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Abstract— This paper addresses the problem of the human
operator cognitive workload estimation while controlling a
robot. Being capable of assessing, in real-time, the operator’s
workload could help prevent calamitous events from occurring.
This workload estimation could enable an AI to make informed
decisions to assist or advise the operator, in an advanced
human-robot interaction framework. We propose a method,
named Fessonia, for real-time cognitive workload estimation
from multiple parameters of an operator’s driving behaviour
via the use of behavioural entropy. Fessonia is comprised
of: a method to calculate the entropy (i.e. unpredictability)
of the operator driving behaviour profile; the Driver Profile
Update algorithm which adapts the entropy calculations to
the evolving driving profile of individual operators; and a
Warning And Indication System that uses workload estimations
to issue advice to the operator. Fessonia is evaluated in a robot
teleoperation scenario that incorporated cognitively demanding
secondary tasks to induce varying degrees of workload. The
results demonstrate the ability of Fessonia to estimate different
levels of imposed workload. Additionally, it is demonstrated that
our approach is able to detect and adapt to the evolving driving
profile of the different operators. Lastly, based on data obtained,
a decrease in entropy is observed when a warning indication
is issued, suggesting a more attentive approach focused on the
primary navigation task.

Index Terms— behavioural entropy, cognitive workload,
human-robot teaming, human-robot interaction, teleoperarion,
disaster response

I. INTRODUCTION

Human-Robot Teams (HRT) are becoming increasingly
prominent in applications such as autonomous cars [1],
disaster response [2], and remote inspection [3]. In such HRT,
humans employ their knowledge and experience about the
system, along with information from the user interfaces, to
gain awareness of the robot’s status. In contrast, the robot’s
AI agent does not possess the ability to estimate the human’s
status by default and it should be explicitly provided. Of
critical importance w.r.t the human’s status, is the level
of workload that they experience during task execution.
Research shows that using operator workload estimates, has
a positive impact on the overall HRT performance [4], [5].
Also, in cases where cognitive workload rises, catastrophic
consequences could occur to the human involved, to the
robot, and even to the entire mission [6]. Hereupon, agents
understanding the state of each other, translates into a more
efficient HRT interaction.
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This work focuses on cognitive workload (referred to
as workload for the rest of the paper) in the context of
remotely operated robots, commonly used in safety-critical
scenarios such as disaster response. For efficient Human-
Robot Interaction (HRI), the robot’s AI should not only have
awareness of the mission parameters but also be cognizant
of the operator’s performance and status. Evidence shows a
strong correlation between performance and workload [7],
[8]. Thus, methods enabling the estimation of cognitive
workload could prove to be particularly important in HRT
and especially in variable autonomy systems. For instance,
the robot’s AI agent could issue warning indications to
Human-Initiative systems [9]) or adjust its policies to actively
alleviate the burden of control in Mixed-Initiative [10], [11]
and shared control systems [12]). In such cases, behavioral
entropy is used as an index of behavioral predictability to
characterise operator workload induced by mentally taxing
tasks. [4], [13].

We propose a method for the estimation of the operator’s
workload in real-time, via the use of behavioural entropy
called Fessonia3. Our method is non-intrusive as it uses the
control input of the operator to estimate the workload, an
advantage over more intrusive workload estimation methods
such as using physiological measures (e.g. EEG [14] and
heart rate [15]). Additionally, compared to post-hoc subjec-
tive measures of workload such as the NASA-TLX [16], our
method offers real-time estimation.

We consider the work of Nakayama et al. [17], who
developed an offline workload estimation system, that utilises
steering data to estimate the operator workload. In this work
we propose the following novelties. First, Fessonia is multi-
dimensional as multiple parameters of the operator’s driving
profile (e.g. angular and linear velocity commands) can be
used. Second, our method is handling the measurements
in real-time resulting in an online estimation of workload.
Third, Fessonia is capable of updating online the operator’s
driving behavior profile model. We consider the latter to be
the main contribution of this paper as it allows the system
to adapt its entropy calculation according to the level of the
operator’s adaptiveness vis-à-vis system and mission famil-
iarity which significantly affect performance. Dynamically
adjusting the robot’s understanding of the operator driving
profile allows for a more sensitive workload estimation for
high performing operators. Lastly, a Warning And Indication
System (WAIS) was developed. This system continuously
monitors the workload of the operator and when it exceeds

3Fessonia is the Roman Goddess who aids the weary
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a defined threshold, the system provides an audio-visual
indication that suggests a more attentive driving approach.

II. RELATED WORK

Early work utilised the entropy of steering data (angle
of steering) and is mostly focused on vehicle driver work-
load estimation [18], [17]. Nakayama et al. [17] presented
a methodology based on the assumption that the driver’s
steering behaviour tends to become more unpredictable,
under heavy workload. They proposed a metric based on the
steering angle and steering angle estimations, to formulate
a methodology that detects unpredictable behaviour using
behavioural entropy and thus quantify the driver’s workload.
In [18], they used a similar methodology with [17], but
they substituted the Taylor expansion approximation with
a second-order auto-regressive model. This method is more
sensitive to roads with high curvatures or roads with sudden
turns.

Other related work is focused on virtual reality systems.
In [19] they presented a methodology that combines sample
entropy and template matching, applied in a virtual reality
system. Their proposed methodology allows for the creation
of different input templates, and the entropy is calculated
based on the number of similar templates. Even though this
method is computationally expensive, it provides a relative
noise-free multi-dimensional metric for workload estimation.

One metric that can be used in real-time is presented
in [4] and is called Discrete N-Dimensional Entropy of
behaviour (DNDEB). The discretized inputs are used in
combination with a long short-term memory network to
produce confusion matrices for a predefined data window,
and calculate entropy based on those confusion matrices.
The advantages of this work are that the metric accepts
discrete inputs of any size, and is tunable to the specific
application. In [4] the main focus was to use entropy as a
means to estimate the performance of human-machine rather
than operator workload.

Our research shares similarities with approaches that em-
ploy behavioural entropy to estimate the workload of vehicle
drivers [17], [18], while further being motivated by works
that appraise human workload in virtual reality [19] and
human-robot team performance in robotic wheelchairs [4].
To the best of the authors’ knowledge, most related work
focuses on using entropy as a post-hoc measure of human
workload, except for [4] where they used entropy to develop
a collision prediction mechanism. Furthermore, previous
research assumes that after the initial training of the operator,
the levels of familiarity, experience, and driving ability to
stay static [18], [4]. In this work, we aim to address these
issues by proposing a framework for real-time workload
estimation that takes into consideration the operator’s current
condition and evolving driving profile. Furthermore, it uses
said estimates on a warning indication system that issues
warnings during elevated operator workload.

III. PROBLEM FORMULATION AND DEVELOPMENT

We consider the problem of estimating the workload
of an operator, controlling a remotely situated robot and
conducting a mentally demanding task. For example, a search
and rescue scenario where a human-robot team is assigned
to navigate and explore an environment with the objective to
detect victims. These situations are very taxing and stressful
to human operators as they often require multitasking on top
of the cognitively demanding robot control [20].

Similar to [17], we make an informed assumption that high
operator workload correlates with unpredictable driving be-
haviour profile. While the cognitive load imposed increases,
the operator is likely to make errors during the primary
task (i.e. robot navigation), and thus is more prone to resort
to abrupt error corrective commands and more specifically
jerky velocity commands of the joypad control, i.e. linear
command velocity Cmd Vell and angular command velocity
Cmd Vela.

To detect these jerking motions we use a second-order
Taylor expansion model (Eq. 1) that estimates a typical
expected operator workload profile (referred to as typical
operator workload), using operator command parameters
such as linear El and angular Ea velocity commands. We
used behavioural entropy H p in the estimation errors since
it is a commonly used measure of unpredictability, i.e. high
entropy reflects high workload.

A. Behavioural Entropy With Multiple Dimensions
Initially, we defined the parameters that are required to

calculate behavioural entropy, which are the angular and
linear velocity commands of the operator (Eq. (2)).

MeasurementInput :
[

Cmd Vell(n)
Cmd Vela(n)

]
(2)

These commands were sampled at a rate of 20 Hz and a three
sample moving average filter was used, in order to reduce
measurement noise. The frequency of filtered samples were
roughly 7 Hz, which is equal to the humans manual tracking
delay [21], [22]. We used a second-order Taylor expansion to
model the typical driving profile at time-step n (Eq. 1). Let
El(n) and Ea(n) be the estimated linear command velocity
and the estimated angular command velocity of the robot at
time-step n respectively. Using the model from Eq. 1, the
estimation errors were calculated:[

Estim Errorl(n)
Estim Errora(n)

]
=

[
Cmd Vell(n)
Cmd Vela(n)

]
−
[

El(n)
Ea(n)

]
(3)

For calculating the entropy, the 90th percentile (value α)
of the estimation error frequency distribution was calculated.
One example of the distribution of estimation errors from
our trials can be seen in Fig. 1. The value α is indicative of
the different operator driving profiles and ultimately operator
workload. When an operator deviates from typical behaviour,
the prediction errors recede from zero, making the estimation
error distribution wider (Fig. 2) and α bigger.

Using the value α of the distribution, we divided the distri-
bution into 9 bins according to [23], resulting in 8 bin bound-
aries [−5α,−2.5α,−α,−0.5α,0.5α,α,2.5α,+5α]. The



[
El(n)
Ea(n)

]
=

El(n−1)+
(
El(n−1)−El(n−2)

)
+

((
El(n−1)−El(n−2)

)
+
(
El(n−2)−El(n−3)

))
Ea(n−1)+

(
Ea(n−1)−Ea(n−2)

)
+

((
Ea(n−1)−Ea(n−2)

)
+
(
Ea(n−2)− (n−3)

))
 (1)

Fig. 1: Example distribution of estimation errors (Ea) from
the experiments. The two vertical black lines represent the
90th percentile value α .

Fig. 2: Frequency distribution of angular velocity’s esti-
mation errors. The blue distribution is derived from an
experiment where no workload was imposed on the operator,
while the orange distribution is derived by an operator with
very high workload.

operators need to first undergo a trial-run session (see IV-B),
in which they operate the robot without any specific mission
task apart from driving, to calculate the initial baseline
driving behaviour profile. We use the entropy [23], defined
as:

H p =
9

∑
i=1
−pi×Log9(pi) (4)

Total Entropy :
[
H pl H pa

]
×
[

0.5
0.5

]
(5)

The values pi denote the frequency of the errors that fall in
the respective bins while i denotes the number of bins. In our
implementation the entropy calculation is two dimensional
(H pl ,H pa), as the input has one linear (Cmd Vell) and one

angular (Cmd Vela) velocity command dimension. The pro-
posed method has the additional advantage of being designed
for modularity. This can be attributed to the fact that it can
be trivially augmented with the inclusion of more inputs
and thus more dimensions. Here, the two dimensions of the
entropy are considered equally significant to the estimated
Total Entropy (Eq. 4).

The estimation errors are calculated every 0.15 seconds
however, the entropy calculation occurs periodically with
a defined frequency. We empirically observed the average
corrective manoeuvre span to be less than .25 seconds and
chose entropy computation period 10× 0.25 = 2.5seconds
(0.4 Hz). Entropy calculation less than 0.2 Hz or more than
0.4 Hz results in a slow, or unreliable workload estimation
respectively. This frequency also affects the batch size of
estimation errors included in the entropy computation. To
elaborate, when the entropy is calculated every 3 seconds,
the estimation errors handled are 3

0.15 = 20.

B. Driver Profile Update

In this work, we explicitly consider the: adaptation of
humans to different situations; individual differences in task-
related skills between operators; evolvement of task-related
skills over time. It is natural for an operator to be constantly
improving their performance by experience and having the
ability to adapt to dynamic environments. A static operator
profile will produce estimation errors that falsely indicate low
workload when high workload is imposed, as these errors lie
in closer to zero bins, rather than further from zero bins.

In our work, we developed an algorithm called Driver
Profile Update (DPU) that monitors the entropy history and
updates the operator profile characteristics (α and bins)
accordingly. If no prior knowledge is available, the initial
thresholds (i.e. average and std variables) can be defined
as extremely high values. We used entropy history acquired
from a familiarization session (Section IV-B). If the average
and standard deviation of the 100 previous entropy history
time-steps become lower than the initial thresholds, DPU
saves the last 100 estimation errors to the error history and
utilises said error history to calculate an updated value for
α and new bins (see Algorithm 1). The defined thresholds
are also updated to the newly updated average and standard
deviation of the last 100 entropy history.

C. Warning And Indication System (WAIS)

To assist the operator in their mission, a Warning And
Indication System (WAIS) is proposed. WAIS continuously
monitors the entropy calculations and issues warning indi-
cations, according to the entropy produced by the operator’s
manoeuvres. When the operator manoeuvres through a chal-
lenging turn, they might momentarily experience high work-



Algorithm 1 Driver Profile Update (DPU)

Require:
entropy history, error history, estimation errors[-100:],
average = mean(entropy history),
std = std(entropy history)

1: procedure PROFILE UPDATE
2: if mean(entropy history[−100 :])< average then
3: if std(entropy history[−100 :])< std then
4: error history← estimation errors[−100 :]
5: average = mean(entropy history[−100 :])
6: std = std(entropy history[−100 :])
7: return percentile α(error history),new bins

Fig. 3: Diagram of Fessonia. The initial baseline driving
behaviour profile calculation computes the 90th percentile

(α value) of the error distribution after the operator’s trial-run
session, while the DPU continuously monitors the entropy
output to sample more estimation errors suitable for updating
the estimation error distribution (value α). WAIS issues
warnings based on operator workload.

load. To alleviate the effect of those sudden entropy “spikes”,
we use a moving average filter of five computations.

WAIS informs the operator about their workload with two
indications, one for normal and one for erratic operation
(see Fig. 4). The operator sees a “NORMAL OPERATION”
indication until the moving average is greater than a defined
threshold, which was empirically assigned at 0.6 to capture
severe workload escalations. We concluded to this threshold
empirically by monitoring the entropy levels during no-
workload test runs, where the entropy spikes did not exceed
0.6. An audio-visual warning message is issued on the
GUI, to alert of a possible detrimental operation. The audio
warning is a soft ”ping” sound to attract the attention of
the operator. The visual warning is a “HIGH WORKLOAD”
indication that substitutes the ”NORMAL OPERATION”
indication in the GUI.

D. Method overview

The above-presented methods are handled by three subsys-
tems, namely the asynchronous entropy calculation (includ-
ing sampling, estimation model, estimation error calculation
and initial baseline driving behaviour profile calculation), the
DPU, and the WAIS (see Fig. 3). What follows is the testing
and evaluation of the above subsystems.

IV. EXPERIMENTAL STUDY

We conducted a preliminary experimental evaluation of
the proposed methods on a mission inspired by disaster
response and remote inspection scenarios, where an operator
controlling a remote robot, is tasked with exploring an envi-
ronment (e.g. for points of interest such as people trapped in
debris). The experiments aimed to evaluate the: a) accuracy
of the workload estimation and how it quantifies different
levels of workload; b) ability of the method to detect the
adapting driving profile of human operators; c) effect that
the warning indication system has on behavioural entropy
and as a consequence on the workload of an operator.

A. Apparatus and Software

All software was developed in the Robot Operating Sys-
tem (ROS) and is available in our code repository4. The
environment and the robot were simulated in Gazebo. The
simulated robot was a Husky model equipped with a camera
to provide a video feed and a 2D LiDAR laser sensor
for localization. The specific experimental setup based on
simulation was selected because repeatability was considered
of high importance. Moreover, during the operation of remote
robots, the interface/cockpit and the operator’s experience is
almost identical in simulation of this work as it is in reality.
As Gazebo is a high-fidelity robotic simulator the realism or
meaningfulness of the results were not compromised.

Participants operated the robot via a joypad while acquir-
ing situation awareness (SA) via a GUI (see in Fig. 4). The
GUI provides information about the position of the robot
relative to the map, an operation status indication (shows if
the robot is stopped or teleoperated), a workload warning
indication, and video streaming from the robot’s onboard
camera. Moreover, the GUI has a secondary window for
the high workload secondary task (described below) used
to evaluate the impact of workload on entropy. Finally, the
operator used a computer mouse to execute the secondary
tasks that are designed to assess the workload estimation
(see Section IV-B).

B. Experimental Protocol

Three participants took part in this study. Two of the
participants had previous experience with similar control
configurations and interfaces while the third one was a com-
plete novice. Before the experiment, participants were trained
by driving around the robot arena for five minutes to get
familiar with the system and accustomed to the controls (see
Fig. 5). After said familiarization, the participants navigated
the arena, without any secondary tasks, for 10 minutes to
develop their initial baseline driving behaviour profile (i.e.
the value of α). Each participant performed 3 experimental
trials. In each trial, the participants were required to navigate
the robot from point A to point B of the map (Fig. 5) four
times, except from the first experiment trial which included
12 round trips from A to B. Between each experiment, the

4The code for the experiments is provided under MIT license in
the Extreme Robotics Lab GitHub repository: https://github.com/
uob-erl/hrt_entropy
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https://github.com/uob-erl/hrt_entropy


Fig. 4: The Graphical User Interface (GUI) shows the posi-
tion of the robot relative to the map, the operation status of
the robot, video streaming from the robot’s on-board camera,
and a warning indication (WAIS).

participants took a 15-minute break to minimize their fatigue
levels, which could affect the level of workload estimates.
The instruction given to the participants was to navigate the
robot at a comfortable pace while avoiding collisions.

In the first trial, participants were tasked to operate the
robot focusing only on the navigation task. This experiment
was conducted to evaluate the DPU system. In the second
experiment, the workload estimation algorithm was exclu-
sively evaluated. To validate the impact that workload has on
entropy, three secondary tasks were introduced in sequence,
from higher to lower workload impact. The cognitive impact
the secondary tasks inflict might vary for each participant.
To to be consistent and normalise the impact across all
participants, we gave specific instruction to perform the sec-
ondary tasks at a comfortable pace with no time restrictions.
The following tasks were inspired by previously validated
secondary tasks from the literature ([17] [18]). The High
workload task includes pressing one out of four buttons,
upon request on a secondary GUI window. The secondary
GUI will play a sound and request the press of a specific
button. The Medium workload task is counting down from
500 by subtracting 3. Finally, during the Low workload task
the maximum speed of the robot was doubled and as a result,
the robot became more sensitive to small control commands.
The high workload secondary task proposed here simulates
operating a touch panel tested in [17] or the press of a
button from [18], and the medium workload secondary task
is similar to the mental arithmetics from [17], [18].

In the last experiment, the participants were required
to navigate the arena, while the high workload imposing
secondary task was in effect. The instructions were the same
as before but when an indication was issued, participants
were instructed to ignore completely the secondary task and
continue conducting the primary task (operating the robot),
until the warning indication ceased. This experiment was
designed to evaluate the effect WAIS has on the operator
workload. Across all experiments, the focus was to inves-
tigate the effect of the secondary tasks on the operators’
workload rather than performance on tasks.

Fig. 5: Simulation arena map. Points A and B are points of
interest. The operator has to navigate from point A to point
B and back four times for each experiment.

Fig. 6: DPU system results represent operators’ evolving
driving. The three participants had already conducted a trial-
run session to compute their initial driver behaviour profile.
If the necessary conditions (Algorithm 1) are met, the bins
and value of α are updated. In a half-hour trial, α has been
reduced for all participants, meaning participants’ ability to
drive has improved.

V. RESULTS

In the first trial, results show that the value α (operator
driving profile) is decreasing over the duration of the ex-
periment, suggesting a predictable behaviour (Fig. 6). The
second trial showed that the multi-dimensional entropy was
proportional to the different levels of imposed workload (see
Table I). Finally, from the third trial, three examples of issued
warnings from the third 45-minute trial are presented for each
operator (Fig. 7). These examples show a duration of an
average 10 seconds, to decrease the entropy after a warning
was issued.

VI. DISCUSSION, LIMITATIONS AND FUTURE WORK

Evidence from the preliminary evaluation suggests that
the proposed method estimates successfully the workload
using multiple control command parameters given by the
operator. The descriptive statistics presented in Table I show
a considerable distinction between the secondary tasks with
different workload impacts. This is in accordance with results



TABLE I: Entropy descriptive statistics for three participants on three sequentially increasing workload imposing tasks

Participants and
secondary task
trial portions

Baseline trial portion Low workload trial portion Medium workload trial portion High workload trial portion

M SD M SD M SD M SD
Participant 1 0.1375 0.1298 0.1946 0.1204 0.3493 0.1184 0.4441 0.1051
Participant 2 0.1641 0.1319 0.2238 0.1279 0.3501 0.1201 0.4918 0.1174
Participant 3 0.1407 0.1346 0.1993 0.1308 0.3418 0.1247 0.4248 0.1091
Average 0.1474 0.1321 0.2059 0.1264 0.3471 0.1211 0.4546 0.1105

Fig. 7: WAIS effect on entropy during an exemplary 37.5
second time window taken for each participant’s third 45
minute experimental trial. The red line is the empirically
defined threshold for Normal Operation and the crosses are
where the WAIS issued a warning. Participant 1 immediately
listens to the indication and recovers in approximately 5
seconds, while Participants 2 and 3 had a slower response to
the indication, roughly 17 and 10 seconds.

presented in the literature [18], [17], [4], [19] which show
that entropy can capture different levels of workload. Due
to the real-time functionality of the method, the entropy
calculation, in some situations, could be zero. For instance,
where the operator follows a typical driving profile and
thus is predictable, all estimation errors will fall in the bin
around zero. In other words, the rate of errors will be 1 for
one specific bin, resulting in an entropy estimation equal to
H p = 1Log9(1) = 0, and in consequence in greater standard
deviation. Nonetheless, the standard deviation does not have
a substantial effect on the workload estimation. Results sug-
gest that the zero entropy might slightly increase the standard
deviation, but the standard deviation is a stronger indication
of individual driving differences among the participants.

The DPU system results support our initial assumption,
which is that the operators can adapt to certain situations and
control schemes, in addition to becoming more competent
in the task over time. The α characterises the driving
profile of the operator. Smaller α would suggest a more
predictable driving profile (i.e. typical operation), and over
time, decreasing α suggests that the operator becomes more
predictable. One can argue that operators who are becoming
more predictable are essentially adapting their driving profile,
becoming more familiar with the task, and increasing the

overall performance of the HRT. Every participant showed
a different adapting process, but all of them adapted on
some level. In addition, each experiment was conducted
for 30 minutes and α did not fully converge for any of
the participants. This means that they could get even more
acclimated to the situation. The results also suggest that the
initial trial-run session to calculate the value α is redundant
(which was required in previous literature [18], [17]). The
system can start with a relatively high α value and the
system can adjust this value due to the DPU if the operator
consistently produces lower entropy computations.

The WAIS trials showed promising results. In the ex-
periments, the participants were instructed to completely
ignore the secondary task when a warning was issued. The
results present a 21.3% average decrease in entropy across all
participants. Specifically, Participant one had a 21% decrease
in α , Participant 2 had a 14% in α and Participant 3 had an
18% decrease in α value. The entropy reduction was more
than expected since the main instruction was to only focus
on the navigation task. In a real-world scenarios the operator
could be multitasking during a mission and thus a warning
could make them aware of critical performance and safety
impairment factors. Drawing the operator’s attention aims to
remind them to focus on the safe driving of the robot to avoid
potential accidents. Depending on the mission, the existence
of a specific protocol to be followed in the case of a warning
will be beneficial. Additionally, WAIS displays the sensitiv-
ity of the entropy computation to driving behaviours. The
participants become aware of the deteriorated performance
upon indication and change their driving behaviour which is
encapsulated by the reduced entropy.

Assuming that all control command dimensions equally
contribute to the total entropy, might not hold true for differ-
ent applications and environments. In future work, a dynamic
thresholding system could assign thresholds proportionally to
the correlation coefficient of each control command dimen-
sion to entropy. Despite the promising results of WAIS, in a
real high-stress scenario, a warning system could potentially
increase the workload and stress levels of an operator if
not integrated carefully with the mission protocols. More
research is needed to appropriately design WAIS, to min-
imize the stress and workload imposed by the indication
itself, while preserving the value of the warning itself. Lastly,
high entropy estimations could be the result of increased
operator fatigue over time, rather than increased workload.
Our experimental design aimed to minimize this possibility.
However, in future work, to differentiate between fatigue and



workload, measurements from other non-intrusive methods
(e.g. eye-tracking etc) can be used. In literature there have
been examples of using eye tracker systems to detect fatigue
levels [24]. Our system could benefit from measurements of
such detectors.

VII. CONCLUSION

In this study, we propose Fessonia, a method for estimating
the cognitive workload of an operator controlling a robot, via
the use of behavioural entropy. This method’s contribution is
the capability of estimating operator workload given multiple
parameters of the operator’s driving profile. An additional
contribution is the Driver Profile Update (DPU) algorithm
which continuously observes the performance history of
the operator and adapts the workload estimation based on
the adapted operator profile. Lastly, a warning indication
system (WAIS) is presented, that advises the operator based
on workload estimates. Fessonia was evaluated in a nav-
igation scenario. The results indicate that our proposed
method captures and successfully estimates different levels
of workload. Furthermore, our proposed DPU algorithm can
detect individual driving profiles, improvements in operator
performance, and adapts accordingly. Hence, the workload
estimation becomes more responsive to the level of compe-
tence of the operator. Lastly, the use of WAIS resulted in an
average 25% entropy reduction across all participants. The
future work’s focal point is to better improve our method
by redesigning WAIS to minimize any potential stress and
workload imposed by the suggestion itself. Furthermore,
it is under consideration to include additional dimensions,
that would provide Fessonia with the ability to distinguish
between operator fatigue and imposed workload. Lastly, the
promising experimental results, enable the future integration
of our method in variable autonomy human-robot teams. Said
system could utilise these entropy calculations to actively
support the human operator, e.g. by completely relinquishing
control from the operator over to the robot’s AI agent.
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A. Catena, A. Antolı́, and A. Candido, “Risk behaviour and mental
workload: Multimodal assessment techniques applied to motorbike
riding simulation,” Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 12, no. 5, pp. 361–370, 2009.

[7] J. Fan and A. P. Smith, “The impact of workload and fatigue on
performance,” in Human Mental Workload: Models and Applications,
L. Longo and M. C. Leva, Eds. Cham: Springer International
Publishing, 2017, pp. 90–105.

[8] D. Stefanidis, F. Wang, J. Korndorffer, J. Dunne, and D. Scott,
“Robotic assistance improves intracorporeal suturing performance and
safety in the operating room while decreasing operator workload,”
Surgical endoscopy, vol. 24, pp. 377–82, 06 2009.

[9] M. Chiou, R. Stolkin, G. Bieksaite, N. Hawes, K. L. Shapiro, and T. S.
Harrison, “Experimental analysis of a variable autonomy framework
for controlling a remotely operating mobile robot,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 3581–3588.

[10] M. Chiou, N. Hawes, and R. Stolkin, “Mixed-Initiative variable
autonomy for remotely operated mobile robots,” ACM Transactions
on Human-Robot Interaction, vol. 10, no. 4, 2021.

[11] G. Petousakis, M. Chiou, G. Nikolaou, and R. Stolkin, “Human
operator cognitive availability aware mixed-initiative control,” in 2020
IEEE International Conference on Human-Machine Systems (ICHMS),
2020, pp. 1–4.

[12] P. Pappas, M. Chiou, G.-T. Epsimos, G. Nikolaou, and R. Stolkin,
“Vfh+ based shared control for remotely operated mobile robots,”
2020.

[13] M. a. Goodrich, E. R. Boer, J. W. Crandall, R. W. Ricks, and
M. L. Quigley, “Behavioral Entropy in Human-Robot Interaction,”
Proceedings of Performance Metrics for Intelligent Systems, pp. 24–
26, 2004.

[14] A. Tjolleng, K. Jung, W. Hong, W. Lee, B. Lee, H. You,
J. Son, and S. Park, “Classification of a driver’s cognitive workload
levels using artificial neural network on ecg signals,” Applied
Ergonomics, vol. 59, pp. 326–332, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0003687016302101

[15] J. Heard, C. E. Harriott, and J. A. Adams, “A survey of workload
assessment algorithms,” IEEE Transactions on Human-Machine Sys-
tems, vol. 48, no. 5, pp. 434–451, 2018.

[16] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research,” Human
mental workload, vol. 1, no. 3, pp. 139–183, 1988.

[17] O. Nakayama, T. Futami, T. Nakamura, and E. R. Boer, “Development
of a steering entropy method for evaluating driver workload,” SAE
Technical Papers, no. 724, 1999.

[18] E. R. Boer, “Behavioral entropy as an index of workload,” in Proceed-
ings of the XIVth Triennial Congress of the International Ergonomics
Association and 44th Annual Meeting of the Human Factors and
Ergonomics Association, ’Ergonomics for the New Millennium’, 2000,
pp. 125–128.

[19] D. Reinhardt, S. Haesler, J. Hurtienne, and C. Wienrich, “Entropy of
controller movements reflects mental workload in virtual reality,” 26th
IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019
- Proceedings, pp. 802–808, 2019.

[20] B. Doroodgar, M. Ficocelli, B. Mobedi, and G. Nejat, “The search
for survivors: Cooperative human-robot interaction in search and
rescue environments using semi-autonomous robots,” in 2010 IEEE
International Conference on Robotics and Automation, 2010, pp.
2858–2863.

[21] H. R. Jex, J. D. McDonnell, and A. V. Phatak, “A “critical” tracking
task for manual control research,” IEEE Transactions on Human
Factors in Electronics, vol. HFE-7, no. 4, pp. 138–145, 1966.

[22] T. B. Sheridan and W. R. Ferrell, “Man-machine systems: Informa-
tion,” Control, and Decision Models of Human Performance. MIT
press, 1974.

[23] A. Y. Khinchin, Mathematical foundations of information theory, ser.
Dover books on advanced mathematics. New York, NY: Dover,
2013. [Online]. Available: https://cds.cern.ch/record/1545792

[24] Y. Yamada and M. Kobayashi, “Detecting mental fatigue from
eye-tracking data gathered while watching video: Evaluation in
younger and older adults,” Artificial Intelligence in Medicine, vol. 91,
pp. 39–48, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0933365717306140

https://doi.org/10.1080/01691864.2014.985335
https://www.sciencedirect.com/science/article/pii/S0003687016302101
https://www.sciencedirect.com/science/article/pii/S0003687016302101
https://cds.cern.ch/record/1545792
https://www.sciencedirect.com/science/article/pii/S0933365717306140
https://www.sciencedirect.com/science/article/pii/S0933365717306140

	I Introduction
	II Related Work
	III Problem Formulation and Development
	III-A Behavioural Entropy With Multiple Dimensions
	III-B Driver Profile Update
	III-C Warning And Indication System (WAIS)
	III-D Method overview

	IV Experimental study
	IV-A Apparatus and Software
	IV-B Experimental Protocol

	V Results
	VI Discussion, Limitations and Future Work
	VII Conclusion
	References

