer, I. Schiering, and R. Gerndt, “Jetson, where is the
ball? using neural networks for ball detection at robocup 2017,)” in
RoboCup 2018: Robot World Cup XXII. Cham: Springer International
Publishing, 2019, pp. 181-192.

D. Speck, P. Barros, C. Weber, and S. Wermter, “Ball localization for
robocup soccer using convolutional neural networks,” in RoboCup 2016:
Robot World Cup XX. Cham: Springer International Publishing, 2017,
pp. 19-30.

T. Houliston and S. K. Chalup, “Visual mesh: Real-time object detection
using constant sample density,” in RoboCup 2018: Robot World Cup
XXII [Montreal, QC, Canada, June 18-22, 2018], ser. Lecture Notes in
Computer Science, vol. 11374.  Springer, 2018, pp. 45-56.

M. Ankerst, M. Ester, and H.-P. Kriegel, “Towards an effective coopera-
tion of the user and the computer for classification,” in Proc. of the Sixth
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
ser. KDD ’00. New York, NY, USA: ACM, 2000, pp. 179-188.

A. Inselberg and T. Avidan, “Classification and visualization for high-
dimensional data,” in Proc. of the sixth ACM SIGKDD Int. Conf. on
Knowledge discovery and data mining.  Boston, MA, USA: ACM,
August 20th-23rd 2000, pp. 370-374.

P. L. Lai, Y. J. Liang, and A. Inselberg, “Geometric divide and conquer
classification for high-dimensional data,” in DATA 2012 - Proc. of the
Int. Conf. on Data Technologies and Applications.  SciTePress, July
25th-27th July 2012, pp. 79-82.

E. Hunt, Concept Learning — An Information Processing Problem,
second printing ed. New York: John Wiley, 1962.

P. R. Cohen and E. A. Feigenbaum, The Handbook of Artificial Intelli-
gence, volume I1I. Stanford, CA: HeurisTech Press, 1982.

A. Inselberg, “Parallel coordinates: Visualization, exploration and clas-
sification of high-dimensional data,” 2008, ill.14 Parallel Coordinates:
Visualization, Exploration and Classification of High-Dimensional Data.
S. T. Teoh and K. Ma, “Starclass: Interactive visual classification using
star coordinates,” in Proc. of the Third SIAM Int. Conf. on Data Mining,
vol. 112.  SIAM, 2003, pp. 178-185.

S. T. Teoh and K.-L. Ma, “Paintingclass: Interactive construction,
visualization and exploration of decision trees,” in Proc. of the Ninth
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ser.


https://www.aaai.org/ojs/index.php/aimagazine/article/view/2513

[42]

[43]

[44]

[45]

[46]

[47]

(48]

KDD ’03. New York, NY, USA: Association for Computing Machinery,
2003, p. 667-672.

J. Choo, H. Lee, J. Kihm, and H. Park, “ivisclassifier: An interactive
visual analytics system for classification based on supervised dimension
reduction,” in 2010 IEEE Symposium on Visual Analytics Science and
Technology, 2010, pp. 27-34.

B. A. Mustafa, “An experimental comparison of use case models
understanding by novice and high knowledge users,” in New Trends
in Software Methodologies, Tools and Techniques - Proc. of the 9th
SoMeT_10, ser. Frontiers in Artificial Intelligence and Applications, vol.
217. 10S Press, September 29th - October 1st 2010, pp. 182-199.
M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

V. Estivill-Castro, E. Gilmore, and R. Hexel, “Constructing inter-
pretable decision trees using parallel coordinates,” in Proceedings of
the Artificial Intelligence and Soft Computing - 19th International
Conference, ICAISC 2020 Part II, ser. Lecture Notes in Computer
Science, L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz,
R. Tadeusiewicz, and J. M. Zurada, Eds., vol. 12416. Springer, October
12th-14th 2020, pp. 152-164, to appear in, Proc. of the 19th Int. Conf.
on Artifical Intelligence and Soft Computing.

S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. Artif. Int. Res., vol. 2, no. 1, pp. 1-32, Aug.
1994.

E. Canti-Paz and C. Kamath, “Inducing oblique decision trees with
evolutionary algorithms,” IEEE Trans. Evolutionary Computation, vol. 7,
no. 1, pp. 54-68, 2003.

N. T.D., T. Ho, and H. Shimodaira, “Interactive visualization in mining
large decision trees,” in Knowledge Discovery and Data Mining, Current
Issues and New Applications, 4th Pacific-Asia Conf. PADKK 2000, ser.
Lecture Notes in Computer Science, vol. 1805. Kyoto, Japan: Springer,
April 18th-20th 2000, pp. 345-348.


http://archive.ics.uci.edu/ml

	Introduction
	Human vision and Computer Vision
	RELATED WORK
	The Weka User Classifier
	Constructing decision trees with parallel coordinates
	Rules in the Plane
	Algorithmic Support
	Visualising The Tree

	Robotics Case Study
	Conclusion
	References

