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Abstract— Early detection of cardiovascular diseases is cru-
cial for effective treatment and an electrocardiogram (ECG)
is pivotal for diagnosis. The accuracy of Deep Learning
based methods for ECG signal classification has progressed
in recent years to reach cardiologist-level performance. In
clinical settings, a cardiologist makes a diagnosis based on
the standard 12-channel ECG recording. Automatic analysis of
ECG recordings from a multiple-channel perspective has not
been given enough attention, so it is essential to analyze an ECG
recording from a multiple-channel perspective. We propose a
model that leverages the multiple-channel information available
in the standard 12-channel ECG recordings and learns patterns
at the beat, rhythm, and channel level. The experimental results
show that our model achieved a macro-averaged ROC-AUC
score of 0.9216, mean accuracy of 88.85% and a maximum
F1 score of 0.8057 on the PTB-XL dataset. The attention
visualization results from the interpretable model are compared
against the cardiologist’s guidelines to validate the correctness
and usability.

I. INTRODUCTION

Heart diseases are the leading cause of death globally. It
is estimated that 17.9 million people died of heart diseases
in the year 2016 which represents about 31% of global
human mortality according to the World Health Organization.
Early detection of heart disease is crucial for effective
treatment and reducing mortality. Electrocardiography is an
inexpensive, simple and non-invasive procedure that helps us
to understand the functioning of a heart which in turn helps
us diagnose heart diseases. An Electrocardiogram (ECG)
records information about the electrical activity of the heart
based on which a cardiologist can identify abnormal func-
tioning of the heart to diagnose various conditions. But this
process of analyzing an ECG recording is time-consuming
that requires a trained expert’s time and attention. Moreover,
it is prone to human error. Misdiagnosis of early signs of
heart diseases by cardiologists from an ECG recording is still
a major concern [1]. So work has been done to automate the
ECG signal classification to aid in human diagnosis.

Most existing approaches use traditional machine learning-
based methods for the detection of heart diseases from
a patient’s ECG recording [2, 3]. Such methods involve
manually crafted feature extraction and the use of classifiers
on the extracted features. Asgari et al. [4] use the stationary
wavelet transform to extract features and a support vector
machine (SVM) for the detection of atrial fibrillation. Poddar
et al. [5] employed the heart rate variability (HRV) features

computed in time-domain, frequency-domain and using non-
linear methods, the features are then classified using k-
nearest neighbor (KNN) and SVM classifiers. Unsupervised
methods using time series clustering were proposed in An-
nam et al. [6].

The advent of deep learning-based methods for ECG
signal classification has progressed in recent years to reach
cardiologist-level performance [7]. Such methods analyze
ECG data without manual feature extraction in contrast to
traditional machine learning approaches. The work done by
Rajpurkar et al. [7] uses a time series ECG signal as an
input to a 34-layer eural network (CNN) by mapping a
sequence of ECG samples to a sequence of rhythm classes.
The model exceeded the average cardiologist performance
in both precision and recall. Mousavi et al. [8] developed an
automatic heartbeat classification method using deep convo-
lutional neural networks and sequence-to-sequence models.
Murugesan et al. [9] proposed a combination of CNNs and a
long short-term memory (LSTM) based feature extractor that
can be directly trained without any preprocessing. Recurrent
neural network (RNN) along with an attention mechanism is
used by Schwab et al. [10] for the classification of a single-
channel ECG recording.

An interpretable model along with reliable performance is
crucial to instil confidence in medical practitioners to use
computer-assisted electrocardiography. A lot of work has
been done to improve the interpretability of deep learning
models in computer vision tasks but the progress made on
interpreting ECG classification models has been limited and
has been gaining interest recently [11, 12]. Vijayarangan et
al. [13] use a gradient-weighted class activation map [14]
for visualizing saliency on single-channel ECG signals using
their proposed model. Attention models have been utilized
by Hong et al. [15] to improve interpretability in the time
and frequency domains.

The majority of the interpretable deep learning work fo-
cuses on models which deal with single-channel ECG record-
ings. A single-channel ECG recording is used for basic heart
monitoring whereas a multi-channel ECG recording provides
information about the 3-dimensional electrical activity of the
heart. From a clinical point of view, a cardiologist makes
a diagnosis based on the standard 12-channel ECG record-
ing [16]. When compared to a single-channel recording, a 12-
channel recording accurately reproduces various features of
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an ECG such as QRS complex, ST-segment and T waveforms
which sometimes are poorly represented in a single-channel
recording [17]. For example, ST-segment elevation which is
an important characteristic for Myocardial Infarction (MI)
is best identified using a 12-channel recording and the
localization of myocardial injury cannot be identified without
a 12-channel recording. Analysis of ECG recordings from
a multiple-channel perspective has not been given enough
attention and it is essential to analyze an ECG recording
from a multi-channel perspective. To address this gap, we
propose a model that leverages the multi-channel information
available in a multi-channel ECG recording. Also, we make
use of the hierarchical structure of the ECG signal to learn
patterns at the beat, rhythm and channel level. The model is
then evaluated on the PTB-XL dataset [18] which comprises
of a total 21837 clinical 12-channel ECG recordings of 10
seconds length from 18885 patients. The performance of the
model is then compared against the existing deep learning
methods. The interpretability of our model is evaluated by
comparing the attention visualizations with the cardiologist’s
rules for identifying the subtypes of MI. We perform an
ablation study by reducing the number of available channels
in an input ECG recording to evaluate the robustness of the
proposed model. The source code of the proposed model and
all the experiments performed is made publicly available to
ensure reproducibility for future research1.

II. METHODOLOGY

A. Preprocessing
In preprocessing, a multi-channel ECG signal is segmented

into beat segments of length W for every individual channel.
A popular approach to segment an ECG signal into beat
segments is based on first detecting the R-peaks in an ECG
signal using the Pan-Tompkins algorithm [19] and then using
the adaptive searching window for segmenting beats which
is used in Mousavi et al. [20]. Other approaches for the
detection of R-peaks include standard wavelet transform [21]
and Hamilton [22]. But these approaches perform poorly in
the presence of signal noise and HRV irregularities. Instead,
we opted for a sliding window approach with no overlap
which was used by Hong et al. [15] to segment beats of the
ECG signal. To get the kth beat segment, the beat is spanned
from (k− 1)×W to k×W over the ECG signal, where W
is the length of the window.

B. Architecture
The proposed model can be divided into two parts, the first

part processes each channel separately to generate a channel
encoding for an input ECG recording. The architecture of the
first part is shown in Figure 1. The segmented beats from
a multi-channel ECG recording are passed through a beat
level block, the outputs from the beat level block are passed
through a rhythm level block to get channel-wise encodings.
These channel-wise encodings are passed into the second
part of the model which pools these encodings from each
channel and generates predictions as shown in Figure 2.

1https://github.com/likith012/IMLE-Net

Fig. 1. Architecture of the model at each individual channel

Fig. 2. Channel level architecture of the model

1) Beat Level Block: The beat level block involves the
processing of input beat segments. The beats are first passed
through a CNN and then an attention layer.

The architecture of the CNN used in the beat level block is
shown in Figure 3. Inspired by the ResNet architecture [23],
the CNN uses a total of 6 residual blocks. Skip connections
in a residual block improve backpropagation in deep neural
networks which optimize model training. In a single residual
block, there are two convolutional layers and every convo-
lutional layer is followed by a batch normalization layer
and a ReLU activation function. Between two convolutional
layers, we employ dropout to stabilise model training and
to avoid overfitting. No downsampling is done in the first
two residual blocks. In the remaining residual blocks, inputs

https://github.com/likith012/IMLE-Net


are downsampled by a factor of two after every alternate
residual block. All the convolutional layers have a filter
length of 8 with 32 starting filters. In every residual block
where downsampling of inputs occurs, the number of filters
is doubled. All the weights in a CNN are shared across all
the beat segments and across multiple channels in the model.

Let T be the length of an ECG signal for the cth channel
and W be the beat length. The total number of beat segments
are given by N = T

W . Let (bc1, b
c
2, b

c
3, ...b

c
N ) be the beat

segments for the cth channel of an ECG recording. The CNN
takes in a time series of kth beat segment bck of length W .
The output from the CNN with input as bck beat segment be
b̄ck with an intermediate sequence length of W̄ .

We know that all the areas within a heartbeat segment are
not equally relevant in identifying an abnormal heartbeat.
The attention mechanism helps in identifying more important
areas within a beat segment by giving higher attention scores
to them. It is a two-layer neural network that takes inputs
from the CNN outputs and gets the attention scores by
computing softmax over the outputs from the two-layer
neural network as given in eqs. (1) and (2). The weights
of the beat level attention layer are shared across all beat
segments similar to CNN.

αc
k = softmax(Vb tanh(Wbb̄

c
k + bb)) (1)

Bc
k =

W̄∑
i=1

αc
k,ib̄

c
k,i (2)

Where, Vb, Wb and bb are beat level attention parameters
that are learned during training. αc

k is the beat level attention
score for the kth beat segment in an ECG signal for the
cth channel. Bc

k is the beat context vector for the kth beat
segment in an ECG signal for the cth channel. The beat
context vector Bc

k is a weighted sum of b̄ck,i with weights
given by attention scores αc

k,i.
2) Rhythm Level Block: The rhythm level block deals

with the input ECG rhythm signal which is constructed
from several beat segments. It consists of two layers, a Bi-
directional LSTM and a rhythm level attention layer. Bi-
directional LSTM is used as the current state can process
both forward and backward directions of the input sequence
information. The input to the Bi-LSTM is a sequence of beat
context vectors Bc

k for the cth ECG channel with N beat
sequences. In the Bi-LSTM, the forward and the backward
direction hidden states for the current step k are concatenated
to obtain output rck.

The output from the Bi-LSTM rc with a sequence length
of N for the cth channel is passed through a rhythm attention
layer. The rhythm attention mechanism used here identifies
the important beat segments within an ECG rhythm by giving
higher attention scores to them and is given by eqs. (3)
and (4).

βc = softmax(Vr tanh(Wrr
c + br)) (3)

Rc =

N∑
i=1

βc
i r

c
i (4)

Fig. 3. Architecture of the CNN used at the beat level.

Where, Vr, Wr and br are rhythm level attention param-
eters that are learned through training and βc is the rhythm
level attention score for the cth channel. Rc is the rhythm
context vector for the cth channel which encodes entire
ECG signal for a particular channel into a vector (Channel
Encoding).

3) Channel Level Block: The channel level block pro-
cesses the information present in several ECG channels.
The information present in individual ECG channels differ.
The characteristic information for diagnosing a particular
condition might be present only in few channels. So we
need a mechanism to not treat each channel equally always
and give more importance to the channels that hold the
characteristics for a particular heart disease. So a channel-
level attention mechanism is used here which receives in-
puts (R1, R2, ...Rc...RM ), where M is the total number of
channels available in an ECG recording. The channel level
attention scores are calculated similar to beat and rhythm
level attention given by eqs. (5) and (6).



γ = softmax(Vc tanh(WcR
c + bc) (5)

C =

M∑
i=1

γiR
c
i (6)

Where, Vc, Wc and bc are the channel level parameters that
are learned during training. γ is the channel level attention
score and C is a context vector that encodes the entire ECG
signal for all the available channels. The context vector C is
passed through a linear neural network for final predictions.

III. EXPERIMENTS

A. Dataset

The dataset used is the PTB-XL dataset [18] which is
the largest openly available dataset that provides clinical 12
channel ECG waveforms. It comprises 21837 ECG records
from 18885 patients of 10 seconds length which follow
the standard set of channels (I, II, III, aVL, aVR, aVF,
V1–V6). The dataset is balanced concerning sex with 52%
male and 48% female and covers age ranging from 0 to 95
years. The dataset covers a wide range of pathologies with
many different co-occurring diseases. The ECG waveform
records are annotated by two certified cardiologists. Each
ECG record has labels assigned out of a set of 71 different
statements conforming to the Standard communications pro-
tocol for computer assisted electrocardiography (SCP-ECG)
standard. The ECG waveform was originally recorded at a
sampling rate of 400 Hz and downsampled to 100 Hz. All
the experiments in our work were performed using the 100
Hz sampling rate.

B. Evaluation

We select the samples from the PTB-XL dataset [18]
in a way to cover a huge cohort of diseases and use
it to evaluate the model. Each SCP statement annotated
in the ECG recording belongs to one of the groups of
form, rhythm, and diagnostic statement groups, with a few
SCP statement annotations belonging to both rhythm and
diagnostic statements. For evaluating the model in our work
only the diagnostic statements are considered, a total of
21430 ECG recordings are present in the dataset with at
least one diagnostic statement. A specific ECG recording
can have multiple diagnostic statements annotated against it.
For the diagnostic statement labels, hierarchical groups are
provided in terms of 5 superclasses and 24 subclasses. In
our experiments, we have used the 5 superclass labels in
which the ECG recordings in a particular superclass belong
to the same family of pathologies. The superclass disease
groups are Normal ECG (NORM), Conduction Disturbance
(CD), Myocardial Infarction (MI), Hypertrophy (HYP), and
ST/T changes (STTC). Splitting of the dataset for training
and testing is based on the stratified folds provided by the
dataset. Each ECG recording is assigned to one of the ten
folds, folds 1 to 8 are used for training the model, the 9th

fold is used as the validation set and the 10th fold is used

as a test set. The train and test sets are standardized before
training.

The proposed model is compared against Resnet 101
model [23], Mousavi et al. [8], ECGNet [9] and Rajpurkar
et al. [7]. The performance of the model is evaluated using
metrics such as the mean accuracy, macro averaged Area
under Receiver Operating Characteristics (ROC-AUC) and
maximum F1 score. Along with these metrics, class-wise
accuracy and class-wise ROC-AUC scores are also reported.

C. Interpretability

We used the beat attention scores, rhythm attention scores
and channel attention scores to gain insights into the model
at beat, rhythm and channel level.

As the training samples prepared in evaluating the model
are grouped according to the same family of pathologies,
such training data is not ideal to validate the channel
level interpretations as the grouped ECG recordings do
not hold many variations in abnormal beat characteristics
across different ECG channels. For validating channel level
interpretations, we chose two specific sub-diagnostic diseases
of MI, namely, Anteroseptal Myocardial Infarction (ASMI)
and Inferior Myocardial Infarction (IMI) along with nor-
mal (NORM) ECG recordings and rejected the rest of the
subtypes of MI mainly due to the paucity of the number
of ECG recordings for these subtypes. A total of 1344
(ASMI), 916 (IMI), and 1000 (NORM) samples are obtained.
Normal ECG samples are obtained by randomly selecting
100 samples from each fold. We have chosen the stratified
folds from 1 to 8 as training data and folds 9 and 10 as test
data.

D. Ablation Study

We experimented our model with different combinations
of ECG recording channels (leads), by doing so we can esti-
mate how well these combinations of channels contribute to
the classification of superclass labeled data which was used
in the evaluation of the model. The channel combinations
selected are limb leads (I, II, III, aVL, aVR and aVF), pre-
cordial leads (V1-V6), leads I, II and II and all the available
12 leads in the ECG recording. The performance of our
proposed model is compared against different combinations
of ECG channels and class-wise ROC-AUC and class-wise
accuracy scores are reported.

E. Implementation Details

The model is trained for a maximum of 60 epochs in
mini-batches of 32 with an early stopping criterion. The
Cross-Entropy loss function has been used for training the
model with Adam optimizer [24] with the first momentum
value set to 0.9 and the second momentum value set to 0.99.
An adaptive learning rate is used for minimizing the loss
with an initial learning rate set to 0.001. The learning rate
is decreased by a factor of 10 after every 10 epochs if no
improvement in performance is observed. Training is done
with window size (W ) of 50 time-points and a dropout rate of
0.5. An L2 regularisation loss with a coefficient of (2×1e-5)



has been used to avoid overfitting of the model. The model
is developed using Tensorflow and all the experiments are
trained on an Nvidia RTX 2080Ti 11GB GPU workstation.

IV. RESULTS

A comparison of class-wise ROC-AUC and class-wise
accuracy scores across the models is shown in Tables I and II,
respectively. Our model achieves the best class-wise ROC-
AUC score across all the classes except for the HYP class and
the class-wise accuracy score is highest for all classes except
for the CD class. Table III shows that our model achieved the
best performance across the metrics macro ROC-AUC, mean
accuracy and maximum F1 score as compared to the other
models. This is due to the effective use of the multi-channel
information used by our model compared to other models
by incorporating a channel level attention. The processing
of the hierarchical structure of an ECG signal is efficiently
used by using beat and rhythm level attention. The model
parameters are shared across multiple channels instead of
having separate model parameters for each channel resulting
in fewer final model parameters and better generalization.

TABLE I
CLASS-WISE ROC-AUC COMPARISON

CD HYP MI NORM STTC
Resnet101 [23] 0.8928 0.8636 0.8921 0.9098 0.9178
Mousavi et al. [8] 0.8555 0.8093 0.8708 0.9096 0.8817
ECGNet [9] 0.9102 0.8842 0.9021 0.9336 0.9205
Rajpurkar et al. [7] 0.8910 0.9185 0.9066 0.9309 0.9306
IMLE-Net 0.9196 0.8834 0.9244 0.9450 0.9354

TABLE II
CLASS-WISE ACCURACY COMPARISON

CD HYP MI NORM STTC
Resnet101 [23] 87.74 90.89 83.12 84.69 87.47
Mousavi et al. [8] 86.26 87.19 82.47 81.78 83.26
ECGNet [9] 88.71 90.66 84.60 85.89 86.87
Rajpurkar et al. [7] 90.01 88.76 85.94 85.94 88.90
IMLE-Net 88.53 91.58 87.97 87.10 89.08

TABLE III
OVERALL PERFORMANCE COMPARISON

Macro
ROC-AUC

Mean
Accuracy

F1
score(Max)

Resnet101 [23] 0.8952 86.78 0.7558
Mousavi et al. [8] 0.8654 84.19 0.7315
ECGNet [9] 0.9101 87.35 0.7712
Rajpurkar et al. [7] 0.9155 87.91 0.7895
IMLE-Net 0.9216 88.85 0.8057

The performance metrics for the selected subtypes of MI
are shown in Table IV. The metrics shown in this table are
class-wise accuracy and class-wise ROC-AUC scores along
with mean accuracy and macro ROC-AUC score. The best

TABLE IV
ACCURACY AND ROC-AUC METRICS FOR TWO SUBTYPES OF

MYOCARDIAL INFARCTION

ASMI IMI NORM Overall
Accuracy 89.47 87.24 94.09 90.27
ROC-AUC 0.9594 0.9336 0.9906 0.9612

performance is observed for the NORM class followed by
the ASMI and IMI classes.

The beat level attention scores, the rhythm level attention
scores and the channel level attention scores are visualized
for an ECG recording in Figure 4 with Figure 5 describing
the importance of a specific channel responsible for the
classification. The patient in the ECG recording shown in
Figure 4 has an inferior myocardial infarction (IMI) present
in leads II, III and aVF. Our proposed model was able to
identify the channels responsible for this particular subtype
of MI in Figure 5. These findings have been validated by an
independent clinician. The channel level attention scores as-
sess the relevance of specific channels in an ECG recording.
This setting is crucial as the abnormal beat characteristics
might be spread only over a few of the channels and may be
completely absent in the rest of the channels. So along with
the beat level, rhythm level interpretations, it is also essential
to capture such channel level interpretations.

TABLE V
ACCURACY SCORE COMPARISON ON DIFFERENT ECG LEAD

CONFIGURATIONS (ABLATION STUDY)

CD HYP MI NORM STTC
Mean
Accu-
racy

Limb Leads 87.97 89.59 83.63 84.48 85.85 86.38
Precordial
Leads 87.47 90.98 84.46 84.97 88.48 87.27

Leads
I,II,III 87.51 88.95 83.40 85.25 85.85 86.19

12 Leads 88.53 91.58 87.97 87.10 89.08 88.85

TABLE VI
ROC-AUC SCORE COMPARISON ON DIFFERENT ECG LEAD

CONFIGURATIONS (ABLATION STUDY)

CD HYP MI NORM STTC
Macro
ROC-
AUC

Limb
Leads 0.8725 0.8407 0.8787 0.9292 0.9120 0.8866

Precordial
Leads 0.8972 0.8627 0.8683 0.9290 0.9261 0.8966

Leads
I,II,III 0.8755 0.8447 0.8609 0.9259 0.9106 0.8836

12 Leads 0.9196 0.8834 0.9244 0.9450 0.9354 0.9216

Tables V and VI report the class-wise accuracy and class-
wise ROC-AUC scores for several different channel combi-
nations as part of the ablation studies. It can be seen that
the performance metrics when utilizing all the available 12



Fig. 4. Visualization of normalized attention scores with red having a higher attention score and yellow having a lower attention score

Fig. 5. Channel Importance scores

channels in the ECG recording are the highest for each class
and overall when compared against different combinations of
channels. The precordial leads gave the second-best overall
performance when compared against limb leads and leads
I, II and III. Further, disorder classes such as HYP and
STTC were classified with better metrics. Limb leads and
leads I, II and III gave similar performance metrics with
marginally better performance on the limb leads. In short,
the standard 12-lead ECG setting gives the best performance
and the performance drops as the leads are removed due to
loss of information in the channels, again emphasizing the
importance of multi-channel information in diagnosing heart
conditions.

V. CONCLUSION

In this study, we proposed an interpretable multi-level
model for multi-channel ECG classification. The proposed
model has been evaluated on the PTB-XL dataset and it
outperforms several of the existing models. An ablation study
was performed to understand the changes in the performance
of the model with different combinations of ECG channels.

The attention scores generated were visualized and compared
with guidelines that cardiologists follow to diagnose two
subtypes of myocardial infarction. The interpretability aspect
of the proposed model enables a better understanding of
how it can be useful in clinical decision-making in a real-
life scenario. In future, the model interpretability can be
evaluated against a wide range of heart pathologies.
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