

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/159733

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/159733
mailto:wrap@warwick.ac.uk

Abstract — The development of Automated Driving Systems

(ADSs) is driven by the many benefits they offer. However, the

complexities associated with ADSs and their interactions with

the environment pose challenges for their safety assurance. A

key aspect during its development process is knowing the

capabilities, limitations, and being able to convey them in a

clear manner for various types of stakeholders. The

Operational Design Domain (ODD) concept was introduced to

define the operating boundaries where a system can operate

safely. It is therefore a key element for the safety assurance of

ADSs. Efforts have been made to define the scope and the

content an ODD for ADSs should cover, however there remains

the need for a common, exchangeable, executable, and human-

readable format for the description. This paper presents a

language for the description of the ODD of ADSs, in a textual

format that leans on natural language influence. Such format is

intended to be both human and machine-readable and would be

relevant to end users such as regulators and systems designers.

The two-level abstraction approach – a structured natural

language representation and a formal representation (covered

across two papers) -- has been developed to have the ability to

describe complex ODD conditionalities and utilize a well-

defined domain ontology to achieve rich semantics. It is aimed

to support ODD related activities throughout the development

cycle of ADSs (specification as well as verification and

validation), while covering a diverse range of stakeholders.

Keywords— operational design domain, ODD description

language, automated driving systems, verification and validation

I. INTRODUCTION

The advancement in automated driving technologies has
resulted in the increasing deployment of Automated Driving
Systems (ADSs) and Advanced Driver Assistance Systems
(ADASs). The move towards such autonomy offers benefits
such as lowered emissions [1], increased on-road safety [2],
reduced traffic congestion [3], decrease driver’s workload
[1], and improve traffic throughput [2]. However, due to the
complexity in the ADSs and ADASs, the industry and
academia have been investigating different approaches for
their safety assurance [3]. It is suggested that for ADASs and
ADSs, it is important to establish “how a system fails”, i.e.,
the limitations of the systems [4]. However, it is not only
important to establish the limitations, they also need to be
conveyed to the users in order to build public trust in such
systems [5].

*Research supported by the UK Research and Innovation, Innovate UK

and the Centre for Connected & Autonomous Vehicles (CCAV).
Patrick Irvine, Xizhe Zhang, Siddartha Khastgir and Paul Jennings are

with WMG, University of Warwick, Coventry, CV4 7AL, UK. (e-mail:

{Patrick.Irvine, Jason.Zhang, S.Khastgir.1, Paul.Jennings}
@warwick.ac.uk).

Edward Schwalb. (e-mail: schwalb.edward@gmail.com).

It is crucial for ADSs and ADASs to determine whether
this safe operating boundary defined in the ODD is being
violated or not, as it would mean triggering a transition
demand or a minimal risk manoeuvre [7]. Therefore, ODD
plays an important role in the safety assurance of ADSs and
ADASs, and needs to be considered throughout the
development cycle, from conceptual phase to verification and
validation phase.

This raises the requirement that an ODD specification
needs to be at the right abstraction level (and complete), and
it needs to accommodate an expanding scope which might
occur during the development process. In addition, various
stakeholders need to access and interact with ODD
specifications, such as ADS developers, test engineers and
regulators. ADS developers, for instance, will benefit from a
common structure for ODD definition, providing possibilities
for integration into testing toolchains, along with
comparability and transparency across systems and
organisations. A test engineer, will appreciate this ability to
easily develop toolchains through use of a common structure
but will also benefit from the capability to add enough
specificity to the definition that is useful in a test platform.
Regulators and local authorities will appreciate the format
being human-readable and interpretable for non-technical
personnel, while maintaining a common format/structure that
ensures consistency and comparability of definitions.
Therefore, an ODD specification not only needs to have a
common format for exchange and sharing, but it also needs to
be quantifiable for testing purposes, and be both
human/machine readable. Though some of these
requirements may appear to be competing with each other,
achieving a format that applies to all is essential in satisfying
the needs of the industry and should be established.

Several standards have been developed in order to form a
common understanding and a common scope for the ODD of
ADSs, such as SAE J3016 [7], BSI PAS 1883 [6], ISO 34503
[8], SAE AVSC lexicon [9]. SAE J3016 establishes a clear
definition of the term ODD and BSI PAS 1883 proposes a set
of ODD attributes in the form of a taxonomy. ISO 34503 is
being developed further from the ODD taxonomy in BSI PAS

A Two-Level Abstraction ODD Definition Language: Part I*

Patrick Irvine, Xizhe Zhang, Siddartha Khastgir, Edward Schwalb, and Paul Jennings

Figure 1: Two level abstraction model.

1883, and SAE AVSC lexicon provides a conceptual
framework and lexicon for describing the ODD. While the
definitions, the attributes and the framework for ODD
specification are being developed, the industry still lacks a
common and open description format to enable exchange,
sharing, execution and regulatory purposes.

This paper aims to build on top of the existing ODD
concepts, attributes, and guidance to form a description
language that satisfies the above-mentioned requirements. It
reports the Part I of a two-level ODD description language
concept which covers a structured natural language format
with a focus on human readability. The human readable
format is aimed at end users such as regulators and system
designers (non-coders). The Part II [19] of the concept
documents a programmatic approach of ODD definition,
utilizing a query semantic format. By introducing: 1) a
structured natural language format (readable to non-technical
end users); 2) a formal representation (programmatic
approach that is implementation ready); 3) a conversion
between the two levels, a coherent ODD can be achieved
which can be applied throughout the development cycle of an
ADS.

II. RELATED WORK

The definition of ODD given by SAE J3016 is as follows:

“[The] Operating conditions under which a given driving
automation system or feature thereof is specifically designed
to function, including, but not limited to, environmental,
geographical, and time-of-day restrictions, and/or the
requisite presence or absence of certain traffic or roadway
characteristics” [7].

The definition given by SAE aligns with that of BSI PAS
1883; which adds that ODD forms the foundation for the
development of relevant tests that manufacturers and
developers can apply consistently [6]. Through creating the
ODD, we define what operating conditions that the ADS
needs to handle [10].

ODD is crucial in the safe deployment of ADS, ensuring
that technology has its capabilities and limitations clearly
defined and readily communicated to the end user is essential
for achieving “informed safety” [5][20]. Clear
communication of an ADSs’ ODD is critical for also
confining the scope of a safety case as well as for verification,
by restricting the case where the ADS is valid [10]. If the
ADS is designed and verified against its ODD definition, it is
paramount that the ADS does not leave that ODD. Therefore
the ODD is positioned critically in the ADS design process
from a safety perspective by establishing objective and
concrete operating boundaries [10]. Blumenthal et al. [11]
discussed approaches for assessing acceptable safety in
ADSs, acknowledged the need for agreement on approaches
to ADS safety is essential in building and sustaining consumer
trust in ADSs, with ODD being positioned at the centre of this
communication. Their study also comments on the
concomitant effort that will be required on behalf of ADS
developers and government to define conceptually and
quantitatively the threshold for commercial safety through the
use of ODDs [11]. The importance of ODD in ADS safety is
well documented also in these literatures [12][13].

As previously mentioned several standards have been
developed which tackle the scope that an ODD. SAE AVSC
presents a guideline for a bottom-up approach to defining an
ODD [9], potential limitations of a location paired ODD
approach are explored in [10]. PAS1883 presents a taxonomy
for the purpose of ODD definition using their required
minimum set of ODD attributes [6].

Despite its importance, there still lacks a common format
for ODD description. Two examples definition formats are
presented in BSI PAS 1883, one being a textual and one being
a tabular definition [6]. A textual representation given follows
a structured natural language format which makes for good
readability, however such description needs to be structure
with a formal syntax and semantics in order to capture an
ODD. A tabular format on the other hand, proposes ODD as
a checklist. Tabular/graphical representations can struggle to
provide the flexibility needed [14]. A report by Thorn et al.
[15] is consistent with the checklist approach, however
Gyllenhammar et al. [10] expressed conservative views on the
checklist approach due to the requirements of the details
needed to represent the operating conditions in such format.

On the other hand, domain specific languages (DSLs)
offer a structured format while still able to retains the
structured natural language elements necessary for human
readability. DSLs are now favoured in many areas, one
example is the scenario description language for ADSs [16],
which utilises a structured natural language format within a
structured DSL framework, this satisfies the requirements
from a diverse range of stakeholders. Blumenthal et al.
identify that ADS developers should collaborate with state
and local leaders to bring their vehicles into communities
around the country [11]. This highlights the need for a human
readable format in ODD description, in areas where
collaboration between developers and regulators is necessary,
an understandable ODD description will contribute to
ensuring safety. Colwell et al. [17] note that the ODD
represents not only a picture of the restrictions of an ADS but
also defines the functional requirement for systems which
monitor ODD; this outlines the necessity for a definition to
remain executable to some degree. The necessity for a firstly
implementable, and secondarily verifiable ODD definition is
also referenced by Gyllenhammer et al. [10].

A gap can be identified in current literature and research,
for an ODD definition language format that satisfies the
regulatory and consumer requirement for human readability
to establish a clear consistent communication of capability in
the interest of safety. Furthermore, a language that could
facilitates the above, while remaining machine readable
through tool chain development, will satisfy the need of ADS

Figure 2: ODD description process diagram

developers and validation engineers. This paper aims to
propose a solution for this gap, developing a language that has
heavy natural language influence (though structured) as to
remain easily understandable, particularly catering for the
regulatory and consumer market.

III. DEVELOPMENT OF THE ODD LANGUAGE

One of the main use cases of an ODD specification is to
check that, during testing and deployment phases, any
situations can be mapped to the ODD boundary and
determined whether it is inside or outside the ODD. This
requires that the ODD boundary to be binary and provides
clear separation, the rest of the language concept is developed
based on this key common ground. The ODD specification
format enables users to define such boundary and group
together a set of ODD attributes with their relations that fall
within the operating boundary. This section will be split into
two parts: the domain model, and the language concepts. As
shown in Figure 2, the domain model provides the attributes
and the basic hierarchical relations. The language concept
then tackles the format of the specification, covering
semantic and syntactic aspects of the language. When
combining the domain model and the language concepts,
individual ODD descriptions can be generated, which can
express complex relations of the attributes, extend or
customise the domain model, and be used for testing and
regulatory purposes.

A. Domain model

Previous study has concluded that an ODD taxonomy can
never be exhaustive [6] due to its complex nature. In order to
provide a common set of attributes while satisfying various
stakeholders, the appropriate abstraction level needs to be
determined for such domain model. The idea is to have a
domain model that is abstract enough such that it can be used
by various stakeholders as a foundation. To further tailor
towards individual’s need, an extension mechanism will be
introduced in the language concept to further develop and
customise the domain model with traceability.

 The BSI PAS 1883 [6] and ISO 34503 [8] have been
developed to provide such set of recommended base
attributes. While the ISO 34503 is still under development,
the BSI PAS 1883 is chosen to provide the domain classes
used in this paper. Please note the language concept can be
used independently from any specific domain model;
however, to facilitate the exchange and the sharing of the
ODD specifications, it is recommended that a common
domain model is used. Based on the information provided in
BSI PAS 1883, five different characteristics of the taxonomy
are further developed and identified, they are: class
hierarchy, leaf node attributes, the metrics for each
attribute, the datatype of the metrics, and the corresponding

units. As shown in Figure 3, such characteristics will also be
used to provide part of semantics for the language concept.

1) Class hierarchy
Figure 3 illustrates the high-level class hierarchy from

BSI PAS 1883, this forms the scope of the ODD domain
model. Three main elements are presented, which are
environmental conditions, dynamic elements, and scenery.
Scenery contains the necessary elements to describe the
drivable area, junctions, the special structures (such as tunnel,
bridge), the fixed road structures (such as streetlamp, pole),
the temporary road structures (such as construction site
detour) and the zones (such as interference zone, school
zone). The environmental conditions contain weather (such as
wind, rainfall), particulates (such as mist/fog, sand and dust),
illumination condition (such as daylight, low ambient
lighting) and connectivity (such as communication,
positioning). In addition to scenery and environmental
conditions, the ODD taxonomy also provides dynamic
elements that describe the macroscopic traffic characteristics
and the designated speed for the subject vehicle. Please note
further details on vehicle behaviours are not part of the ODD
therefore they are not considered within the scope.

2) Attributes, metrics, data type and units

Once the hierarchy of the attributes has been determined,

the next step is to iterate through each of the hierarchical

branches and identify the leaf-node attributes and their

metrics, together with their data types and the units. Leaf-

node attributes are the attributes that can be expressed with

pre-defined metric, data type and unit from the domain model,

hence they are required to be specified. An example of a leaf

node attribute is rainfall, which sits under the parent attribute

of weather. The ODD language allows

an operating boundary to be defined within the taxonomy

whereby each attribute is either included or excluded.

However, the inclusion and exclusion of attributes

often needs to be linked to measurable values that relate to

the real world, metrics is introduced for this purpose.

The metrics will specify further the measuring properties

that each of the identified attributes shall be described by

default. One example metric for rainfall is rainfall rate. It is

important to highlight that by using an extension mechanism,

the user will have the capability to define customised metrics.

For example, if user A wishes to measure the rainfall in terms

of rain droplet size, such metric can be introduced. Table I

Figure 4: ODD taxonomy primary and secondary attributes

Figure 3: Main elements for defining the domain model

illustrates some example metrics as referenced to the BSI

PAS 1883 with the corresponding ODD attributes.

TABLE I. EXAMPLE METRICS AND THE POTENTIAL ODD

ATTRIBUTES

Attribute Metrics Potential ODD Attribute

Rate Rainfall…

Speed Wind, Speed limit …

Visibility Fog, Snowfall, Smoke …

Angle Curved road, Upslope …

Radius Curved road

Building on top of the metric, the data type and units also
need to be defined, an example data type for rainfall rate
could be double or double range (15.00 or 15.00-17.00), and
an example of unit could be mm/hr. Some of the typical data
types are double, integer, string, Boolean, etc. Once all the
characteristics are identified, the rainfall example can be
defined as such: rainfall rate for attribute rainfall is 15.00 to
17.00 mm/hr.

B. Language concepts

In this section, the key language concepts which cover
both syntax and semantic related topics will be illustrated.
They contain: 1) how to handle the inclusion, exclusion, and
conditional ODD statements, 2) how to specify default
language state, 3) how to structure an ODD description –
including composition statement and conditional statement,
4) the operators used in the language concepts, 5) how to
handle extension to the domain model, 6) how to reference
and provide versioning for the domain model.

1) Inclusion, exclusion, and conditional
As described earlier, one of the goals of defining the ODD

specification is to have the ability to map any given situation
to a situation that is in/out of the defined ODD boundary. This
results in the requirement for a mechanism which defines
inclusion and exclusion for each of the attributes. However,
the inclusion and exclusion of certain attributes can have
dependencies on other attributes elsewhere in the taxonomy,
therefore the language should also have the capability of
handling conditional statements. Three keywords are
introduced as qualifiers to serve this purpose, as shown in
Table II, which are suitable, unsuitable, conditional, they are
intended to be used for each attribute that needs to be
described.

TABLE II. QUALIFIERS FOR INCLUSION, EXCLUSION AND

CONDITIONAL

Qualifiers Meaning

Suitable Included in the ODD

Unsuitable
Excluded from the

ODD

Conditional
Inclusion/exclusion
have dependencies

Inclusion of an attribute at any level of the hierarchy has
implications on the inclusion/exclusion of its sibling

attributes. Each ODD statement will tackle one parent class
and will perform the classification of its leaf node attributes
into the three categories. Upon covering all the parent classes
a complete ODD description can be produced. In the ODD
language, whether an attribute is described using Suitable or
Unsuitable is determined by the efficiency of writing the
statement. For instance, the road type as defined in the BSI
PAS 1883 contains motorways, radial roads, distributor
roads, minor roads, slip roads, parking and shared space. In
order to write a statement for the road type such that only
motorways are suitable, one could state Suitable road type is
motorway. Alternatively, one could also state Unsuitable
road type are radial roads, distributor roads, minor roads,
etc. Both approaches are syntactically and grammatically
correct, however the first one is the more efficient approach.
In addition, both approaches can also be used to infer what
sibling classes are excluded or included. Understanding of the
domain model hierarchical structure is therefore key in
writing an efficient ODD description.

Often the inclusion or exclusion of an attribute has
dependencies on other conditions. For example, if one wishes
to express that motorway is only suitable to drive during
sunny condition, in this case the inclusion or exclusion of
motorway is dependent on the sunny condition. The
conditional qualifier is introduced to handle such
dependencies. It is used to mark any attributes that have
dependencies, and in a separate section of the ODD statement
the exact dependencies are elaborated in detail, this will be
illustrated later.

A potential issue could occur when the underlying domain
model is extended to contain additional leaf node attributes
within the existing hierarchical branches. For example,
considering a previously defined ODD states that Suitable
road type is motorway (which also mean all the other sibling
classes under road type are unsuitable), if the user updates the
road type branch to contain a custom road type, then this
newly added road type will be automatically excluded. The
opposite problem also exists if previously defined ODD uses
Unsuitable, then the newly added classes will automatically
become suitable. A solution to this issue is to include the
versioning information of the domain model within the ODD
specification, so that the ODD statements and the domain
model can be updated synchronously.

2) Default state
Another issue one could encounter so far is that stating the

inclusion/exclusion/conditionals for each ODD branch can be
inefficient especially when majority of the attributes use the
same qualifier (inclusion or exclusion). For example, if a
system is only limited by the illumination (e.g., unsuitable
under low-ambient condition) but all other ODD attributes are
suitable, it would be more efficient to only state the unsuitable
attribute rather than providing the suitable/unsuitable for all
the attributes. However, only stating the unsuitable attribute
would leave all the other attributes undefined in the
specification and result in an incomplete ODD. To address
this issue, the language provides a mechanism for the user to
specify a default state of the ODD specification, which can be
permissive or restrictive. Please note that here the permissive
and restrictive are applied as a global condition, it is different
from the suitable and unsuitable illustrated earlier, which are

applied to individual statements. Using a permissive default
state the assumption is made that attributes which are not
mentioned are included in the ODD, while using the
restrictive base state the assumption is made that these
attributes are excluded from the ODD. This language feature
is used to improve the efficiency of the written ODD
description, such that every attribute of the taxonomy need
not be written about for the description to be considered
complete.

In practice, when paired with the description statements
that combine permissive and restrictive language, a
permissive base state has proven more efficient [18] in
describing ADS’ that are towards level 4 or higher of the SAE
J3016 levels of driving automation [7], or roadways that
contain a high amount of attributes and conditions from BSI
PAS 1883 [6]. On the other hand, a restrictive base state has
proven more efficient when describing ADS’ that conform to
level 2 or 3 of the levels of driving automation [18].

Similar to the previous section, a potential issue associated
with the permissive/restrictive arises when the underlying
domain model is extended. When the domain model is
updated to contain additional class branches or parent classes
for the leaf node attributes, such branch will be automatically
included or excluded under the global assumption of
permissive and restrictive. This issue can also be resolved by
including the versioning information of the domain model.

3) Composition and conditional statement
While a certain number of ODD attributes’ constraints

might be specified directly as suitable or unsuitable within a
specification, the others will have conditions attached and
their dependencies will need to be further specified. To
clearly differentiate these two categories of attributes, the
composition and conditional statements are introduced as
parts of the language. Composition statements contain those
attributes without any dependencies associated, in addition it
also provides indications on the attributes that have
dependencies. In the conditional statement, those previously
indicated attributes will be defined in detail. Figure 5 displays
an example of the structure of an ODD specification. It can be
seen that within the composition statement, each of the
relevant attributes are associated with qualifiers such as
suitable, unsuitable and conditional. In addition, the
conditional attribute will be marked by a custom identifier
‘Cond1’, and its dependencies are then described within the
conditional statement section.

Within each individual composition statement, the syntax
follows the form displayed in Figure 6. As illustrated, the
syntax can be divided into two variations, one for
suitable/unsuitable statements and one for conditional
statement. For the suitable/unsuitable statements, it contains
qualifier, current attribute, and its associated properties.
Qualifiers are introduced earlier which can be ‘Suitable’,
‘Unsuitable’ or ‘Conditional’. The current attribute refers to
the attribute that is being defined, when paired with a well-
defined domain model, all the parent and sibling classes can
be inferred to provide additional semantics. The attribute
properties consist of the metrics, the data type and the unit that
forms the individual constraints. The syntax for the
conditional cases contains custom identifier, qualifier and
influenced attribute, and attribute properties. The custom
identifiers are used to indicate the condition being described,
in the example it is ‘Cond1’ but it can be under any user
defined names. Furthermore, the syntax of the conditional
statement also contains the influenced attribute, this is the
attribute which has dependencies. Figure 5 also contains two
individual examples, example 1 illustrates that Motorway is
the only suitable Road type. In this case, Motorway is of
enumeration type without unit, and it is considered as the
attribute property for Road type attribute. Example 2 states
that Motorway under Road type has further dependencies that
need to be defined, and such dependency is identified under
the name Cond_1.

Building on top of the structure of the composition
statement, the syntax for the conditional statement contains
more complexity. As displayed in Figure 7, the conditional
statement contains custom identifier, qualifier, metric,
influencing attribute, influencing attribute properties and
influenced attribute properties. The custom identifier uses the
same identifier names as indicated in the composition
statement, its purpose is to reference back to the influenced
attributes. The qualifiers used in here will be either ‘suitable’
or ‘unsuitable’. The metric refers to the intended measuring
metric for the influencing attribute, for example speed
(measuring metric) can be used for wind (influencing
attribute). The influencing attribute refers to the attribute that
the influenced attribute is dependent on. The attribute
properties could include attribute value and unit. An example

Figure 5: Example structure of an ODD specification

Figure 6: Composition statement syntax and examples

Figure 7: Conditional statement syntax and examples

is shown in Figure 7, it describes that the suitability of
Motorway is dependent on the wind speed, it would be
unsuitable when wind speed is greater than 30.0 m/s. Greater
than in this context is an operator for the language, which will
be covered in the next section.

4) Operators
An important element of the ODD language is operators,

they are used to define constraints and also provide logical
expression consists two or more constraints. For the ODD
language the operators are expressed using structured natural
language format, they can be divided into mathematical
operators and logical operators. Mathematical operators
consist: greater than, greater than or equal to, less than, less
than or equal to, equal to. The logical operators include: AND,
OR, NOT.

TABLE III. OPERATORS USED IN THE ODD LANGUAGE

Mathematical operators Logical operators

greater than (>) AND

greater than or equal to

(≥)
OR

less than (<) NOT

less than or equal to (≤)

equal to (=)

5) Extension mechanism

The domain model used in the ODD language is intended

to be extensible, similar extensibility requirement is also
highlighted in the BSI PAS 1883 [5], and the base domain
model only serves as a starting point. In practice, different
users might want to further add custom attributes on top of the
base domain model. For example, one might want to add a
private test track as a road type, and use it to construct the
ODD specification of a system under development. To satisfy
this requirement, the ODD language has included an
extension mechanism, the idea is that user would take a
common base domain model and use the extension
mechanism to modify the domain model within the ODD
specification, such modifications will then be traceable to
other users of the same specification. The custom attributes
can be assigned metrics, types, values and units where
necessary, and they can be seamlessly integrated with the base
domain model. Within the ODD specification structure, such
extension is placed before composing the ODD statements.

Figure 8 illustrates the syntax of the extension mechanism
together with two examples. It can be seen that it includes new
attribute, parent attribute, metric, data type and attribute
properties. Please note that depending on the data type of the

new attribute, it might not need the corresponding metrics,
values and units, therefore the second statement within the
syntax is optional. Example 1 demonstrates how user could
add a new attribute called ‘my_rain’ under rainfall parent
class, furthermore my_rain is defined using rainfall rate with
unit mm/hr and it is constrained using a double range between
0.1 and 2.5. Example 2 illustrates how one could add a new
road type called ‘my_test_track’ under the road type parent
class. In this case since my_test_track does not require
defining metrics, values or data type, the rest of the
information is therefore not needed for this extension. One
could consider that road type is an attribute with enumerated
data type, and example 2 shows how the enumerations can be
extended.

6) Domain model reference
While the extension mechanism provides traceability of

any modifications made to the domain model, the reference to
the domain model itself will also need to be clarified in the
first place. The traceability of any modification is only valid
when knowing the exact domain model. Therefore, it is
compulsory to provide domain model reference within the
ODD description under the current ODD language
specification. This is an important factor due to the possible
safety implications of applying a description to an incorrect
taxonomy. This language was developed with the use of BSI
PAS 1883 and has been completed using the first version of
this standard. Standards by nature are ever changing,
updating and going through multiple iterations as the industry
progresses. Figure 8 displays the syntax for specifying the
version of the domain model, the name of the standards, the
date of release and the relevant access information are
required to be specified. Such versioning information will be
stated at the beginning of an ODD specification.

IV. CASE STUDY

In this case study, the example from BSI PAS 1883 Annex
A is used for a comparison between tabular description and
the ODD language format. The domain model used in this
case study is consistent with BSI PAS 1883 ODD taxonomy,
and the tabular format is shown in Table IV. As can be seen,
apart from ‘yes’ and ‘no’ in the capability column, the table
also displays a dependency on the motorway attribute - that
motorway is only suitable when there is no rainfall. The
capability of the rest of the attributes contain a mixture of 1)
‘yes/no’, and 2) ‘yes’ under certain constraints. The format of

Figure 8: Extension statement syntax and examples

Figure 9: Domain model versioning syntax

Figure 10: Case study example converted to ODD language format

the capability column description is similar to commentary, it
is a rather informal way of documenting and is not directly
parsable or executable.

Figure 10 illustrates the same ODD specifcation after

converting into the ODD language presented in this paper. In

addition to the information within the table, the ODD

description also contains the reference to the domain model,

the base state and extension information. Utilising the

permissive defualt state, the main body of the ODD

specification displays a much more compact form without

sacrificing details. In addition, the dependecy of motorway

attribute on weather has been captured within the conditional

statement. Due to the consistency in the language grammar,

this ODD description can be easily parsed and integrated

with the testing workflow. On the other hand, benefiting

from using a structured natural language base, it is also

human-readable and can be used by non-technical users.

TABLE IV. TABULAR ODD EXAMPLE

V. CONCLUSION

This paper presents a structured natural language based

textual format for the description of the ODD. The ODD can

be divided into two aspects: the underlying domain model,

and the language concepts. The domain model used in this

paper has been aligned with ODD standards, it defines the

class hierarchy and attributes properties, and it is represented

in the form of a domain ontology. The language concepts

section, on the other hand, considers both the semantic and

syntactic aspects. They cover how to handle the inclusion,

exclusion and conditional statement, how to enable extension

and versioning of the domain model, how to define the

default state. The syntax is intended to be both human and

machine-readable. The dedicated, machine readable

counterpart of this ODD language concept is covered in part

II [19]; by using query semantics to implement the concepts

covered in this paper, an executable formal language is

established.

I. ACKNOWLEDGEMENT

The work presented in this paper has been carried under the

Innovated UK and Centre for Connected and Autonomous

Vehicles (CCAV) funded OmniCAV project (Grant No.

104529). This work is also supported by UKRI Future

Leaders Fellowship (Grant MR/S035176/1). The authors

would like to thank the WMG center of HVM Catapult and

WMG, University of Warwick, UK, for providing the

necessary infrastructure for conducting this study. WMG

hosts one of the seven centers that together comprise the

High Value Manufacturing Catapult in the UK.

REFERENCES

[1] N. Balfe, S. Sharples, and J. R. Wilson, “Impact of automation :

Measurement of performance , workload and behaviour in a complex
control environment,” Appl. Ergon., vol. 47, pp. 52–64, 2015, doi:

10.1016/j.apergo.2014.08.002.

[2] S. Le Vine, X. Liu, F. Zheng, and J. Polak, “Automated cars : Queue
discharge at signalized intersections with ‘ Assured-Clear-Distance-

Ahead ’ driving strategies,” Transp. Res. Part C Emerg. Technol., vol.

62, pp. 35–54, 2016, doi: 10.1016/j.trc.2015.11.005.
[3] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “Identifying a

gap in existing validation methodologies for intelligent automotive

systems: Introducing the 3xD simulator,” in Proc. of the IEEE
Intelligent Vehicles Symposium 2015, 2015, pp. 648–653.

[4] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “The Science of

Testing: An Automotive Perspective,” 2018, doi: 10.4271/2018-01-
1070.

[5] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “Calibrating

trust through knowledge: Introducing the concept of informed safety
for automation in vehicles,” Transp. Res. Part C Emerg. Technol., vol.

96, pp. 290–303, 2018, doi: 10.1016/j.trc.2018.07.001.

[6] “Operational Design Domain (ODD) taxonomy for an automated
driving system (ADS) – Specification,” The British Standards

Institution, BSI PAS 1883. 2020.

[7] SAE, “Surface Vehicle Recommended Practice: Taxonomy and
Definitions for Terms Related to Driving Automation Systems for On-

Road Motor Vehicles (J3016),” 2018. doi: 10.4271/2012-01-0107.

[8] International Organization for Standardization, “Road vehicles —
Taxonomy for operational design domain for automated driving

systems ISO34504,” 2021.

[9] SAE Industry Technologies Consortia, “AVSC Best Practice for
Describing an Operational Design Domain: Conceptual Framework

and Lexicon,” Avsc00002202004, p. 26, 2020.

[10] M. Gyllenhammar et al., “Towards an Operational Design Domain

Attribute Sub-attribute Sub-attribute Capability

Drivable area

type

Motorways

-

Yes, when no rainfall

Radial roads Yes

 Distributor roads Yes

Minor roads No

Lane spec

Number of lanes
-

Yes, minimum of two

lanes

Lane dimensions Minimum 3.7m

Lane type

Bus lane No

Traffic lane Yes

Cycle lane No

Tram lane No

Emergency lane No

Other special

purpose lane
No

Direction of travel
Right-hand traffic No

Left-hand traffic Yes

Drivable area

geometry

Horizontal plane Straight roads Yes

- Curves Yes – up to 1/500m

Vertical plane

Up-slope Yes

Down-slope Yes

Level plane Yes

Cross-section

Divided/undivided Divided

Pavement Yes

Barrier on the edge No

Types of lanes

together
Traffic lane

Drivable area

surface type

Asphalt

-

Yes

Concrete Yes

Cobblestone No

Gravel No

Granite setts No

Drivable area

signs

Type

Regulatory Yes

Warning Yes

Information Yes

Time of operation
Part-time No

Full-time Yes

State
Variable Yes

Uniform Yes

That Supports the Safety Argumentation of an Automated Driving

System,” 10th Eur. Congr. Embed. Real Time Syst., pp. 1–10, 2020.

[11] M. S. Blumenthal, L. Fraade-blanar, R. Best, and J. L. Irwin, Safe
Enough: Approaches to Assessing Acceptable Safety for Automated

Vehicles. .

[12] P. Koopman, B. Osyk, and J. Weast, Autonomous vehicles meet the
physical world: Rss, variability, uncertainty, and proving safety, vol.

2. Springer International Publishing, 2019.

[13] H. Farah et al., “An Empirical Analysis to Assess the Operational
Design Domain of Lane Keeping System Equipped Vehicles

Combining Objective and Subjective Risk Measures,” IEEE Trans.

Intell. Transp. Syst., vol. 22, no. 5, pp. 2589–2598, 2020, doi:
10.1109/TITS.2020.2969928.

[14] H. Grönninger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel,

“Textbased Modeling,” Proc. 4th Int. Work. Softw. Lang. Eng. (ateM
2007), no. 4, 2007.

 [15] E. Thorn, S. Kimmel, and M. Chaka, “A Framework for

Automated Driving System Testable Cases and Scenarios - Report No.
DOT HS 812 623,” 2018.

[16] X. Zhang, S. Khastgir, and P. Jennings, “Scenario Description

Language for Automated Driving Systems: A Two Level Abstraction

Approach,” 2020.
[17] I. Colwell, B. Phan, S. Saleem, R. Salay, and K. Czarnecki, “An

Automated Vehicle Safety Concept Based on Runtime Restriction of

the Operational Design Domain,” IEEE Intell. Veh. Symp. Proc., vol.
2018-June, pp. 1910–1917, 2018, doi: 10.1109/IVS.2018.8500530.

[18] R. Myers, Design considerations for ODD ontology, Executive

Summary, CPC, 2020.
[19] E. Schwalb, P. Irvine, X. Zhang, S. Khastgir, P. Jennings, ”A Two

Level Abstraction ODD Definition Language: Part II”, IEEE SMC

2021(Submitted).
[20] S.Khastgir, S. Brewerton, J.Thomas, and P.Jennings, 2021. Systems

Approach to Creating Test Scenarios for Automated Driving Systems.

Reliability Engineering System Safety, p.107610.

