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Abstract— We present new models of optimization-based task
and motion planning (TAMP) for robotic pick-and-place (P&P),
which plan action sequences and motion trajectory with low
computational costs. We improved an existing state-of-the-art
TAMP model integrated with the collision avoidance, which
is formulated as a mixed-integer linear programing (MILP)
problem. To enable the MILP solver to search for solutions
efficiently, we introduced two approaches leveraging features
of collision avoidance in robotic P&P. The first approach
reduces number of binary variables, which are related to
the collision avoidance of delivery objects, by reformulating
them as continuous variables with additional hard constraints.
These hard constraints maintain consistency by conditionally
propagating binary values, which are related to the carry action
state and collision avoidance of robots, to the reformulated
continuous variables. The second approach is more aware of the
branch-and-bound method, which is the fundamental algorithm
of modern MILP solvers. This approach guides the MILP
solver to find integer solutions with shallower branching by
adding a soft constraint, which softly restricts a robot’s routes
around delivery objects. We demonstrate the effectiveness of
the proposed approaches with a modern MILP solver.

I. INTRODUCTION

A. Background

Automation improves companies’ productivity and com-
petitiveness. Therefore, robots have been in increasing de-
mand in industries, logistics, and other emerging domains
for several years [1]. Currently, a major task of robots is
handling (e.g., pick-and-place, packing, palletizing, etc.) [1].
In particular, pick-and-place (P&P), which is the sequential
task of picking objects up from one location and placing
them in a desired location, is a fundamental and essential
task in many fields.

A basic approach to enable a robot to perform P&P is
teaching where a human expert programs the robot’s behav-
ior with primitive commands on a step-by-step basis. Teach-
ing is applicable to a variety of workspaces. However, slight
changes to P&P specifications (e.g., layout of workspace, de-
livery object, etc.) require update works of teaching which is
much time consuming. Therefore, teaching-less approaches
have been desired to mitigate the aforementioned difficulties.

As a teaching-less approach, task and motion planning
(TAMP) is a promising method [2]–[9]. TAMP can auto-
matically generate action sequences and motion trajectory
of robotic P&P with given information about the robot and
workspace (Fig. 1). TAMP provides an advantage to robotic
P&P consisting of discrete action sequences and continuous
motion because it directly solves both of the plannings in
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Fig. 1. Overview of system architecture. The arm robot delivers target
objects (deliveries) to target positions, which are observed by the camera
devices. The task and motion planner simultaneously outputs the motion
trajectory and action sequence with the settings/observations of the robot
and environment. The trajectory consists of discrete time-series data in-
cluding the positions of the robot’s end-effector (e.g., two finger gripper,
vacuum hand, etc.). The action sequence consists of discrete time-series
of symbolic actions (e.g. Move, Pick, Place, Carry, etc.) grounded in the
mode transitions of system dynamics. The action policies are pre-designed
for each symbolic action. The controller calculates the control input of the
robot by interpolating the trajectory and converting the action sequence to
action policies simultaneously.

a cooperative manner. Therefore, TAMP works especially
for complex situations where non-trivial dependencies exist
between the action sequences and motion trajectory.

Existing approaches for TAMP can be classified into two
types: hierarchical feedback [2]–[5] and optimization-based
[6]–[9]. In the hierarchical feedback approach [2]–[5], task
planning and motion planning are alternately computed and
provide feedbacks to each other to resolve infeasibility until
a feasible motion plan is found. Although this approach
has shown promising results, it requires parameter tuning
on alternation control when applying it to various environ-
ments. In the optimization-based approach [6]–[9], TAMP is
formulated as optimization models where a solution consists
of both task and motion plans. This approach comparatively
requires less parameter tuning for various environments
because the optimization model is systematically designed
and solved. However, the optimization-based TAMP requires
a high computation cost for solving when a system’s scale
and/or complexity increases (e.g., collision avoidance).
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B. Contributions

In this paper, we propose new models of optimization-
based TAMP for robotic P&P, which plan action sequences
and collision-free motion trajectory with low computation
cost. Our motivation is reducing the computation cost of the
optimization model based on the state-of-the-art TAMP [8]
integrated with the state-of-the-art collision avoidance [11],
which is formulated as a mixed-integer linear programming
(MILP) problem. To the best of our knowledge, such an
integrated model of MILP-based TAMP has not been fully
studied in application to robotic P&P. Therefore, we propose
two approaches leveraging features of collision avoidance
in robotic P&P to reformulate the integrated model. Our
contribution is presenting two models implemented with the
approaches and their effectiveness as follows:
• The first proposed model reduces the number of binary

variables related to the collision avoidance of deliveries.
In this model, the binary variables are successfully
reformulated as continuous variables with additional
hard constraints. These hard constraints propagate the
binary values, which are related to the carry action state
and collision avoidance of robots, to the reformulated
continuous variables.

• The second proposed model enables the MILP solver
to find integer solutions more efficiently. In this model,
a new term is added to the objective function as a
soft constraint which softly restricts the robot’s routes
around a delivery object. This soft constraint guides
the binary variables, which are related to collision
avoidance with deliveries, to be fixed to the binary
values in the MILP solver’s search process.

II. RELATED WORK

A. Task and Motion Planning

Optimization-based TAMPs have been proposed [6]–[9],
and they are modeled as mathematical programming prob-
lems (i.e., mixed-integer nonlinear programming [6], [7],
MILP [8], and continuous nonlinear programming [9]). The
MILP-based TAMP proposed in [8] is formulated with
constraints consisting of task conditions (e.g., completion,
safety, etc.) and robot dynamics approximated with a low-
dimensional mixed logical dynamical system. To achieve a
plan in a low-dimensional space, pre-designed action policies
are selected at a low-level control. We focus on this MILP-
based TAMP as a promising method because optimization
solvers have been developed to a practical level (See II-
C). However, further study is needed for collision avoidance
because it is not fully considered in the prior work.

B. Collision Avoidance

Much research has been conducted on collision avoidance.
Many major approaches have been proposed and developed,
such as potential field, random sampling, graph search,
reachability analysis, optimization, etc. [10], [11], especially
in the field of mobile robots. Collision avoidance problems
are generally NP-hard, and practical methods basically rely
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Fig. 2. Search example of B&B method. The basic strategy is a brute-
force tree search recursively fixing binary variables one-by-one (branching)
with early termination on the basis of theoretical conditions (bounding). In
the B&B method, the continuous relaxation problem (CRP), where binary
variables of the original MILP problem are converted to continuous 0-1
variables, is solved by linear programming. In a tree-search manner, the
CRP is recursively updated with an additional constraint on a single original
binary variable (highlighted in red) by using a fractional solution (shaded
in blue) of the parent CRP. An incumbent solution is updated with a better
integer solution until no more branches exist. Branching is terminated when
any of the following conditions are satisfied: 1) an integer solution is found,
2) a CRP is infeasible, 3) a fractional solution is worse than the incumbent
solution, and 4) a MIP gap, which is the difference between the objective
values of the best and bound, is smaller than the setting value.

on heuristics for specific problems [10]. As for safety in-
tegrity, optimization-based collision-free methods have been
proposed and applied [11]–[13]. These methods completely
eliminate the cut-through issue caused by discrete-time mod-
els. In this paper, we focus on state-of-the-art collision-free
encoding [11] (Fig. 4) as a promising method because it is
compatible with MILP-based TAMP [8]. To the best of our
knowledge, MILP-based TAMP integrated with collision-free
formulation has not been fully studied, especially regarding
computation efficiency. For all of these reasons, we address
specific issues and leverage features of collision avoidance
in the MILP-based TAMP of robotic P&P.

C. MILP Solver

MILP is becoming common to solve real-world problems
owing to the following contributions: nonlinearity can be
reasonably approximated to MILP by using well-known for-
mulation techniques (e.g., big-M method), and MILP solvers
have been over 3000 times algorithmically faster since 1988
[14]. Reports on modern commercial MILP solvers have
also shown consistent speed-up and expansion of solvable
problems since 2010 [15], [16]. However, MILP is NP-hard
in general, and it requires a high computation cost when
formulation is not appropriate for the branch-and-bound
(B&B) method (Fig. 2). The B&B method is a fundamental
algorithm for most modern MILP solvers [17]. Therefore,
the following two aspects, which are empirically proven
to impact search efficiency of B&B-based MILP solvers,
are considered in the practice of formulation: size (e.g.,
number of binary variables) and tightness (e.g., feasible space
of continuous relaxation problem) [17], [18]. We address
both size and tightness with leveraging features of collision
avoidance in the MILP-based TAMP of robotic P&P.
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Fig. 3. Model of P&P planning. The right part shows the symbols of all modeled instances in this figure. The left part shows an example configuration
of a P&P system with the instances and their parameters (shape width s and center position c). This configuration is also used in the evaluation. The
following three simplifications are assumed to fit the computation cost within a practical range: 1) the instances are modeled as axis-aligned bounding
boxes (AABB), 2) the dynamics of a robot’s body part (black object) is not modeled, 3) irrelevant obstacles (gray objects) outside the motion space of
the end-effector are not modeled. The center part shows state transitions of the delivery (top) and the end-effector (bottom) regarding the actions. The
end-effector and grasping delivery face each other on the bottom and top surfaces, respectively. Moreover, the end-effector takes margin bmgn

• between
itself and the grasping delivery at the pick/place actions.

III. BASELINE MODEL

A. System Architecture

Fig. 1 shows an overview of our system architecture. Our
system architecture is based on prior studies [8], [9] and it
has the only difference in regard to the model of the task
and motion planner. In this paper, we assumed a single arm
robot configuration for a simple explanation and evaluation.
Note, however, that multi-arm robot configurations are also
supported by the model of the task and motion planner as
formulated in the following subsections III-C and III-D.

B. Modeling Settings

In this paper, we introduce our baseline model of the
task and motion planner for a robotic P&P. Our baseline
model is based on the MILP-based TAMP of [8]. Moreover,
our baseline model is newly integrated with collision-free
encoding [11] for safer collision avoidance. In addition, our
baseline model has the following minor improvements:
• Simple formulation of delivery’s dynamics with an

approach point (Eqs. (7)–(13), center of Fig. 3).
• Strengthened formulation for search efficiency of MILP

solver (Eqs. (16)–(17)).
• Direct minimization of time steps to complete P&P with

consideration of distance minimization (Eqs. (26)–(30)).
Fig. 3 illustrates our baseline model formulated as a MILP

problem. The purpose of the baseline model is to generate
motion trajectory and action sequences of the end-effector by
solving it. The concrete formulation with the constraints and
objective function is explained in the following subsections.

C. Notation

Nstp, Nee, Ndlv , Nobs, and Nrg , where N• ∈ N+ are con-
stants, denote the number of time steps, end-effectors, deliv-
eries, obstacles, and collision-free regions, respectively. Let •
denote any string. t, i, j•, k, and r respectively represent the
following indices: “t-th time step”, “i-th end-effector”, “j•-th
delivery”, “k-th obstacle”, and “r-th collision-free region”.
Moreover, we define their indices as t ∈ {0, ..., Nstp},

i ∈ {1, ..., Nee}, j• ∈ {1, ..., Ndlv}, k ∈ {1, ..., Nobs},
and r ∈ {1, .., Nrg} where j1 6= j2. We give all possible
combinations of the indices for each constraint and objec-
tive function. The upper/lower bounds of • are constants
denoted by • and •, respectively. The initial/target values
of •t are also constants denoted by •0 and •?, respectively.
Furthermore, the relative value of •t from its initial value is
denoted by •′t (i.e., p

′

t = pt−p0). For simple formulation, we
use the logical operators “NOT” ¬, “AND” ∧, and “OR” ∨,
which are transformed to the equivalent MILP formulation
with additional decision variables as shown in Eqs. (1)–(3):

φ = ¬ϕ ⇔ φ = 1− ϕ, (1)

φ =
∧
n

ϕn⇔

{
φ ≤ ϕn
φ ≥

∑
n ϕn −N + 1

n ∈ {1, ..., N}, (2)

φ =
∨
n

ϕn⇔

{
φ ≥ ϕn
φ ≤

∑
n ϕn

n ∈ {1, ..., N}, (3)

where φ ∈ [0, 1] is the additional decision variable and ϕn ∈
{0, 1} is the operand (ϕn ∈ [0, 1] is allowable).

D. Formulation

Equations (4)–(29) are the constraints of the baseline
model. Equation (30) is the objective function of the baseline
model. The baseline model is a discrete bounded time system
where the time step size ∆t and its number Nstp are
respectively given as constant values.

Constraint (4) represents the dynamics of the end-effector:

peei,t+1 = peei,t + veei,t∆t (4)

where peei,t, v
ee
i,t ∈ R3 are the position and velocity of the

end-effector, respectively. For simplification, we use such a
discrete state-space model where the control input is velocity
as the dynamics of the end-effector.

Constraints (5) and (6) represent the feasible interaction
among the end-effectors and deliveries, which means “one



end-effector can grasp one delivery at the same time”:∑
i

θgspi,j,t ≤ 1, (5)∑
j

θgspi,j,t ≤ 1 (6)

where θgspi,j,t ∈ {0, 1} is the action state where the end-
effector is grasping the delivery.

Constraints (7)–(9) represent the states corresponding to
the action sequences of the end-effector:

θpcki,j,t = (¬θgspi,j,t) ∧ θ
gsp
i,j,t+1, (7)

θplci,j,t = (¬θgspi,j,t) ∧ θ
gsp
i,j,t−1, (8)

θcryi,j,t = θgspi,j,t − θ
pck
i,j,t (9)

where θpcki,j,t, θ
plc
i,j,t, θ

cry
i,j,t ∈ [0, 1] are the action states where

the end-effector is picking, placing, and carrying the delivery,
respectively (See Fig. 3). These constraints decompose and
propagate the binary values of θgspi,j,t to θpcki,j,t, θ

plc
i,j,t, and θcryi,j,t.

Constraints (10)–(13) represent the dynamics of the deliv-
ery as shown in Fig. 3:

−M1(¬θcryi,j,t) ≤ p
dlv
j,t − peei,t + boni,j ≤M1(¬θcryi,j,t), (10)

−M2(¬θpcki,j,t) ≤ p
dlv
j,t − peei,t + boffi,j ≤M2(¬θpcki,j,t), (11)

−M3(¬θplci,j,t) ≤ p
dlv
j,t − peei,t + boffi,j ≤M3(¬θplci,j,t), (12)

−M4

∑
i

θgspi,j,t ≤ p
dlv
j,t+1 − pdlvj,t ≤M4

∑
i

θgspi,j,t (13)

where pdlvj,t ∈ R3 is the position of the delivery. More-
over, boni,j , b

off
i,j ∈ R3 are constants representing the rel-

ative position between the delivery and the end-effector
when the delivery is carried and not carried, respectively.
The concrete values of the constants are given by boni,j =

(0, 0, 12 )> ◦ (seei + sdlvj ), boffi,j = boni,j + bmgni,j where ◦ is the
operator of an element-wise product and seei , s

dlv
j ∈ R3

+ are
constants representing the shape width of the end-effector
and delivery, respectively. M1, ...,M4 are large coefficients
to switch dynamics via inequality constraints with binary
variables, and we give the tightest value to each coefficient
of the constraints.

Constraints (14) and (15) represent the P&P completion
conditions for each of the deliveries:

−M5(¬ψj,t) ≤ pdlvj,t − pdlvj,? ≤M5(¬ψj,t), (14)

ψj,t ≤ ¬
∑
i

θgspi,j,t (15)

where ψj,t ∈ {0, 1} is the state where the delivery is at
its target position without being grasped, and M5 is a large
coefficient similar to M1, ...,M4.

Constraints (16) and (17) force ψj,t to take 1 when the
delivery is at its target position by preventing ψj,t from
taking 0. As a result, the computation cost of the MILP
solver can be substantially reduced. Constraint (16) means
that the delivery must be at its target position when grasping
is finished. Constraint (17) means that the delivery keeps its
position once it reached its target position.

Obstacle𝑅2

𝑅4

𝑅1

𝑅3 Obstacle

𝑡
𝑡 + 1

𝑡 + 2

ሧ

𝑛=1,2,3,4

(𝑝𝑡 ∈ 𝑅𝑛) = 1

ሧ

𝑛=1,2,3,4

(𝑝𝑡 ∈ 𝑅𝑛) ∧ (𝑝𝑡+1 ∈ 𝑅𝑛) = 1

⇒ Cut-through is feasible.

⇒ Cut-through is eliminated.

Fig. 4. Model of collision avoidance [11]. The left part shows a 2D space
example of a collision-free region, which is defined as AABB on each side
of the obstacle (i.e., R1, ..., R4). The important point is that each collision-
free region overlaps with adjacent regions (e.g., R2 overlaps with R1 and
R4). The right part shows a collision-free path and constraint (highlighted
in blue) compared with the case of cutting through the obstacle (highlighted
in red). The bottom constraint requires that the moving object is positioned
within any one of the same collision-free regions at consecutive time steps.
This constraint completely eliminates the cut-through of corners.

ψj,t+1 − ψj,t ≥
∑
i

(θgspi,j,t − θ
gsp
i,j,t+1), (16)

ψj,0 ≤ ψj,1 ≤ ... ≤ ψj,Nstp = 1. (17)

Constraints (18)–(29) represent the collision-free encoding
[11] as shown in Fig. 4. The collision avoidance of the end-
effector with the obstacle is modeled by constraints (18) and
(22), and that with the delivery is modeled by constraints
(19) and (23). The collision avoidance of the delivery with
the obstacle is modeled by constraints (20) and (24), and that
with the other delivery is modeled by constraints (21) and
(25). On the basis of the big-M method, constraints (18)–
(21) evaluate whether a moving object (i.e., end-effector and
delivery) is within the collision-free region:

peei,t ≤ Robsk,rz
ee,obs
i,k,r,t + peei,t(¬z

ee,obs
i,k,r,t ),

peei,t ≥ Robsk,rz
ee,obs
i,k,r,t + peei,t(¬z

ee,obs
i,k,r,t ) (18)

where Robsk,r ∈ R3 is the position of the collision-free region
on the side of the obstacle and zee,obsi,k,r,t ∈ {0, 1} is the state
where the end-effector is within the corresponding collision-
free region on the side of the obstacle.

peei,t − pdlv
′

j,t ≤ Rdlvj,r z
ee,dlv
i,j,r,t + (peei,t − pdlv

′
j,t )(¬zee,dlvi,j,r,t ),

peei,t − pdlv
′

j,t ≥ Rdlvj,r z
ee,dlv
i,j,r,t + (peei,t − pdlv

′

j,t )(¬zee,dlvi,j,r,t ) (19)

where Rdlvj,r ∈ R3 is the position of the collision-free region
on the side of the delivery and zee,dlvi,j,r,t ∈ {0, 1} is the state
where the end-effector is within the corresponding collision-
free region on the side of the delivery.

pdlvj,t ≤ Robsk,rz
dlv,obs
j,k,r,t + pdlvj,t (¬zdlv,obsj,k,r,t ),

pdlvj,t ≥ Robsk,rz
dlv,obs
j,k,r,t + pdlvj,t (¬zdlv,obsj,k,r,t ) (20)

where zdlv,obsj,k,r,t ∈ {0, 1} is the state where the delivery is
within the collision-free region on the side of the obstacle.

pdlvj1,t − p
dlv′

j2,t ≤ R
dlv
j2,r

zdlv,dlvj1,j2,r,t
+ (pdlvj1,t − p

dlv′
j2,t

)(¬zdlv,dlvj1,j2,r,t
),

pdlvj1,t − p
dlv′

j2,t ≥ R
dlv
j2,rz

dlv,dlv
j1,j2,r,t

+ (pdlvj1,t − p
dlv′

j2,t )(¬z
dlv,dlv
j1,j2,r,t

).

(21)



where zdlv,dlvj1,j2,r,t
∈ {0, 1} is the state where the delivery

is within the collision-free region on the side of the other
obstacle.

Constraints (22)–(25) force the moving objects to be
within any one of the same collision-free regions at two
consecutive time steps to completely prevent cut-through:∨

r

(zee,obsi,k,r,t ∧ z
ee,obs
i,k,r,t+1) = 1, (22)∨

r

(zee,dlvi,j,r,t ∧ z
ee,dlv
i,j,r,t+1) = 1, (23)∨

r

(zdlv,obsj,k,r,t ∧ z
dlv,obs
j,k,r,t+1) = 1, (24)∨

r

(zdlv,dlvj1,j2,r,t
∧ zdlv,dlvj1,j2,r,t+1)= 1. (25)

Constraints (26) and (27) are for exploiting the completion
time steps of all P&P and moving distances of the end-
effectors to be used in the objective function:

Ct =
∧

τ=t,...,Nstp

∧
j

ψj,τ , (26)

−ui,t ≤ veei,t ≤ ui,t (27)

where Ct ∈ [0, 1] is the state where the P&P of all deliveries
is completed and ui,t ∈ R3

≥0 is a slack variable to obtain the
absolute value of veei,t by combining it with the objective
function (i.e., minimizing ui,t).

Constraints (28) and (29) represent the terms of the
objective function.

Jtime =
1

Nstp + 1

∑
t

(¬Ct), (28)

Jdist =
∑
t

∑
i

wt‖ui,t‖1 (29)

where Jtime is the normalized time steps to complete all P&P
and Jdist is the weighted sum of the L1 distance where the
end-effectors move. wt ∈ R+ is a small weight coefficient to
prioritize Jtime over Jdist to evaluate minimality. We give
conservative values to wt by wt = (1 +α)

t
Nstp

−1
/((Nstp +

1)2
∑
i ‖veei,t‖1) where α ∈ R+ is a penalty coefficient. These

wt guarantee 1
Nstp+1 ≥ Jdist where the minimum variation

of Jtime is greater than the maximum variation of Jdist. In
addition, these wt contribute to generate reasonable motion
trajectory because moves are penalized at later time steps.

Equation (30) represents the objective function of the
baseline model:

X∗ = arg min
X

(Jtime + Jdist) (30)

s.t. Eq. (4)–(29)

where X∗ is the optimal solution of X which is a vector
consisting of all decision variables (e.g., peei,t, v

ee
i,t, θ

pck
i,j,t, θ

plc
i,j,t,

θcryi,j,t, etc.).
The model can be solved by the MILP solver. Therefore,

the optimal peei,t, v
ee
i,t, θ

pck
i,j,t, θ

plc
i,j,t and θcryi,j,t can be extracted

from X∗ as the trajectory and actions sequences.

TABLE I
COMPARISON OF MODELS

Model Variable Constraints Objective value
z
dlv,•
• ∈ ... Eq. (4)–(23),(26)–(29),... Jtime + Jdist...

Baseline {0, 1} Eq. (24), (25)
Ours (hard) [0, 1] Eq. (31), (32)
Ours (hard+soft) [0, 1] Eq. (31)–(33) +Jroute

IV. PROPOSED APPROACH

A. Motivation and Overview

Our motivation is to reduce the computation cost of the
baseline model via leveraging features of collision avoidance
in robotic P&P. To the best of our knowledge, few prior
studies have addressed such work. We take two approaches
improving the size and tightness of the baseline model,
which impact the search efficiency of the MILP solver
as mentioned in subsection II-C. The purpose of the first
approach regarding size is to reduce the search space of the
MILP solver. The purpose of the second approach regarding
tightness is to make bounding work more efficiently, in other
words, to guide the MILP solver to find integer solutions at
shallower nodes in the search tree. The policy of the first
approach is to reduce the number of binary variables in
regard to collision avoidance of the deliveries. The policy
of the second approach is to softly tighten the values of
binary variables in regard to collision avoidance with the
deliveries. In this paper, we implement these approaches by
using continuous relaxation with hard constraints and a soft
constraint, respectively. Table I shows a detailed comparison
of the baseline and proposed models. “Ours (hard)” is based
on the first approach, and “Ours (hard+soft)” is based on
both of the first and second approaches.

B. Hard Constraint

For the first approach, we introduced an assumption where
the collision-free regions of the end-effector and carried
delivery are identified. This assumption can be simply for-
mulated as the following additional constraints:

zdlv,obsj,k,r,t =
∨
i

(zee,obsi,k,r,t ∧ θ
cry
i,j,t), (31)

zdlv,dlvj1,j2,r,t
=

∨
i

(zee,dlvi,j2,r,t
∧ θcryi,j1,t). (32)

As a result, the values of zdlv,obsj,k,r,t and zdlv,dlvj1,j2,r,t
are condition-

ally bound with values of zee,obsi,k,r,t and zee,dlvi,j2,r,t
, respectively. In

other words, zdlv,obsj,k,r,t and zdlv,dlvj1,j2,r,t
can be reformulated as 0-1

continuous variables. For all r, their values take 0 when the
delivery is carried by no end-effector. This possibly induces
an infeasibility of the collision-free encoding, but it can be
resolved by removing constraints (24) and (25) from the set
of constraints. In this case, the lack of constraints (24) and
(25) does not affect the collision avoidance of the delivery
because the delivery always stays within any collision-free
regions when it is not carried by the end-effectors. This
insight also plays an important role of the first approach.
Table I shows a summary of the aforementioned description
as “Ours (hard)”.
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Fig. 5. Result of optimization in the case of Ndlv = 2 (Nstp = 30). The graphic representation is as follows: 1) boxplot, 2) histogram (translucent
bar) with kernel density estimation (solid line), 3) time series of the mean (solid line) with 99% confidence intervals (shaded area), and 4), 5) bar chart
of the mean (solid bar) with 99% confidence intervals (black bold bar), respectively. Computation time means the time to find an optimal solution. Binary
variables were counted after the models were presolved. Iteration count of linear programming means count of CRPs solved by the MILP solver.
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Fig. 6. Result of optimization in the case of Ndlv = 3 (Nstp = 45). The graphic representation is in a similar manner with Fig. 5.

C. Soft Constraint

For the second approach, we introduced another assump-
tion where it is feasible to softly restrict the end-effector’s
routes around the deliveries. The reason we choose such a
soft constraint is that it is difficult to preliminarily determine
the collision-free regions not to be passed by the end-effector
as a hard constraint. The second assumption can be also
simply formulated as follows:

Jroute =
∑
t

∑
i

∑
j

∑
r∈Rc

i,j,t

zee,dlvi,j,r,t , (33)

X∗ = arg min
X

(Jtime + Jdist + Jroute) (34)

s.t. Eq. (4)–(23), (26)–(29), (31)–(33)

where Jroute is the sum of the penalties for the end-
effector to pass through the collision-free regions on the
sides of delivery, which are selected from Rci,j,t. Moreover,
Rci,j,t is the set of the collision-free regions around the
delivery, which is pre-configured on the basis of the predicted
probability of the pass-through. In this paper, we simply
configured all Rci,j,t to contain three collision-free regions
as follows: the first is on the bottom side of the delivery and
the remaining are on both sides of the delivery along the
horizontal axis where the end-effector moves less (i.e., y-axis
in Fig. 3). This simple way is based on the prior knowledge
about routes in robotic P&P where the end-effector typically

moves over the deliveries and along a long axis direction.
Note that a new term Jroute is added to the objective
function. Jroute is minimized most preferentially because the
minimum variation of Jroute is greater than the maximum
variation of Jtime + Jdist. As a result, this soft constraint
makes the MILP solver find fractional solutions consisting
of more zee,dlvi,j,r,t = 0. In other words, the MILP solver has
more chances of bounding where the integer solutions are
found. The constraint is inherited from “Our (hard)” for the
evaluation. Table I shows a summary of the aforementioned
description as “Ours (hard+soft)”.

V. EVALUATION

A. Settings

We compare the baseline model and proposed models as
shown in Table I. All of the models use the same configura-
tion with the parameters shown in Fig. 3 and the remaining
parameters are as follows: ∆t = 0.50 s, Nstp = 15Ndlv,
Ndlv ∈ {2, 3}, |veei,t| = (0.40, 0.20, 0.20)> m/s, and α = 1.
We randomly sampled 200 combinations of initial and target
positions of the deliveries, which are within the area shown in
Fig. 3. We solved all of the models implemented by Python-
mip 1.13.0 [19] with the MILP solver Gurobi 9.1.1 [20]
on an Intel Core i7-10700K (8-core/3.80GHz) and 16-GB
RAM. We basically used the default settings of Gurobi in 8-
thread parallel execution and 300 s time limit, but disabled
cut generation and feasibility pumping, which equally slowed
computation down for all of the models.



B. Results

Fig. 5 shows the result in the case of Ndlv = 2 (Nstp =
30). The boxplot shows that both of the proposed models
reduced the computation time by about 23% in the range
of the 25–75th percentiles. Similarly, the histogram shows
that both the mean and variance of the computation time
are improved. However, there is only a slight difference of
the variance compared with that of the mean between the
proposed models. The time-series data of the relative MIP
gap shows that the proposed models have better convergence
properties. The left bar chart shows that the number of binary
variables were reduced by about 50% in the proposed mod-
els. The right bar chart shows that the iteration count of linear
programming was reduced by about 31% in the proposed
models. As a result, the computation time was reduced by
about 23%. We can summarize that our first approach, which
reduces the number of binary variables, certainly improved
computation time but our second approach did not contribute
in the case of Ndlv = 2.

Fig. 6 shows the result in the case of Ndlv = 3 (Nstp =
45). These graphs show similar findings to those of Ndlv = 2
(Fig. 5) and much greater improvement over the baseline
model. We examined the cause of the improvement, where
the reduction rate of the computation time (about 38, 46%)
was greater than the reduction rate of the iteration count
(about 25, 30%). We found that the number of constraints
were also considerably reduced in the proposed models
because of the removal of constraints (24) and (25). It is
supposed that small size model resulted in small computation
time per iteration and it contributed to much further speed-
up. In addition to that, the computation time was improved
even more by the second approach. The right bar chart
shows greater improvement in search efficiency by “Ours
(hard+soft)” and this was not observed in the case of Ndlv =
2. It is supposed that this cumulative speed-up can be larger
when Ndlv is larger. According to this result and the boxplot,
the proposed models independently address the computation
efficiency of collision avoidance with deliveries. We can
summarize that our second approach, which softly tightens
binary variables, further reduces computation time when
Ndlv is larger.

Fig. 7 and 8 show the results of the sensitivity analysis
on parameter Nstp in the case of Ndlv = 2, 3, respectively.
We varied Nstp from a tight setting (Jtime close to 1) to
a loose setting (smaller Jtime) for the use case where Nstp
cannot always be configured with a tight setting. The left
graph shows that the proposed models robustly outperform
the baseline model in the range. Furthermore, in the case of
Ndlv = 3, “Ours (hard+soft)” is faster than “Ours (hard)”
marginally but robustly. The right graph shows that only
“Ours (hard+soft)” resulted in slight degradation regarding
the completion time steps Jtime. This is the disadvantage
of the second approach but its impact is acceptably small
in practice. We successfully validated effectiveness of the
proposed models in the evaluation configuration which is
a typical P&P scenario. However, further investigation with
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Fig. 7. Sensitivity analysis on parameter Nstp in the case of Ndlv = 2.
Each solid line represents the mean value. Each shaded area shows 99%
confidence intervals. Computation time means time to find an optimal
solution.
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Fig. 8. Sensitivity analysis on parameter Nstp in the case of Ndlv = 3.
The graphic representation is in a similar manner with Fig. 7.

more complex configurations (i.e., layout of obstacle, de-
livery, multi-arm robot, etc.) is needed. This is a future
work to clarify how much the proposed model relies on a
tradeoff between the completion time steps Jtime and the
computation time.

VI. CONCLUSION

We presented new models of MILP-based TAMP for
robotic P&P, which plans action sequences and motion
trajectory with low computation costs. We improved an
existing state-of-the-art MILP-based TAMP model integrated
with collision avoidance. To enable the MILP solver to search
for solutions efficiently, we introduced two approaches lever-
aging features of collision avoidance in robotic P&P. The
first approach reduces the number of binary variables, which
are related to the collision avoidance of delivery objects, by
reformulating them as continuous variables with additional
hard constraints. These hard constraints maintain consistency
by conditionally propagating binary values, which relate
to the action state and collision avoidance of robots, to
the reformulated continuous variables. The second approach
is more aware of the branch-and-bound method which is
the fundamental algorithm of modern MILP solvers. This
approach is to guide the MILP solver to find integer solutions
with shallower branching by adding a soft constraint, which
softly restricts a robot’s routes around delivery objects.



We demonstrated a considerable speed-up by the proposed
models.
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