

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/141130

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/141130
mailto:wrap@warwick.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Scenario Description Language for Automated

Driving Systems: A Two Level Abstraction Approach

Xizhe Zhang

WMG, University of Warwick

Coventry, United Kingdom

Jason.Zhang@warwick.ac.uk

Siddartha Khastgir

WMG, University of Warwick

Coventry, United Kingdom

S.Khastgir.1@warwick.ac.uk

Paul Jennings

WMG, University of Warwick Coventry,

United Kingdom

Paul.Jennings@warwick.ac.u

Abstract—The complexities associated with Automated

Driving Systems (ADSs) and their interaction with the

environment pose a challenge for their safety evaluation. Number

of miles driven has been suggested as one of the metrics to

demonstrate technological maturity. However, the experiences or

the scenarios encountered by the ADSs is a more meaningful

metric, and has led to a shift to scenario-based testing approach in

the automotive industry and research community. Variety of

scenario generation techniques have been advocated, including

real-world data analysis, accident data analysis and via systems

hazard analysis. While scenario generation can be done via these

methods, there is a need for a scenario description language

format which enables the exchange of scenarios between diverse

stakeholders (as part of the systems engineering lifecycle) with

varied usage requirements. In this paper, we propose a two-level

abstraction approach to scenario description language (SDL) –

SDL level 1 and SDL level 2. SDL level 1 is a textual description of

the scenario at a higher abstraction level to be used by regulators

or system engineers. SDL level 2 is a formal machine-readable

language which is ingested by testing platform e.g. simulation or

test track. One can transform a scenario in SDL level 1 into SDL

level 2 by adding more details or from SDL level 2 to SDL level 1

by abstracting.

Keywords— scenario, testing, scenario definition language,

verification and validation, automated driving systems.

I. INTRODUCTION

Recent years have seen an increasing deployment of Cyber-
physical systems (CPSs) in the society. CPSs are an integration
of computation and physical systems where embedded
controllers control physical processes [1]. Building safe CPSs
offers variety of challenges with a key challenge being the need
for systems approach to the design. Moreover, there is a major
temporal attribute to the functionality for safety of safety critical
CPSs. Automated Driving Systems (ADSs) and Advanced
Driver Assistance Systems (ADASs) are two types of CPS
which have received an increasing focus in the automotive
industry. The move to CPSs is driven by their many potential
benefits, ADASs and ADSs in particular offer benefits such as
improving safety [2], lowering vehicular emissions [3],
improving traffic throughput [4], and decreasing drivers’
workload [5]. However, the increased complexity of these CPSs
due to the system interactions and their temporal nature, have
manifested into testing challenges for safe introduction of the
technology [6], [7].

ADASs and ADSs are typically developed based on a
process derived from the V-model, which represents a system

development lifecycle that consists several development steps
and their corresponding testing counterparts [8]. The
development steps form one side of the ‘V’ shape, which starts
from high level requirements to systems development and
further to low level module development. The testing phases
form the other side of the ‘V’, which ranges from module level
unit testing to system testing and to user acceptance testing. The
V-model allows validation and verification activities to be
carried out across the system development cycle to ensure the
quality and correctness of a system. For ADSs, Kalra et. al
suggested that it would need to be driven for 11 billion miles to
demonstrate they are 20% better than human drivers [9]. While
this might seem to be an unfeasible proposition, a more
meaningful metric should be the types of scenarios experienced
by the systems, leading to scenario based testing [10].
EuroNCAP, the European car safety assessment programme in
their 2025 roadmap has also highlighted the role of scenario
based testing in the safety evaluation of ADASs and ADSs [11].
Furthermore, for complex systems, the emergent behaviour due
to sub-system interactions lead to occurrence of “unknown
unknown” scenarios. Khastgir et. al. suggested for ADASs and
ADSs, focus needs to be on “how a system fails” as compared
to “how a system works” this leads to the focus on the scenarios
which expose failures, i.e. Hazard Based Testing [12].

An important aspect of developing and storing test scenarios
along the V model is the need for appreciation about the
diversity of its end users (e.g. autonomous vehicle (AV)
technology developer, simulation test engineer, real-world test
engineer, regulators, public etc.). Each of these end users have
varied requirements and at different levels of abstraction. An
AV technology developer would favour a common structure for
scenarios in order to reuse across systems and organizations, a
test engineer would want a high level of specificity to have an
objective understanding and be able to execute the scenario on a
test platform (e.g. simulation platform, test track). A regulator
would want a common structure at a higher abstraction level to
enable non-specialists to understand the test scenarios. At the
same time, a regulator would also want a common structure for
test scenarios to enable them to compare scenarios from
different manufacturers. While there are synergies in the
requirements from the various end-users, some are also
competing (e.g. executability vs high level of abstraction).
Inspired by the functional scenario, logical scenario and
concrete scenario concept, there is a need for a similar approach
for different levels of abstraction for scenario definition
language.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

The creation of scenarios is usually based on expert
knowledge or various data sources, and the execution of
scenarios can be realised in X-in-the-loop (XiL) simulations or
real-world testing. However, between the creation and execution
of scenarios, there lacks a common, understandable and
executable language to describe and transfer the scenarios.
Different simulators often use tool specific languages that are
proprietary to their individual environment. Moreover the
abstraction level(s) of the description languages have not yet
reached agreement across industry and academia. This not only
limits the sharing and exchange of scenarios, but often leads to
misinterpretations. While defining the content of test scenarios
has been a major focus of the industry up until now, relatively
newer efforts have now begun in the area of the format for
scenario definition (mostly for simulation use). These include
OpenSCENARIO [13], Wise Drive [14], ontological
approaches [15] etc.

II. RELATED WORK

Across industry and academia, several definitions of
scenario have been proposed previously. Go and Carroll [16]
define scenario within the context of system design, as a
description that contains actors, their environment and goals,
and sequences of actions and events. Geyer et al. [17] then
concluded that, under the context of ADSs, a scenario includes
at least one situation within a scene and the ongoing activities of
one or both actors. Later, Ulbrich et al. [18] introduced the
definition of scenario for ADSs as follows:

‘A scenario describes the temporal development between
several scenes in a sequence of scenes. Every scenario starts
with an initial scene. Action & events as well as goals & values
may be specified to characterise this temporal development in a
scenario. Other than a scene, a scenario spans a certain amount
of time.’

A recent study from Gelder et al. [19] further defines a
scenario as a description of the characteristics of the ego vehicle,
its activities and/or goals, its environment, and all the events that
are relevant to the ego vehicles. Within the definition, an activity
describes the time evolution of state variables between two
events, and an event marks the time instant at which system
transits between modes. Rather than explicitly describing the
scenes, as proposed by Ulbrich et al. [18], Gelder et al.’s
proposal focuses on activities and events to implicitly describe
the scenes. Based on the scenario definition by Ulbrich et al.
[18], Menzel et al. [10] proposed an extension to include three
different abstraction levels: functional scenarios, logical
scenarios and concrete scenarios. Functional scenario represents
the most abstract level, on a semantic format it includes a
description of entities and relations/intersections of them.
Logical scenario represents the functional scenario using state
space variable ranges, and concrete scenario defines the exact
values within the ranges to derive unique test case.

The creation of scenarios can be data-driven [20][21] and
knowledge-driven [15]. A data-driven approach utilises the
available data to identify occurring scenarios, the disadvantages
of this approach are: 1) the data do not describe all aspects of a
scenario, 2) requires knowledge input to define parameter
dependencies, 3) limited reference to the operational design
domain [22], 4) challenging to extract interesting test scenarios

[20]. A knowledge-driven approach utilises expert knowledge to
identify hazardous events systematically and create scenarios.
However, a complete identification of all the scenarios cannot
be guaranteed [15], and the generated cases might not be valid
or representative in real-life [20].

To construct scenes within a scenario, a five-layer-model
was used by Bagschik et al [15], this was further extended to a
six-layer-model by Bock et al [23]. The first layer describes the
road layout, the second layer contains the traffic infrastructure
such as barriers and traffic signs. The third layer represents the
temporary manipulations of the first two layers, such as road
works or construction site. The fourth layer introduces the
dynamic and stationary objects. The fifth layer provides
environment information such as weather, lighting. And the
sixth layer includes data and communications. Based on this
layered model, the automation of scene creation was achieved
by Bagschik et al [15]. Several forms of expression can be used
to describe the elements within a scenario and their relations.
Gronniger et al. [24] compared three possible forms of
languages in the context of modelling: 1) textual languages, 2)
graphical languages, and 3) a combination of the two.
Comparing to the graphical format, textual languages offers
better readability, higher efficiency, space-saving and easier
integration[24][8]. In the field of ADSs, textual scenario
descriptions or a combination of textual and graphical
descriptions are used across different abstraction levels. When
the two formats are used in combination, the textual description
tends to be incomplete [8]. In addition, The quality, expressions,
and semantics in a textual scenario description are highly
dependent on the individual creator, ambiguities and
misunderstandings often exist [25].

To tackle this problem, the industry and academia have been
working towards a common, exchangeable and executable
language to describe scenarios for ADSs. Several simulation
platforms offer tool-specific languages which are unique to their
software, such as [26][27], this raises challenges for sharing and
integration of scenarios. Open language formats such as
OpenStreetMap [28], OpenDRIVE [29] and Lanelets [30] are
popular examples for describing the road layout and road
features, which forms the first three layers of the six-layer-
model. However, OpenStreetMap is mainly designed for
geographical purposes and not for driving simulator or ADSs
[31]. OpenDRIVE is more used in industry and lanelets is more
popular in academia. One of the main benefits of OpenDRIVE
is the exchangeability between simulators, on the other hand
lanelets is more lightweight but still able to offer great level of
details. Althoff et al. [31] developed a conversion tool between
lanelets and OpenDRIVE format. Currently still under
development, OpenSCENARIO [13] is an emerging format for
the description of the dynamic and environment elements
(fourth and fifth layers). The dynamic elements are described
through actions and events. Menzel et al. [22] presented an
automation process to detail a keyword-based scenario
description for execution, both OpenDRIVE and
OpenSCENARIO file formats were used to set the concrete
scenario parameters and integrate to the simulator. Pilz et al. [32]
used OpenSCENARIO format to construct the dynamic
elements of a scenario, integrated and executed the
OpenSCENARIO file in a simulator.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

Although the methodologies for scenarios creation exists, a
commonly recognised language that can cover all aspects of a
scenario is still missing, this limits the reproducibility of
scenarios and the exchangeability between tools [33]. Moreover,
the language shall cover different abstraction levels, from
functional level to concrete level, to address different audience
groups.

TABLE I. SCENERY ELEMENT EXAMPLES FOR THE THREE SCENARIO

LEVELS

Abstraction level Example description

Functional scenarios A three-lane motorway with a straight geometry

Logical scenarios
Road type [Motorway], number of lanes [3], lane
width [3.5-4.5]m, road curvature [0-5] degree

Concrete scenarios
Road type [Motorway], number of lanes [3], lane

width [4]m, road curvature [0] degree

III. DEVELOPMENT OF SCENARIO DESCRIPTION LANGUAGE

To develop a description language that can be used
throughout the development cycle of an ADS, the language
needs to be divided into different levels based on the information
details and data values. Inspired by the three abstraction levels
of scenarios [10] as illustrated in Table I, two different levels
have been proposed for the SDL, SDL level 1 at the functional
level, and SDL level 2 at the logical and concrete level. Based
on the elements described in the six-layer-model, SDL elements
are split into the following three groups – dynamic elements,
scenery elements and environment elements. Dynamic elements
consist of actors and their corresponding actions, the actors
include both ego vehicle and those who can influence ego
vehicle directly or indirectly. Scenery elements consist of all the
physically static elements in the scene, such as road layout,
traffic lights etc. Environment elements define the physical
conditions such as precipitation, lighting and connectivity. An
SDL standard format can be formed by connecting the three
groups together: Actor is doing action in scenery when context
(Fig. 1).

A. Dynamic elements

The SDL dynamic elements provide description for the
behaviours of all the moving objects in a scenario, which include
road users, pedestrians and animals. There are two categories
within the dynamic elements, scripted traffic and non-scripted
traffic, which will be discussed in the following section.

1) Scripted traffic
For the scripted traffic, the full dynamic behaviour

description is included in the scenario description. It is usually
required for the non-ego actors which directly influence the
behaviour of the ego vehicle. Two approaches have been used
to define the dynamic behaviour of entities (vehicles,
pedestrians etc.). The first approach uses relative manoeuvres in

relation to other dynamic or scenery objects. And the second
uses absolute manoeuvres that are independent from the rest of
the scenario elements. Taking an overtaking and lane-change
cut-in scenario as an example, under relative concept one would
define the behaviour of one vehicle in relation to the other such
that it could accommodate a range of different parameters and
provide more flexibility. On the contrary, using the absolute
concept one would need to pre-determine the parameters of both
vehicles individually in a highly accurate manner such that the
two vehicles can reach synchronisation. The absolute
manoeuvre approach is susceptible to changes in the outside
conditions and will require additional input to calculate the
parameter values. Moreover, as the complexity level increases
(such as increase in number of entities), scenarios based on
absolute manoeuvres will become difficult to create, interpret
and maintain, due to the difficulties on establishing the spatio-
temporal relationships between entities. It is therefore important
to combine relative manoeuvres with absolute manoeuvres
when describing the dynamic behaviour of entities, this defines
both the types of movement of the entity and its relations to other
entities or objects. Each combined manoeuvre consists of initial
conditions and exit conditions to set the start and end
parameters, and at least one phase where it is executed. The
number of phases depends on the complexity of the scenarios
and the transition between phases can be initiated by triggers
(e.g. time triggers, location triggers and condition triggers etc).

In order to describe the dynamic behaviour of road users, a
list of manoeuvre types is identified for both absolute and
relative manoeuvres (Table II). Among the absolute
manoeuvres, ‘Drive’ means the vehicle is moving forward,
‘Stop’ corresponds to a stationary vehicle, and lane change only
takes places between current and adjacent lanes. For the relative
manoeuvres, Fig. 2b. is used to illustrate the terms. It displays a
‘lane change left’ absolute manoeuvre performed by V1 within
a two-lane road. In this example, V1’s relative manoeuvre is
‘cut-in’ for both V5 and V2, and ‘cut-out’ for V4 and V3. Upon
finishing the lane change manoeuvre, V1 is ‘moving towards’
V5 and V4, and ‘moving away’ from V2 and V3. By combining
the absolute manoeuvres with the relative manoeuvres, thirty-
six manoeuvre identities can be obtained to form the SDL road
user manoeuvre matrix. For instance, Drive + Moving Towards
→ Drive_Towards, Lane Change Right + Cut-in →
LaneChangeRight_CutIn.

TABLE II. ABSOLUTE AND RELATIVE MANUVER TYPES FOR ROAD USERS

Absolute

maneuvers

Drive, Stop, Lane change right, Lane change left, Turn
right, Turn left, Reverse, Miscellaneous, Collide

Relative

maneuvers
Cut-in, Cut-out, Moving towards, Moving away

Fig. 1. SDL standard format example, which includes actors, actions,

scenery and the overall context

Fig. 2. a) vehicle relative position compass, b) example for relative

manoeuvre illustration

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

However, the manoeuvre matrix on its own is not sufficient
to describe the dynamic behaviour between two vehicles in a
unique manner. For example, in Fig. 3 both a) and b) can be
described as V1 changing lane left and cut into V2’s lane. In
order to differentiate between the two examples, V1’s relative
position to V2 must be taken into consideration. The vehicle’s
relative position compass is introduced as part of the manoeuvre
description. It consists of eight different positions, as shown in
Fig. 2a. Applying the compass to case a (Fig. 3) would mean that
V1 is changing lane left cut-in with relative position FSR to V2,
while with relative position RSR to V2 in case b.

After the main dynamic attributes (manoeuvre matrix,
relative position, event triggers) are identified, the next step is to
construct syntax for both initialisation and manoeuvre phases.
Initialisation process will first require specifying the road and
lane IDs for the agent vehicle (A_ID), the heading angle of the
A_ID will be determined by the lane specification. To initialise
a relative agent vehicle (RA_ID), its road and lane IDs need to
be specified, in addition the relative position of RA_ID to A_ID
also need to be specified. To construct the manoeuvre syntax,
user first needs to specify a manoeuvre matrix ID (Func_Type)
for the A_ID. Two direct inputs for the manoeuvres are speed
and acceleration, this will be specified for the A_ID, in addition
the relative speed of A_ID to RA_ID will also be specified.
Please note the acceleration attribute is only effective when the
target speed is not reached. Apart from the speed and

acceleration, the syntax also contains position information such
as relative position, junction information (whether vehicle is
within a junction) and lateral / longitudinal margin. The position
information serves as the triggers for entering and exiting
manoeuvre phases. For instance, agent vehicle would perform a
right turn only when the junction condition is satisfied. The
syntax for both initialisation and manoeuvre is illustrated in Fig.
4.

The executability of the syntax shown in Fig. 4 was
evaluated using the open-source CARLA simulator [27]. An
SDL python-based tool chain was developed to execute a
scenario in SDL Level 2 format in the simulator. The tool chain
consists of an SDL manoeuvre library and an auto-scripting /
parsing library. Based on the scenarios defined in SDL level 2
format, the tool chain specifies parameter values within the
defined range to create test cases values. The SDL manoeuvre
library contains the execution code for all the manoeuvre
identities in the SDL manoeuvre matrix. The auto-
scripting/parsing library first generates the code for the temporal
and spatial based event triggers, it then combines the triggers
with the manoeuvre identities to complete the execution code for
the dynamic element of a scenario. The feedback from the
CARLA evaluation has been reflected in the syntax shown in
Fig. 4.

Different from the SDL level 2 format, the SDL level 1
description is more textual and at higher abstraction level.
Instead of using the manoeuvre IDs (absolute + relative
manoeuvres), SDL level 1 separates the two terms to form a
plain and spoken expression. Moreover, at level 1 the relative
speed and acceleration values between vehicles will no longer
be specified, it uses more general terms such as ‘acceleration,
constant, deceleration’ to indicate (see case studies).

TABLE III. ABSOLUTE AND RELATIVE MANUVER TYPES FOR

PEDESTRIANS AND ANIMALS

Absolute

maneuvers

Stop, Walk forward, Walk backward, Turn right, Turn

left, Turn backward, Run, Slide, Miscellaneous, Collide

Relative

maneuvers
Moving towards, Moving away, Crossing agent’s lane

Similar philosophy was used to develop the syntax for
pedestrian / animal manoeuvre description. The absolute and
relative manoeuvre types used in this case are illustrated in Table
III. Combining the absolute and relative manoeuvre types results

Fig. 3. Change lane left cut-in examples

Fig. 4. SDL level 2 road users dynamic element syntax for a)

initialisation, b) manoeuvre

Fig. 5. SDL level 2 pedestrians/ animals dynamic element syntax

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

in thirty manoeuvre identities for the pedestrian / animal
manoeuvre matrix. For example, walk forward + moving
towards element → WalkForward_MovT. The corresponding
syntax is displayed in Fig. 5.

2) Non-scripted traffic
The increasing demand for more realistic simulations [13] to

enhance the testing capabilities has raised the requirements of
more intelligent actors to be represented in scenario executions
and thus also in scenario definitions. To cater to this
requirement, in a simulation setting, the non-scripted (goal
based) traffic description is used to define intelligently
controlled traffic, which can be based on AI decisions or
surveillance cameras recordings replay. The attributes used to
define non-scripted traffic include agent type, traffic density
(agents/distance), traffic speed (distance/time), presence of
special vehicles, and starting / finishing points.

B. Scenery elements

The scenery elements provide descriptions of the static
elements within a scenario using junctions and roads as the
building blocks. Fig. 6 illustrates the graphical representations
for the two different levels of the scenery elements. Figure 6a
displays two vehicles manoeuvre within an empty space without
any defined scenery elements. Figure 6b provides road
geometries and junction connections, this corresponds to the
concept of SDL level 1. Figure 6c adds more elements to the
scenery such as lane specifications, road structures, traffic
control, roundabout details etc, this corresponds to the detail
level of SDL level 2. In theory, SDL level 2 scenery elements
could contain large number of attributes in order to represent real
world scenarios. However, for a scenery to be relevant, it needs
to be part of the Operational Design Domain (ODD) of the ADS.
ODD refers to the operating conditions underwhich an ADS can
perform safely [34]. In order to effectively describe the scenery
while maintaining a compact format, the attribues from ODD
taxonomy (ISO 34503) has been used [35], the high level
elements are shown in Fig. 7. Zones specify any special road
configurations which may differ from normal driving
conditions, or area with special regulations. Drivable areas
provide description of the elements that are directly related to
the vehicle’s manoeuvrability. The junction attribute consists of

roundabouts and intersections. Road structures are classified
into special road structures, fixed road structures and temporary
road structures. The following example (Fig. 8) illustartes both
SDL level 1 and level 2 format, it describes a straight motorway
which connects to an exit slip road. Please note part of the
descriptions for R2 and R3 are hidden due to repetitions and
space constrain, a full description will expand the details.

C. Environment elements

The environment elements describe the physical conditions
of the scenarios such as lighting, wind, cloudiness, etc. These
characteristics are part of the ODD definition, hence the ODD
Taxonomy [35] was used as a reference to determine the SDL
attributes for the environment elements. These attributes can be
divided into four main categories: weather, particulates,
illumination and connectivity. Weather include wind, rainfall
and snowfall, which are defined in m/s, mm/h and visibility (km)

Fig. 6. Graphical representations of the scenery detail levels: a) no
scenery elements, b) SDL level 1 representation, c) SDL level 2

representation

Fig. 7. High level categories of the SDL scenery elements

Fig. 8. SDL level 1 and level 2 scenery descriptions of a straight motorway

with a Y junction

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

respectively. Illumination include day light and artificial
lighting, in the case of day light illumination the elevation angle
of the Sun above the horizon and the relative position of the Sun
need to be defined. An example of the environment element
description can be found in case study 1.

IV. CASE STUDIES

Two case studies are presented in this section to demonstrate
the key properties -- common structure, executability and
understandability – of SDL. The first case study utilises the
STATS19 accident dataset, converts the relevant parameters
into scenarios using SDL format, which can be further used for
execution or sharing. The second case study creates SDL
scenario descriptions based on the Euro NCAP test scenarios.

A. Case study 1: Formating accident data into SDL

For the first case study, the publicly available accident
dataset STATS19 were used [36]. The original dataset contains
sixty-seven variables, among which thirty-two variables
describe the accident circumstances, which equivalent to the
SDL scenery and environment elements. The next twenty-one of
the variables describe the details of the vehicle and driver,
together with high level vehicle manoeuvre description, this can
be related to the SDL dynamic element. The last seventeen of
the variables describe the casualty, this is not part of the SDL
elements. After filtering through the parameters, fourteen most
relevant variables were used as the input for generating the SDL
format. Table IV displays the filtered STATS19 parameters for
a selected example, it can be seen that most of the parameters
contribute to the scenery elements, the remaining contribute to
the environment and dynamic elements. Among all the
variables, 1st road class corresponds to the road where the
accident occurred, junction details indicate the nearest junction,
and 2nd road class indicates the nearest road which the junction
connects to. Translating these accident parameters into spoken
language will result in the following description:

On a clear sunny morning with no high winds, on-road
vehicle is performing an overtaking in an adjacent lane to ego
vehicle at a dual carriageway motorway. The road surface
condition is dry and the speed limit is 70 mph, there is no
junction within 20m of range.

TABLE IV. STATS19 DATASET FILTERED PARAMETERS FOR THE

SELECTED EXAMPLE

Attributes Value

Urban/rural Urban

Carriageway hazard None

1st road class Motorway

Speed limit 70 mph

Road type Dual carriageway

2nd road class Out of range

Road surface condition Dry

Junction location Not within 20 m

Junction detail N/A

Junction control N/A

Weather condition Fine no high winds

Lighting condition Daylight

Vehicle maneuver Overtaking moving vehicle

The next step is to match these parameters with the SDL
parameters, for those where a direct match cannot be
established, assumptions are made. The environment parameters
contained in the accident data are high level description in terms
of weather, lighting and time, as shown in Table IV. For the
dynamic element, it is assumed that the on-road vehicle is
performing an overtaking of the ego vehicle, upon overtaking,
the on-road vehicle changes into ego vehicle’s lane and starts
decelerating, while the ego vehicle keeps going ahead without
braking and results into an accident.

The SDL descriptions (Fig. 9 and Fig. 10) illustrate the
complete scenario of the selected STATS19 accident example.
Unlike the dynamic element and environment element, the
executability of the scenery element is difficulty to examine due
to the limited software available that can achieve auto-
generation of the simulation scene. However, SDL can provide
an understandable and common format for describing the
scenery and environment element which complies with the
standards defined by standards organizations.

B. Case Study 2: Formating Euro NCAP scenarios in SDL

The European New Car Assessment Programme (Euro
NCAP) is a European car safety performance assessment
program. It contains a series of vehicle tests, which represent
major real-life accident scenarios that could result in injuries or
casualties. Among the accident scenarios, the car-to-car rear

Fig. 9. SDL level 1 description of the selected accident scenario

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

impact is one of the most frequent categories, this case study will
present the test scenarios for the autonomous emergency braking
system and convert them into SDL format. Fig. 11 displays the
initial scene of car-to-car rear stationary (CCRs) test scenario
defined by the Euro NCAP. During this scenario, the vehicle
under test (VUT) is travelling forward at a speed range of 10-50
km/h towards a stationary Euro NCAP vehicle target (EVT).
The goal is to test whether the autonomous emergency braking
(AEB) is effective at reducing the VUT speed when potential
collision is detected. The test shall be conducted in dry condition
with no precipitation, wind speed shall be below 10m/s and
natural illumination must be homogenous. Fig. 12 and Fig. 13
display the SDL description of this scenario.

V. CONCLUSION

This paper presents a scenario definition language concept
based on two different levels of abstraction. Level 1 caters to the
needs of a textual language for end users such as regulators, it

Fig. 10. SDL level 2 description of the selected accident scenario

Fig. 11. Initial scene of the Euro NCAP CCRs test scenario

Fig. 12. SDL level 1 description of the Euro NCAP CCRs test scenario

Fig. 13. SDL level 2 description of the Euro NCAP CCRs test scenario

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

forms the functional level scenarios. Level 2 is a formalised
scenario specification for ingestion by toolchains for simulation
based testing or real-world testing, this represents the logical and
concrete level scenarios. Conversion between the two
abstraction levels is achieved by adding additional details or
abstracting. Both levels include scenery, dynamic and
environment aspects. The elements included in each aspect align
with the six-layer model for describing scenarios, and they are
referenced to the ODD taxonomy for ADSs. This paper further
illustrates the process of representing accident data and testing
scenario using SDL.

ACKNOWLEDGMENT

This work is supported by Streetwise and OmniCAV
projects, partly funded by the Centre for Connected and
Autonomous Vehicles, delivered in partnership with Innovate
UK. (Grant No. 103700 and 104529 respectively). The authors
will like to thank the project partners for their inputs, and the
WMG centre of High Value Manufacturing (HVM) Catapult
and WMG, University of Warwick for providing the necessary
infrastructure for conducting this study. WMG hosts one of the
seven centres that comprise the HVM Catapult in the UK.

REFERENCES

[1] B. P. Derler, M. Ieee, E. A. Lee, F. Ieee, A. S. Vincentelli, and F. Ieee,
“Modeling Cyber – Physical Systems,” vol. 100, no. 1, 2012.

[2] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles : opportunities , barriers and policy recommendations,” Transp.
Res. Part A, vol. 77, pp. 167–181, 2015.

[3] D. J. Fagnant and K. M. Kockelman, “The travel and environmental
implications of shared autonomous vehicles , using agent-based model
scenarios,” Transp. Res. Part C Emerg. Technol., vol. 40, pp. 1–13, 2014.

[4] S. Le Vine, X. Liu, F. Zheng, and J. Polak, “Automated cars : Queue
discharge at signalized intersections with ‘ Assured-Clear-Distance-Ahead
’ driving strategies,” Transp. Res. Part C Emerg. Technol., vol. 62, pp. 35–
54, 2016.

[5] N. Balfe, S. Sharples, and J. R. Wilson, “Impact of automation :
Measurement of performance , workload and behaviour in a complex
control environment,” Appl. Ergon., vol. 47, pp. 52–64, 2015.

[6] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum, Feb-2009.

[7] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “Identifying a gap
in existing validation methodologies for intelligent automotive systems:
Introducing the 3xD simulator,” in Proc. of the IEEE Intelligent Vehicles
Symposium 2015, 2015, pp. 648–653.

[8] F. Bock, C. Sippl, A. Heinzz, C. Lauerz, and R. German, “Advantageous
usage of textual domain-specific languages for scenario-driven
development of automated driving functions,” SysCon 2019 - 13th Annu.
IEEE Int. Syst. Conf. Proc., 2019.

[9] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?,”
Transp. Res. Part A Policy Pr., vol. 94, pp. 182–193, 2016.

[10] T. Menzel, G. Bagschik, and A. M. Maurer, “Scenarios for Development,
Test and Validation of Automated Vehicles,” IEEE Intell. Veh. Symp.
Proc., vol. 2018-June, no. Iv, pp. 1821–1827, 2018.

[11] Euro NCAP, “Euro NCAP 2025 Roadmap: In pursuit of Vision Zero,”
2017.

[12] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “The Science of
Testing: An Automotive Perspective,” in SAE Technical Papers, 2018, vol.
2018-April.

[13] ASAM e.V., “ASAM OpenSCENARIO,” 2020.

[14] W. C. Information, “WISE Drive : Requirements Analysis Framework for
Automated Driving Systems,” 2020. .

[15] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based Scene Creation
for the Development of Automated Vehicles,” 2018 IEEE Intell. Veh.
Symp., no. Iv, pp. 1813–1820, 2018.

[16] K. Go and J. Carroll, “The blind men and the elephant: views of scenario-
based system design,” Interactions, vol. 11, no. 6, pp. 44–53, 2004.

[17] S. Geyer et al., “Concept and development of a unified ontology for
generating test and use-case catalogues for assisted and automated vehicle
guidance,” IET Intell. Transp. Syst., vol. 8, no. 3, pp. 183–189, 2014.

[18] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining
and Substantiating the Terms Scene , Situation , and Scenario for
Automated Driving,” in Proc. of the 2015 IEEE 18th 18th International
Conference on Intelligent Transportation Systems, 2015.

[19] E. de Gelder et al., “Ontology for Scenarios for the Assessment of
Automated Vehicles,” 2020.

[20] E. De Gelder and J. P. Paardekooper, “Assessment of Automated Driving
Systems using real-life scenarios,” IEEE Intell. Veh. Symp. Proc., no. Iv,
pp. 589–594, 2017.

[21] A. Pütz, A. Zlocki, J. Bock, and L. Eckstein, “System validation of highly
automated vehicles with a database of relevant traffic scenarios,” 12th ITS
Eur. Congr., no. June, pp. 1–8, 2017.

[22] T. Menzel, G. Bagschik, L. Isensee, A. Schomburg, and M. Maurer, “From
functional to logical scenarios: Detailing a keyword-based scenario
description for execution in a simulation environment,” IEEE Intell. Veh.
Symp. Proc., vol. 2019-June, pp. 2383–2390, 2019.

[23] J. Bock, R. Krajewski, L. Eckstein, J. Klimke, J. Sauerbier, and A. Zlocki,
“Data basis for scenario-based validation of HAD on highways,” in 27th
Aachen Colloquium Automobile and Engine Technology, 2018.

[24] H. Grönninger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel,
“Textbased Modeling,” Proc. 4th Int. Work. Softw. Lang. Eng. (ateM
2007), no. 4, 2007.

[25] B. D. Cruz, B. Jayaraman, A. Dwarakanath, and C. McMillan, “Detecting
Vague Words & Phrases in Requirements Documents in a Multilingual
Environment,” Proc. - 2017 IEEE 25th Int. Requir. Eng. Conf. RE 2017,
pp. 233–242, 2017.

[26] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO--
simulation of urban mobility: an overview,” Proc. SIMUL 2011, Third Int.
Conf. Adv. Syst. Simul., 2011.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An Open Urban Driving Simulator,” no. CoRL, pp. 1–16, 2017.

[28] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street Maps.
Pervasive Computing,” IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18,
2008.

[29] M. Dupuis, M. Strobl, and H. Grezlikowski, “OpenDRIVE 2010 and
Beyond – Status and Future of the de facto Standard for the Description of
Road Networks,” Driv. Simul. Conf. 2010 Eur., pp. 231–242, 2012.

[30] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map representation
for autonomous driving,” IEEE Intell. Veh. Symp. Proc., no. Iv, pp. 420–
425, 2014.

[31] M. Althoff, S. Urban, and M. Koschi, “Automatic Conversion of Road
Networks from OpenDRIVE to Lanelets,” Proc. 2018 IEEE Int. Conf.
Serv. Oper. Logist. Informatics, SOLI 2018, pp. 157–162, 2018.

[32] C. Pilz, G. Steinbauer, M. Schratter, and D. Watzenig, “Development of a
scenario simulation platform to support autonomous driving verification,”
2019 8th IEEE Int. Conf. Connect. Veh. Expo, ICCVE 2019 - Proc., 2019.

[33] R. Queiroz, T. Berger, and K. Czarnecki, “GeoScenario: An open DSL for
autonomous driving scenario representation,” IEEE Intell. Veh. Symp.
Proc., vol. 2019-June, no. Iv, pp. 287–294, 2019.

[34] SAE International, “Surface Vehicle Recommended Practice - J3016,”
2018.

[35] “Road vehicles — Taxonomy for operational design domain for automated
driving systems,” Int. Organ. Stand. [ISO], 2020.

[36] “Road Safety Data - STATS19,” UK Department for Transport, 2020.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 871 submitted to 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC). Received May 29, 2020.

