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Catching cognitive biases in an erroneous decision making process

Valentin Fouillard!?, Nicolas Sabouret!, Safouan Taha? and Frédéric Boulanger2

Abstract— This paper proposes a logic-based model to study
erroneous decision making by humans in accident reports.
Our model is based on minimal belief revisions and forward
chaining. It computes possible mental states that could explain
the operator’s behavior. From this sequence, we extract logical
patterns that correspond to possible cognitive biases responsible
for the erroneous decision making. We apply this model on the
crash of Air France’s 447 flight in 2009.

I. INTRODUCTION

Three years after the crash of the Air France flight 447
Rio-Paris, the report of the Bureau of Investigation (BEA in
French, for Bureau d’Enquétes et d’Analyses) is published
[1]. This report shows that the pilots did not identify the
stall situation even though the stall alarm rang over 75
times. From an external point of view, the behavior of the
pilots can seem totally irrational. Nevertheless, the BEA
outlines a possible confusion between the stall situation and
an overspeed situation. Several elements can support this
hypothesis: the lack of visual information, wrong indications
from the flight directors, irregular stall warning, etc. If we
assume that the pilots believe to be in an overspeed situation,
all their actions are rational.

In this paper, we propose to use computer simulation
to study and explain such situations, where a rational and
skilled human operator adopts a behavior that seems faulty
and irrational when considering all the information available.
Our goal is to determine the possible causes of errors by
reconstructing the mental state of the operator, based on
his actions and observations (section II). To this goal, we
define a logic-based formal model (section III). We rely on
belief revision mechanisms to generate the possible mental
states. We propose a mechanism to detect cognitive biases
that can explain the erroneous decision making (section IV).
Section V illustrates our method on the AF-447 situation.
We show that several explanations are possible for the pilot’s
behavior, beyond those proposed by the BEA analysis. Using
cognitive biases, our model give hints on the plausibility of
each scenario. The last two sections of this paper discuss
some related work (section VI) and perspectives of our model
(section VII).

II. OVERVIEW OF THE APPROACH

Our goal is to model situations in which an operator adopts
an irrational behavior. By irrational behavior, we mean an
action (or a set of actions) that are in contradiction with
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the state of the world. For example, in the crash of the
AF-447 flight, the pilots perform a sequence of actions that
keeps the aircraft in a stall situation instead of getting out
of this situation. To model such situations, we consider four
elements, as illustrated in Figure 1:

« a sequence of actions performed by the operator;

« the observations that the operator can make at each step;

« the initial beliefs B of the operator;

« the reasoning rules of the operator.
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Fig. 1. [Initial beliefs, observations, and actions

We define a rational behavior as a sequence of belief states
that are logically consistent with the actions and observations
performed at each time step. Two situations can lead to
inconsistencies:

e Some new observations are not consistent with the
beliefs or deductions of the operator: this corresponds
to new information to take into account;

o Beliefs or deductions of the operator are not consistent
with the action performed: this corresponds to the
irrational behavior situation we want to capture.

Our goal is to restore the consistency all along the
succession of actions and beliefs. This is a well-known
problem in logic-based modeling, called belief revision [2].
It consists in removing some of the beliefs or observations
to obtain a consistent subset of propositions. We claim that
each revision correspond to a possible mental state of the
operator that could explain his erroneous decision. In the
example of the AF-447 flight, ignoring the alarm can lead
the pilots to believe they are in an overspeed situation, which
explains their actions. Our goal is then to decide which belief
revisions are acceptable from a psychological point of view.

ITI. MODEL
A. Syntax

Our model is based on first-order logic with each predicate
indexed by a time step. For example:

there are clouds in location [ at time ¢
the alarm rings at time ¢

clouds(l)y —
alarmy —

For easier reading, any free variable or temporal index is
considered as universally quantified:

P(w7y)t ~ VCU,V%W

P(w7y)t



We define the language Ly with the following grammar:
az=p|oalag Aag|ar Vas|ag = as

where p € Pred, a set of of temporally indexed predicates.
Human beliefs and observations, as well as inference rules
for the system, are represented by formulas in the L
language. Inference rules are numbered and hold at all time
steps. For example, to model the fact that human beings
assume a blue sky when there is sun and no clouds at some
location x, we write:

Ry (x); = ((—clouds(x), Asun(x),) = bluesky(x),)

Belief revision in our model consists in “ignoring” a belief,
an observation or a rule. In the above example, ignoring Iy
means that we can’t infer a blue sky from sun and no cloud.

We also define a set A of temporally indexed actions:
a; — action a is performed at time ¢

We define the language £ as an extension of £y by adding
the actions A to the set of predicates, as well as the two
following operators:

¢ == al[a]act| act :: «

with @ € Ly and act € A. [a]act states that « is the
precondition of action act and act :: « states that « is the
effect of act. For example:

[~ locked;] doOpen, action doOpen requires that

the door is not locked.

action open has for effect that the
door is opened at the next time step.

doOpen, :: open,, ¢

The language £ allows us to write sets of logical propositions
that represent irrational behaviors.

B. Situation description

The description of an irrational situation to be analyzed is
composed of several elements:

The initial beliefs 5;,,;;: a set of predicates p € Pred
representing the initial beliefs of the operator.

The reasoning rules R: a set of L-formulas with a free
temporal index ¢ (they hold at all times). Some of these rules
support the deduction of new propositions from beliefs and
observations (e.g. (—clouds(x), Asun(x),) = bluesky(x),)).
Some others define the preconditions and effects of actions
(e.g. [-1ocked;] doOpen,).

The desires D: a set of positive or negative literals of Pred.
They represent the operator’s goals, i.e. things that should
be satisfied at the next time step.

The observations Obs = {Obsy,..., Obs;}: each set of
observations Obs; is a self-consistent set of positive (0 €
‘Pred) or negative (—o € Pred) literals that correspond to the
observations at time step t¢. Literals that do not appear in
Obs; are unknown (not observed) at this time step.

The track 7 = {ay,...,a:}: a sequence of actions of A
representing the actions that the operator has performed at
each time steps.

The permanent rules C: a set of propositional formulas
that hold at all time steps and cannot be ignored in the belief
revision process. These rules describe physical properties that
cannot be violated.

Our goal is to use belief revision to compute “rational”
mental states of the operator, i.e. sets of consistent proposi-
tions, from the description of the situation..

C. Mental state definition

A mental state is a set of predicates and rules in the
language £ that describes the beliefs, desires, observations
and reasoning rules which have been retained by the operator.
We define B; as the mental state at time t. The initial
mental state of the operator is the conjunction of his initial
beliefs, reasoning rules, desires (for the next time step), and
permanent rules:

By =Binit A\RADAC

At each step, B; contains a subset of L. Everything that
is not in B; is unknown of the operator. Therefore:

— I believe at t
that p is true at ¢/

Py € Bt

I believe at

that p is false at ¢/

I don’t know at ¢

whether p is true or false at ¢/

Py c Bt —

Py & B -
A=py ¢ B

In order for the operator to behave in a rational way, our
model requires that each B, is consistent: the set of beliefs of
the operator is consistent with his actions, his observations,
his desires and his reasoning rules. We also need to determine
how the model evolves from a mental state B;_; (consistent)
to a new mental state B, (consistent), taking into account
the observations Obs; and the action a;, which can create
inconsistencies. This is the object of the belief revision.

Our first hypothesis is that by default, the operator con-
tinues to believe what he believed at the previous time: each
B, includes a priori the previous mental state B;_1.

Then, we add the observations to this belief base. If these
observations do not contradict the beliefs, namely if the set
B;_1 U Obs; is consistent, there is no problem. Otherwise,
a belief revision is necessary to restore consistency.

In a second step, since we know that the operator has
performed the action a; at time step ¢, we need to make sure
that his beliefs allow him to perform this action, i.e they are
consistent with the preconditions and effects of the action.
If it is not the case, we need to establish a diagnosis on the
beliefs of the operator that can explain the choice of this
action, as explained by Reiter [3]. Wassermann [4] shows
that this diagnosis problem can also be resolved with the help
of a “minimal” belief revision. Therefore, the mechanism of
belief revision can be used both to take into account the new
observations and to diagnose the actions that seem to be
erroneous from the point of view of an omniscient observer.



D. Belief revision

Belief revision restores the consistency of the beliefs of an
agent facing new contradictory information [2]. In our model,
this mechanism is the main tool to compute the transition
from a mental state to a new one and so to find a possible
rational reasoning.

However, not all revisions are equivalent. Consider the
following example:

R = (rain; Acold;) = snow;
BO = {COldl, rainl, Rl}
Obs; = {-snow;}

The operator does not observe snow although he believes that
it is raining and it is cold (and therefore that it is snowing by
application of Ry, which is in By); there is an inconsistency.
Any strict subset of By U Obs; is a possible belief revision.
Therefore, we can choose to ignore the observation, to give
up on one of the beliefs on rain or cold, or to withdraw
deduction rule R;. We can also choose to ignore at the same
time R; and a belief: from a formal logic viewpoint, there is
no reason to choose one over the other. Yet, from a human
cognition viewpoint, ignoring all the beliefs for taking into
account the new information seem to be excessive.

This problem was studied by Carlos Alchourron, Peter
Girdenfors and David Makinson [5] and resulted in the AGM
theory (after the name of the authors). Their proposition is
to define a set of axioms that characterize a minimal belief
revision. In our case, the solution that consists in ignoring
both rain; and cold; is not minimal because eliminating
rain; or cold; only is enough. In other words, we are looking
for a minimal correction to bring the system By U Obs;
back to consistency. This is known as determining a Minimal
Correction Set (MCS).

More formally, for a given system ® = {¢1,¢2... ¢},
M C & is a MCS of @ if and only if:

o O\ M is consistent

o Vo € M,(®\ M) U {¢;} is inconsistent

In our example {rain;} is an MCS, {cold;} is another
one, but {rainj,cold;} is not one. We use Liffiton’s algo-
rithm [6] to calculate the set of MCS of a system. This
algorithm has the benefit to take into account a subset of ®
of beliefs that cannot be ignored. We use this to prevent the
belief revision to ignore the action performed by the operator
and the permanent rules C.

Application to our model

The following figure illustrates the computation of the
successive belief states of the operator:

\\m MCSs o
e

D
First of all, we add the observations. If the result (white
dot) is inconsistent, we look for an MCS to make it consistent

Obs; ag

\\ MCS

® {
B

(black dot). Then, we add the actions and the desires for
the next step and we compute a new MCS to perform a
diagnosis. As a consequence, the mental state B; contains
all observations consistent with the previous belief state and
the action performed at time ¢.

At each step, we don’t necessarily obtain a unique MCS.
Like in the weather example above, there is more than one
possible correction (ignore the rain, ignore the observation,
ignore R;...). We therefore obtain a tree structure of states
B;, where each branch corresponds to a possible “choice
of revision” for the operator. Each path from the root to
a leaf defines a possible cognitive behavior. We call this a
scenario. Not all scenario are evenly relevant: in the next
section, we show how to use cognitive biases to extract the
most plausible ones, i.e. those who correspond to a possible
behavior of a human operator.

Implementation

We have implemented our model under the SMT-LIB lan-
guage using the z3 solver. This allows us to take advantage
of the incremental operators “push” and “pop” to query the
solver without reloading the model each time. We load the
definitions of predicates and rules once, and then push the
assertions corresponding to each query as part of our MCS
tree construction algorithm.

Moreover we have defined a modeling language with an
ANTLR (ANother Tool for Language Recognition) grammar,
and we wrote a program to translate the models from this
language to SMT-LIB. This allow us to write and analyze
models in an efficient and systematic way.

IV. COGNITIVE BIASES
A. Cognitive biases in social science

Finding a rational reasoning explanation to an irrational
behavior has been widely studied in social sciences. Indeed,
according to Tversky and Kahneman [7], humans use mind
shortcuts (heuristics) to compensate their bounded rational-
ity. These heuristics can be very effective, but they can lead
to errors. They are the cognitive biases. Cognitive biases
can lead to predictable irrational behaviors. Our proposition
is that these biases offer a plausible explanation to accidents
in decision making processes.

Dimara [8] enumerates 151 cognitive biases in the sci-
entific literature. Our work however focuses on specific
situations: incidents, crashes, collisions or disasters. In this
context, Murata et al. [9] propose a subset of cognitive biases
that play a key role in such accidents.

In the following, we give a non-exhaustive set of logical
patterns (using our model based on Minimal Correction Sets)
that capture biases from Murata’s list. Each bias is illustrated
with a practical example.

B. Attention bias

The attention bias is defined as a selection among per-
ceived information, based on concern or emotion [10]. When
the operator retains an observation that is inconsistent with
one of his desires, then his attention is focused on this



observation. As a result, an MCS representing an attention
bias is defined by the following conditions:

1) p,q € Obs; p and ¢ are two observations
2) 3de€D.(Bi—1 Ap)=—d p contradicts a desire
3) g € MCS; q is ignored

Let us consider the following example:

Obs; = {alarmj,reserve; }
Ry = alarm; A—reserve; = outFuel;

R = ¢ Ry =alarme; Areserve; = —outFuel;
R3 = [outFuel;] land;

D = {-outFuel}

ay = land1

MCS; = {Obs;(reserve;)}

In this example, the operator has the desire not to run out of
fuel. He knows that he is out of fuel when the alarm rings
and there is no reserve. In spite of not running out of fuel, he
decides to make an emergency landing. The MCS shows that
the reserve was ignored. The attention bias can be applied
here to explain this decision (the pilot focused on the alarm).

C. Commitment bias

The escalation of commitment is the tendency to persist
in an irrational behavior in spite of increasingly negative
outcomes [11]. In our model, we consider that a commitment
bias is present when an operator rejects the effect of a
previous action and keeps performing this action:

1) 3d e D,B;_1 = —~dy_1, By = —d;

There exists a desire d not satisfied at ¢ — 1 and ¢.

2) az = a;_q same selected action a at £ — 1 and ¢.

3) Bi_1 = d; Action a;_1 should have satisfied d
(remember that a;_1 € B;_1)
4) By = di1 Action ay is believed to satisfy d

5) Rj € MCS; with Ry, the rule that defines the effect
of action a. The operator had to ignore these effects
to be consistent with the observations at ¢ (which tell
her that a;_; did not work).

Let us consider the following example:

Obsy = speed; Obss = speed,

R = { Ry = —ice; = (brake; :: -speed, ;) }
al = brake; ag = brakey

MCS, = {R:i}

In this example a driver tries to brake to reduce its speed,
which does not work (probably because he is slipping on
ice). Although the decision was not good, he tries again to
brake at step 2. The MCS ignores the effect of the braking
action, allowing the operator to perform the action despite
the inconsistency between the expected effect and the new
information.

D. Overconfidence

Overconfidence is the tendency to consider our own judg-
ment as more accurate and efficient than it is really [12].
In our model, we identify overconfidence when the operator
predicts a state of the world and then rejects any information
that does not support his belief.

1) p € Obs,
2) (Bi—1Ap)= L

p is an observation
inconsistent with the prediction

3) p e MCS; p is ignored
For example:
Obs; = clouds; Obsy = —raing
R = {R; = clouds; = raing11}
MCSy = {Obsy(—raing)}

The operator was overconfident in his prediction of rain.

E. Confirmation bias

The confirmation bias is the tendency to prefer information
that confirms our beliefs over information that challenges
them [13]. We identify this bias in our model when the
operator has the choice between contradictory pieces of
information in Obs; and keeps the elements that confirm his
beliefs (i.e. the selected observations can be used to derive
facts that belong B;_1).

1) p,q € Obs; p et g are two observations
2) (Bi—1Ap)#A L p is consistent
3) (Bi—1ApAg) =L p and ¢ are inconsistent

4) 3Ry € Bi—1, (Bi—1 \ Rp) ApAgq) & L
p et g are consistent when Ry is ignored

(B-1\B) # B

) 3B C B { (B.1\B)Ap = B
p confirms some beliefs
either p is prefered to ¢, or Ry, is ignored

For example:

Obsy = {greenLight,}
Obsy; = {-redLight,,alarms}
Ry = greenLight, = —failure,
R = Ry = -—redLight, = —failure;
R3; = alarm; = failure;
MCSQ = {Rg}

Here the observation of the green light leads to the con-
clusion that there is no failure at step 1. The observation
that there is no red light at step 2 confirms that there is no
failure, contrary to the observation of the alarm. The MCS
gives more weight to the information that confirms that there
is no failure. Note that the MCS { Obsz(alarmz)} would also
be a case of confirmation bias.

F. Conclusion

The above examples show that it is possible to define
patterns that identify biases in rational reasoning scenarios
within the system of beliefs, observations, reasoning rules
and MCS. Our proposition is that among all possible sce-
narios, a scenario that follows cognitive biases is a more
plausible explanation for an irrational behavior.

V. APPLICATION TO THE CASE OF THE RIO-PARIS FLIGHT

A. Explanation of the situation

To illustrate our methodology, we model a simple version
of the Rio-Paris flight crash based on the report of the
BEA [1]. Four main devices played a role in this accident:



Stall

Fig. 2. Stall situation (source : Caliver, Wikimedia Commons)

o The Flight Director (FD) that tells the pilot what ma-
neuver to make to reach the programmed trajectory;

o The stall alarm that rings when the aircraft is in a stall
situation (loss of lift resulting in a fall at high incidence,
see Figure 2);

o The altimeter that gives a vertical speed (V,), indicating
the fall of the aircraft;

« The Pitot probe, defective at the time of the crash, which
indicates the speed of the plane (and thus a possible
overspeed).

Moreover, the pilots felt a buffeting (vibrations of the aircraft)
at the start of the incident, which they misinterpreted.

To understand the error of the pilots, one must know that
when an airplane is in a stall situation, the correct action is
to push the control stick (i.e use the flight control to tilt the
aircraft forward). On the other hand, when the aircraft is in
overspeed, it is necessary to pull the control stick to tilt the
plane backward [14]. It was the confusion between these two
situations, in the absence of clear instrument indications and
without external visibility, that led the aircraft to crash.

B. Our model of the problem

We can summarize the situation as follows:

(t=1) The flight indicators display an abrupt acceleration,
the stall alarm rings and buffeting is felt. The pilot pulls the
stick.

(t=2) The stall alarm and the buffeting stop, the vertical speed
increase (loss of altitude) and the flight director requests to
pull the stick. The pilot pulls the stick.

(t=3) The stall alarm is still off, the vertical speed continues
to increase and the flight director is still requesting to pull
the stick. The pilot pushes the stick.

(t=4) The stall alarm turns back on, the vertical speed
increases and the flight director is still requesting to pull
the stick. The pilot pulls the stick.

Our model proposes explanations for the behavior of the
pilot with the help of cognitive biases and belief revision.
To begin, we can represent the observations and the actions

of the pilot as follows:

Binit = {—alarmg, —buffetg, - stally, = overspeed, }

Obs; = {buffety, alarm;, acceleration; }

Obss = {—buffets, ~alarmsy, — accelerations,
FD (pull)Q, Vz TQ}

Obss = {—Dbuffets, ~alarmg, - accelerations,
FD(pull)y, V, 13}

Obsy = {—Dbuffety, alarmy, - accelerationy,
FD(pull) 4, V, 14}

T = {a = pull}, ap = pully, a3 = pushs,

ag = pully}

To understand these observations and actions, it is necessary
to model part of the knowledge of the pilots, which corre-
sponds to the following rules R:

Ry = buffet; = stall;
vibrations indicate a stall situation
Ry = alarm; = stall;
the stall alarm indicate a stall situation
Rs = acceleration; = overspeed,
an acceleration is an indicator of overspeed
Ry = (V, T, A—stally) = overspeed,
excluding stall situation, the increase of
V, corresponds to an overspeed
Rs = overspeed; = (pull; :: —overspeed, )
pulling the stick solves the overspeed
Rs = stall; = (push, :: -stall;q)
pushing the stick solves the stall
R; = FD(pull), = pull,

the operator should pull the stick when the
flight director tells so.

Moreover, we add two desires:
D = { —stall, ~overspeed }

Finally, to include the basic behavior rules in our system, we
add the following permanent rules C:

Cy = (stally Aoverspeed,) = L
stall and overspeed are mutually exclusive;
Cy = (push,Apull,) = L

idem for pulling and pushing the stick.

C. Presentation and analysis of the results

The BEA proposes the following factors to explain the

behavior of the pilots:

1) “the buffeting, which can be associated in his mind
with high speed” (p.186)

2) “Itis possible that an attentional selectivity has reduced
his ability to perceive the [stall] alarm.” (p.188)

3) “Moreover, the presence of the flight director leading
to the display of a nose-up attitude [pull on the stick]
may have confirmed the [pilots] in the idea that the
stall warning was not relevant.” (p.187)

The computation of MCSes in our model leads to 903
scenarios (which corresponds to an average branching factor



of 2.34 in our beliefs tree). The analysis of the biases on
these scenarios leads us to identify three families:

o The scenarios in which the bias patterns cover all three
factors highlighted by the BEA;

o The scenarios where the bias patterns do not correspond
(at least, not completely) to the report of the BEA but
could explain the crash;

e The absurd scenarios where the MCS do not seem to
reflect a plausible behavior.

a) Scenarios in accordance with the BEA analysis: In
the first family we find for example the following scenario:

MCS(t = 1) — Rl, Obsl(alarml)
MCS(t=2) — Rs
MCS(t=3) — Obsz(FD(pull),)
MCS(t=4) — Rs

By ignoring the rule R1 at step 1, the pilot considers
that the association “buffet implies stall” is no longer valid.
Therefore the pilot can associate the vibration with some-
thing else, possibly high speed (assuming that the pilot
believes he is in high speed situation). This ignorance of
R1 corresponds to the first factor in the BEA’s analysis.

The attentional selectivity also mentioned in the BEA
report (2) refers to the attention bias we have presented
in subsection IV-B and that we also find at step 1: the
observation of the alarm Obs;(alarm;) is being ignored
while the operator focuses his attention on overspeed.

This mental state scenario also proposes the ignorance at
step 2 of rule Rs, which states that the action “pull” should
have brought the aircraft out of the overspeed situation. The
action did not produce the expected effect, according to the
observations, which is the reason why the operator must
ignore this rule (to maintain the coherence of its belief base).
The report of the BEA does not mention such a reasoning but
we can nonetheless make a connection with the commitment
bias presented in subsection IV-C.

Finally, the ignorance of the observation FD(pull), at
step 3, i.e the failure to follow the instructions given by
the flight director, can be interpreted as the pilot realizing
that these instructions were wrong and trying to change the
strategy. However, at step 4, the stall alarm turns back on and
the pilot retains this observation in our scenario (the MCS at
t=4 does not contain the alarm observation). To maintain the
consistency of the system, the pilot has to ignore rule R,
which connects the alarm and the stall situation: this is our
confirmation bias pattern, as introduced in subsection IV-E.
This corresponds to not considering the alarm as relevant, as
proposed by the BEA in factor (3).

In this scenario, not only are all of the BEA factors
retrieved, but we also identify that the commitment bias could
have played a role with the attention and confirmation biases.

b) Other scenario matching the analysis by the BEA:
Still in the first family we find the following example:

MCS(t=1) — Ry, Obs;i(alarmy)

MCS(t=2) — O0bs2(V,1y)

MCS(t=3) — Rs, Obs3(FD(pull),)
(t=4) —

MCS(t=4 Ro

In this scenario we find again the attention bias at step 1
and the confirmation bias at step 4. However, rule Rj is
not ignored at step 2 (the observation of the vertical speed
is ignored instead). This corresponds to an overconfidence
from the pilot: he believes at ¢ = 1 to be in overspeed and
he assumes that the pull action will allow him to get out of
this situation. Therefore the pilot does not pay attention to the
new information that is inconsistent with his prediction. At
t = 3, the pilot becomes aware of his mistake and considers
that his action is wrong and that the flight director gives
bad indications. At ¢ = 4 we find an attention bias that
does not allow the pilot to consider a stall situation. Thus
we find a scenario combining overconfidence, attention bias
and confirmation bias which can explain the reasoning of the
pilot and comply with the factors identified by the BEA.

c) Scenario that differs from the BEA analysis: Con-
sider the following scenario produced by our model as a
possible explanation of the behavior of the pilot:

MCS(t = 1) — RQ, Obsl(buﬁ'etl)
MCS(t=2) — Rs

MCS(t=3) — Obsz(FD(pull),)
MCS(t=4) — 0

In this scenario the attention bias is on the vibration and
not on the alarm. Moreover, the pilot ignores rule R2 and
does not connect the stall and the alarm. This ignorance does
not correspond to a confirmation bias because no information
at t = 1 confirms or contradicts the pilot’s belief. At first
sight, the ignorance of such a rule can seem too irrealistic.
However, this possibility is given by the BEA and could be
explained by “the low exposure [...] in continuous training
(theoretical and practical) to the phenomenon of stalling, to
the stall alarm” (p.196). If the pilot does not associate in his
mind the stall to the alarm, then we can build a scenario
where this ignorance, followed by a commitment bias, does
not lead to a confirmation bias. At ¢ = 4, the pilot finds
himself in a situation where he has no idea what to do. This
puzzlement can be seen in the transcription of the cockpit
voice recorder: “we have lost control of the plane, we don’t
understand a thing, we tried everything” (Appendix 1 p.28).

Another scenario in the same family consists in ignoring
{Rg, Obsy(acceleration;)} at step 1. The pilot does not
know the procedure to follow in case of a stall (maybe
because of a lack of training).

d) Scenarios to discard: Our model also produces some
absurd scenarios, such as the one below:

MCS(tZI) — Ry, Ry, R3
MCS(t=2) — Rs
MCS(t=3) — Ry
MCS(t=4) — 0

In this scenario, the pilot ignores at step 1 all the rules
allowing him to identify a stall or an overspeed. While this is
a possible MCS, it seems impossible for a professional pilot:
it would mean that the first action was selected randomly.



VI. RELATED WORK

The computer science literature shows only few works
on the representation of biases in a decision making pro-
cess. Most of these works focus on predictive models in a
predefined situation such as vaccination campaigns (Voison
[15]) or strategic operations (military, diplomatic) (Kulick
[16]). The finite state automaton model of Voison and the
blackbox model of Kulick do not offer the possibility of
adapting to decision-making situations outside their design
and do not allow to implement other biases. In contrast, we
aim at a diagnosis model that can explain a behavior in
various situations with several biases. On the other hand,
the BDI based model of Arnaud and al. [17] allows the
implementation of biases with a function that increases or
decreases the probability of a belief for each bias. As we
stated previously, 151 biases are present in the literature,
which means 151 possible functions without having the
guaranty that they do not overlap, as there is no consensus
to date on the taxonomy of biases [18]. This is why we
differ, by basing our model on a diagnosis approach in order
to catch as many biases as possible and not to limit the
explanation of a reasoning to a single bias. Finally we can
mention Dutilh Novaes and al. [19] who are the closest to
our work by using an operator of minimal belief revision to
predict the behavior of the agent in tasks related to a belief
bias. Although our model is based on the same revision
operator, we propose an explanatory model for identifying
several biases.

VII. CONCLUSION & PERSPECTIVES

Our model uses belief revision-based diagnosis and cogni-
tive biases to identify a set of rational mental state scenarios
that explain an irrational behavior. It proposes, for each sce-
nario, a trace of events and belief revisions that correspond to
the different biases. This model has the advantage of relying
on a strong theoretical grounding of over 35 years of research
[20], facilitating the addition of future extensions.

One limitation of our model is the difficulty to differentiate
closely related biases or to decide which bias is involved
among several possibilities. We are working on the identifi-
cation of logical patterns common to several biases (e.g the
preference of old beliefs to new information that we find in
confirmation bias and anchor bias). It will allow us to present
to the user a synthetic vision of the different possible biases.

We also intend to extend our set of bias patterns and to
implement a systematic search algorithm that will provide
a clear presentation of the selected biases. Indeed, on the
Rio-Paris example, the analysis of each belief revision track
is done manually, based on the patterns that correspond to
the BEA analysis. Our goal is to create a taxonomy of
biases, inspired by the taxonomies proposed in the literature
in human sciences, that will draw a partitioning of MCSes.

Moreover we would like to validate the outputs of our
model with the domain experts, in particular, those that
differs of the BEA analysis.

Finally, we would like to extend our model to include emo-
tions. Several works (see for example [10] on the attention
bias), report the importance of emotions in the biases. A pilot
with a traumatic experience of running out of fuel will try to
avoid at any cost this kind of situation (and thus to take other
risks). We wish to rely on affective models using the BDI
logic, like in [21], [22]. Our model provides a solid basis for
taking into account a wide range of irrationality factors in
decision-making situations while addressing the limitations
of current cognitive bias models.
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