
Abstract— With the increasing demands on mutual 
understanding between human beings and advanced systems, 
objectively measuring and monitoring human mental states in a 
non-intrusive way has been a hot topic in recent days. 
Eye-tracking data has long been found to be a kind of suitable 
bio signals in measuring human mental states, as visual is the 
first channel of information collection and eye-tracking data 
shows the process of human-system interactions. Traditionally, 
many studies have been conducted to confirm the correlations 
between eye-tracking data and human mental states. Recently, 
with advanced artificial intelligence algorithms, the spatial and 
temporal patterns of eye-tracking data can detect human 
mental states. This study aims to explore and review 
eye-tracking parameters and state-of-art methods for mental 
states assessments. The study reveals that most of the studies 
focused on using statistical methods to process eye-tracking 
data. While novel methods, such as machine learning and deep 
learning are important aspects in strengthening eye-tracking 
analytics owing to their ability in dealing with dynamic and 
noisy data. Besides, novel features extracted from eye-tracking 
data, such as gaze-bin and entropy may greatly improve the 
performance in assessing human mental states. 

I. INTRODUCTION

With advanced manufacturing capability and ubiquitous 
sensors, smart objects, which can sense the dynamic 
environment and make context-dependent decisions 
surrounds human beings [1]. These smart objects have 
induced substantial changes in almost all aspects of our daily 
life, such as shopping, educations, and transportation. For 
example, online shopping websites, like Taobao and Amazon 
can provide customized recommendations based on our 
shopping and view history. The automation car can drive 
independently with computer visions to avoid the collision. In 
a word, the objects seem to be smart to understand their 
surrounding environment. The capability is also term as 
context-awareness. Recently, researchers tried to improve the 
context-awareness of smart objects and found out that human 
mental states are the most uncontrollable and most complex 
variables in the environment [2]. 

Mental states are the inner fundament of every affective 
and/or cognitive manifestation [3]. Mental states include 
fatigue [4], vigilance [5], workload [6], and attention [7]. In 
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addition, affective state relates to the emotional state of the 
learner including uncertainty is regarded as a kind of mental 
state, too [8]. Too many influencing factors, such as culture 
difference, age, gender, experience, health, and personality 
affect the mental states of human beings [9]. Hence, recently, 
several studies have been conducted to assess and monitor 
dynamic human mental states in real-time [5][10]. These 
studies can provide foundations for enhancing the 
understanding of smart objects in human beings. Among 
these studies, eye-tracking-based human mental states 
assessment received considerable attention owing to the 
special attributes of the eye-tracking data [10]. 

Eye-tracking data are normally including eyelid 
movements, gaze movements, and pupil changes [11]. The 
gaze movements show where the users are looking at and how 
users interact with the world. Hence, gaze movements can 
serve as a window into the brain. Also, the eyelid movement 
and pupil changes can hardly be controlled by our mental 
model. Hence, the eye-tracking data can provide objective 
and accurate information. The correlations between 
eye-tracking data have long been studied. Though many 
studies have confirmed the significant correlations, simply 
setting a single threshold, or using linear regression cannot 
achieve performance in measuring human mental states [10]. 
Hence, researchers proposed to use some state-of-art 
methods, including machine learning and deep learning 
algorithms to deal with the eye-tracking data [12].  

To fully understand the efficiency of using eye-tracking to 
assess human mental states, we conducted a literature review 
on the related journal papers published after 2009. The 
eye-tracking parameters, the analytical methods, and the 
mental states are fully analyzed. Currently, the concept of 
monitoring human mental states has only been investigated in 
the laboratory. There is still a long way to go to achieve the 
applications in practice. It is expected this holistic review can 
provide references for both practitioners and researchers.  

This paper is organized as follows: Section 2 introduces 
the methods adopted for collecting and grouping articles. The 
eye-tracking parameters for mental states assessment are 
introduced in Section 3. The statistical analysis, machine 
learning-based methods, and deep learning methods are 
presented in Section 4 separately. We concluded this study in 
Section 5. 

II. METHODS

A. Paper selection

The literature source includes the Web of Science database
and Scopus database from 2009 to 2021. Only journal articles 
are selected. Two stages were conducted to identify target 
papers. In the first stage, we defined three sets of keywords 
presented as follows: ‘‘eye OR eye movement OR 
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eye-tracking OR eye tracking OR gaze OR blink OR pupil” 
AND “detection OR monitor OR assessment’’ AND ‘‘mental 
states OR workload OR inattention OR fatigue’’. 
Subsequently, these four sets of keywords were combined 
using the Boolean operator ‘OR.’ In the second stage, the 
authors manually and systematically select the articles that 
meet the following criteria: (1) did not focus on developing a 
mechanical eye tracker system, as the focus of this review is to 
examine the general trends of eye tracker application instead 
of eye tracker development; (2) used eye-tracking devices; (3) 
focused on human mental states; and (4) published in English. 
Finally, 81 papers were selected for this review. 

B. Coding procedure 

The content analysis consisted of two stages. In the first 
stage, the selected papers were preliminarily coded based on 
the data collected from different eye components. The human 
eye includes several components, such as the pupil, eyelid, 
eyeball, and iris [14]. The activities of these components can 
be recorded as bio-signals, such as eyelid movement, gaze 
movement, and pupil changes. Eyelid movement traces the 
open and close states of the eyelid. Gaze movement refers to 
eyeball activities. The pupil changes are the changes in pupil 
size. Thus, a coding scheme for analyzing the topics of the 
collected articles was developed as shown in Fig. 1. In the 
second stage, all papers were coded for the analytical methods 
adopted. 

Figure 1.  Structure of the review paper 

III. EYE-TRACKING DATA AND MENTAL STATES 

The features extracted from different eye-tracking data, 
including eyelid movements, gaze movements, and pupil 
changes are discussed in the following sections. 

A.  Eyelid Movements and Mental States 

Several muscles, such as skeletal eyelid muscles, the 
orbicularis oculi (OO) muscles, and smooth muscles control 
the eyelid movements. Environmental factors can stimulate 
these muscles controlled by different aspects of our brain. 
Hence, eyelid movements can be induced by various causes, 
such as fatigue, stress, electrical stimulation, and air puff 
[13][14][15]. These causes would induce significantly 
different eyelid movement patterns. For example, electrical 
stimulation would shortest eyelid movement, while 
spontaneous eyelid movement had a longer duration [16]. The 
difference in the eyelid movement patterns provides us 
chances to infer the causes of eyelid movement, including the 
human mental states. The eyelid movements can be collected 
by infrared camera [17][18], video surveillance[19][20], 
EOG [21], commercialized eye trackers [22][23], 
front-face-view camera [24], ODMS glasses [25], and so on. 
As shown in Fig. 2, most studies utilized eyelid movements 
for assessing human fatigue. While limited studies focused on 

using eyelid movements for inattention and vigilance 
[26][27]. Only one study tried to analyze blink duration and 
blink rate across different levels of mental workload [28]. 

Figure 2.  Number of articles that using eyelid movements to assess mental 

states 

 

B. Gaze Movements and Mental States 

Gaze points refer to the instantaneous spatial locations, 
based on the visual axis, that corresponds to the stimulus. 
Each gaze points typically have three data points connected to 
them, an x and y coordinate, and a timestamp [29]. Gaze 
points are normally the raw outputs from an eye-tracking 
device. Many commercialized eye trackers can record the 
gaze points, such as SMI iView [30], Tobii X 120 [31], Eye 
Tribe [32], Smart Eye [33], Mobileye [34], and Face lab 
[35][36]. A single gaze point constitutes one raw sample of 
data captured by the eye tracking device. Multiple gaze points 
happen in a short span of time, resulting in a cluster, which is 
known as a fixation. The typical fixation duration is 100-300 
milliseconds [37]. The quick and simultaneous eye 
movements between fixations are saccades [38].  

Fixations examine the instances where the eyes cease the 
scanning process of the environment and hold the central 
fovea vision in position to allow the subject to observe 
detailed information on the visual target. A saccade is a 
particular type of eye movement that involves a rapid 
movement of the fovea between points of interest [10][5]. 
Given the fast movements, the image that is captured by the 
retina is of reduced resolution. Therefore, while the human 
visual perception is guided by alternating between saccades 
and fixations, most of the information is captured during the 
fixation periods [10].  

Most features extracted from gaze movements are 
parameters of fixations and saccades, such as fixation 
duration [36][39][40], fixation rate[41][31], fixation location 
coordinates [42][35], number of fixations [6], saccade peak 
velocity [43][44][45], saccade rate[46], saccade amplitude, 
saccade intrusion [47], and saccade duration [48]. Some 
parameters are obtained from the dynamic or static 
aggregations of fixations and saccades, such as fixation 
sequences [49], the length of scan path, heat maps [34], and 
glance duration [50][51]. Fixation sequences are generated 
based on fixation position and timing information [37]. This 
is essentially dependent on the area at which respondents are 
looking and how much time is spent at that particular 
location.  



  

 

 

Besides the parameters of fixations and saccades, 
researchers tried to extract some parameters of raw gaze 
points [30], such as gaze rotation [52], dwell time [53], visual 
scanning entropy [53], gaze velocity entropy [10], gaze 
transition entropy, dwell time entropy [54][55], vertical and 
horizontal deviation of gaze [56]. Extracting these parameters 
does not require the eye-tracking parsing algorithms, which 
classify the gaze points into fixations and saccades. Hence, 
using the raw gaze movements as input can minimize the bias 
effects induced by the eye-tracking parsing algorithms [29].  

Fig. 3 shows the number of articles on mental states 
assessment using gaze movements. It can be found that most 
studies utilized gaze movements to monitor or assess the 
inattention level of users. Comparing with eyelid movements, 
the gaze movements have relatively wider applications. They 
have been utilized to assess situation awareness [43], user 
intents [30], monitoring behaviors [57], and mental health 
[58].  

Figure 3.  The number of articles on mental states assessment using gaze 

movements 

 

C. Pupil Changes and Mental States 

Pupil sizes can be classified into two categories: pupil 
dilation (increase in size) and pupil constriction (decrease in 
size). The changes in pupil size are primarily due to the 
change in light or stimulus material [37]. If lighting 
conditions can be controlled in an experiment setting, other 
attributes can be derived from this metric. Emotional arousal 
and mental workload are two commonly derived properties 
from the measurement of pupil constriction or dilation [59]. 
According to the literature collected, only 5 articles utilized 
pupil variations as the only indicators of mental states. The 
pupil diameters [59][60], changes in pupil diameters [61][62], 
and fractal dimension of pupil dilation [63] are calculated as 
indicators of mental states. In addition, these features have 
only been utilized for assessing mental workload and 
alertness. 

D. Combined Eye-Tracking Parameters and Mental States 

The information carried by different components of the 
eyes seems to be different. Hence, it is expected that the 
fusion of eye-tracking parameters can improve the 
performance in assessing mental states. Most studies 
combined the features from three aspects, including pupil, 
eyelid, and gaze movements. For example, a study utilized 
pupil diameter, blink rate, fixation rate, and saccadic rate as 
the inputs of Artificial Neural Networks for predicting mental 

workload in nuclear power plants [64]. Fusion data from the 
three source were mainly utilized for assessing mental 
workload [65][66][67][32][68][69] and fatigue [70][33][71]. 
The fusion of pupil and gaze movements has been utilized to 
assess fatigue [5], workload [72], and situation awareness 
[73]. The fusion of pupil and eyelid, eyelid, and gaze received 
relatively limited attention, as shown in Fig. 4.  

According to the analysis conducted in Sections 3 to 6, we 
can find that the parameters obtained from different eye 
components seem to have been applied in different mental 
states assessment. In general, eyelid movements mainly 
contribute to human fatigue detection, as a fatigued person 
intends to close the eyes, resulting in long blink duration and 
high PERCLOS. The gaze movements reveal much more 
information about mental processes and human-machine 
interactions. Hence, gaze movements contribute to the studies 
on attention analysis, such as minding wandering, distraction, 
and situation awareness. The pupil size has a high correlation 
with stress and mental workload. Hence, we can find that 
pupil variations are normally applied in workload 
measurements.   

Figure 4.  The number of articles on mental states assessment using fused 

eye-tracking data 

IV. ANALYTIC METHODS 

According to the collected literature, three main methods 
were applied in assessing mental states with eye-tracking 
data, namely statistical analysis, machine learning, and deep 
learning. Besides these methods, some studies may develop a 
specific performance model, such as ACT-R model [74] and 
knowledge-based system [49] to assess mental states. The 
following section discusses the details of the three commonly 
used methods.  

A. Statistical Analysis 

Comparing with the other two methods, the statistical 
analysis has the longest history in the measurement of mental 
states with eye-tracking data. Statistical analysis, such as 
Analysis of variance (ANOVA), confidence interval, 
Receiver Operating Characteristic (ROC) curve analysis, and 
t-test/z-test [75][76][77]. Linear models can be used, 
however, non-linear models can better consider the 
multi-dimensional and temporal aspects of mental states. 
There has an increasing amount of research done on 
multi-variate models such as combining data from different 
eye components [72]. The statistical analysis reveals the 
correlations between the parameters extracted from the 
eye-tracking data and the mental states. For example, the 



  

 

number of fixations of harvester operators working in steep 
terrain conditions increased with the increasing mental 
workload [78]. A study based on statistical analysis reported 
that cognitive load significantly affected pupil diameter under 
the situation of low perceptual load. When the perceptual load 
was high, no significant effects on blink rate and pupil 
diameter [79]. 

B. Machine Learning 

Though the statistical analysis has revealed the high 
correlations between eye-tracking data and mental states, the 
correlations are too complex to be directly used for mental 
states assessment. Recently, many machine learning 
algorithms have been applied to detect the potential patterns 
involved in the eye-tracking data [41][30].  With the features 
of adaptive learning, transfer learning, and active learning, 
the machine learning algorithms can deal with the 
inconsistency of the training and testing data sets. The most 
widely used machine learning algorithms including Support 
Vector Machine (SVM) [41][48][46][80][81], Random 
Forest (RF) [71][65], Decision Tree [70], Extreme Gradient 
Boosting [82][10], Bayesian Network (BN) [42][40], and 
Artificial Neural Networks (ANN) [30][64][67][66]. Among 
them, SVM is the most widely used machine learning in this 
field [83][26]. It minimizes the classification error by 
maximizing the margin between the closest observations 
from each class (i.e., support vectors) and the decision 
boundary.  

C. Deep Learning 

The machine learning methods normally use various 
preprocess methods to select features as input. The process of 
feature selection often requires professional knowledge to 
achieve better performance. To address the manual and expert 
efforts required in machine learning, some studies proposed 
to use deep learning and raw eye-tracking data to assess 
mental states [84]. 

Deep Learning has already improved many fields, with 
computer vision being the main area for focus. Generally, 
recent studies have applied Hidden Markov Models [85], 
Convolutional Neural Networks (CNN) [86], and Long Short 
Term Memory [87] in measuring mental states with the 
eye-tracking data. Among them, CNN has received the most 
research attention. CNN has a deep network structure and 
includes convolution calculations. It has an input layer 
followed by several hidden layers, and then an output layer. 
The hidden layers are made up of a convolutional layer, 
pooling layer, and fully connected layer. Gradient descent 
algorithm is always used in CNN. Thus, it is necessary to 
normalize the input into the same interval to ensure 
efficiency. Recently, a study reported that the performance of 
attention-based CNN-LSTM on driver stress detection can 
achieve an average accuracy of 95.5%, which is much higher 
than most machine learning methods [87].  

Fig. 5 shows the number of articles assessing mental 
states with eye-tracking data and different analytic methods. 
We can find that statistical analysis is the most popular way to 
analyze eye-tracking data. After 2017, both machine learning 
and deep learning are receiving increasing research attention. 
It is expected that the artificial intelligence methods will 

enable efficient and accurate real-time measurements of 
mental states in near future.  

Figure 5.   The number of articles assessing mental states with eye-tracking 

data and different analytic methods 

V. CONCLUSION 

Eye-tracking data have long been proved to be valuable 

indicators of human mental states. This study discussed the 

parameters extracted from eye components movements and 

analytic methods with a focus on mental states assessment. A 

classification of different eye-tracking data and the 

corresponding mental states are presented. In addition, we 

summarize different analytics methods and their strength and 

limitations. This study revealed that novel artificial 

intelligence algorithms are important parts of the evolving 

eye tracking-based assessment of mental states owing to their 

strength in robust learning, adaptive learning, and 

self-learning.  

This study only provides an overall review on the eye 

tracking-based assessment of mental states. Detailed analysis, 

such as the feature extraction and eye trackers devices is not 

presented. Nevertheless, this study might spark some new 

ideas for researchers and practitioners in this field. 
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