
Network Maintenance Planning Via Multi-Agent Reinforcement
Learning*

Jonathan Thomas1, Marco Pérez Hernández2, Ajith Kumar Parlikad2 and Robert Piechocki1

Abstract— Within this work, the challenge of developing
maintenance planning solutions for networked assets is con-
sidered. This is challenging due to the very nature of these
systems which are often heterogeneous, distributed and have
complex co-dependencies between the constituent components
for effective operation. We develop a Multi-Agent Reinforce-
ment Learning (MARL) solution for this domain and apply
it to a simulated Radio Access Network (RAN) comprising of
nine Base Stations (BS). Through empirical evaluation we show
that our model outperforms fixed corrective and preventive
maintenance policies in terms of network availability whilst
generally utilizing less than or equal amounts of maintenance
resource.

I. INTRODUCTION

The maintenance planning of networked assets is a com-
plex problem. Not only because of the variety and quantity of
components each asset might have, but also because of the
inter-dependencies between the assets within the network.
The components of the assets have their own expected ser-
vice life and degradation profiles that in turn influence asset’s
service life and the overall network operation. Likewise, the
maintenance or repair jobs, at component level, have different
effects at the asset and the wider network levels.

These factors become relevant when designing a network-
wide maintenance policy that considers not only the main-
tenance operations costs (e.g. labour and parts) but also the
costs of unplanned downtime within the network.

This is a complex problem with growing interest among
the research community. As reported in Section III, some of
the approaches proposed to tackle this challenge, focus more
on the component or system-level complexities. Moreover,
modelling frameworks such as Markov Decision Processes
(MDP) have proven effective to capture some of the problem
dynamics and relationships, however, when larger numbers
of elements are considered the problem becomes even harder
to address. The resulting state and action spaces of the MDP
grow exponentially and the associated transition probabilities
are difficult to determine, for even modest numbers of
elements numerical methods become infeasible.

Alternatively, Reinforcement Learning (RL) approaches
have been widely used in different contexts where problems
can be defined as MDPs. RL provides an effective framework
to determine the sequence of actions that maximises a given

*This work was supported by the Next Generation Convergent Digital In-
frastructure Project funded by Engineering and Physical Sciences Research
Council (EPSRC) and British Telecom (BT) under grant EP/R004935/1.

1Communications, Systems and Network Group, University of Bristol,
[jt17591,r.j.piechocki]@bristol.ac.uk

2Institute for Manufacturing, University of Cambridge, [mep53,
aknp2]@cam.ac.uk

reward function. In addition, when the system is composed of
multiple entities, each one with their own state spaces and the
ability to perform individual actions that influence the overall
system, then the problem can be further broken down into
multiple RL agents. The Multi-Agent RL (MARL) frame-
work becomes an option to solve the most suitable network-
wide maintenance policy by learning from the distributed
actions taken by the agents of the system.

This paper addresses the problem of finding a cost-
effective maintenance policy for a network of multi-
component assets using MARL. Particularly, the contribu-
tions of the paper are threefold: 1) Definition of the net-
worked asset maintenance problem as a Multi-Agent problem
2) An approach to solve this problem based on the Multi-
Actor Critic (MAAC) framework and 3) Demonstration of
the proposed approach in a simulated environment within
the context of Radio Access Networks (RAN).

The remaining of this paper is organised as follows. First,
Sections II and III, present the relevant works in MARL and
group asset maintenance planning, respectively. Next, Sec-
tion IV introduces the formulation of the group maintenance
problem as a stochastic game. The Section V describes the
architectural aspects of the proposed approach. The results
and discussion of the evaluation, based on a simulated case
study, are presented in Section VI. Conclusions and future
work are presented in Section VII.

II. SINGLE AND MULTI AGENT REINFORCEMENT
LEARNING

Deep RL has seen considerable success in a variety of
domains where most of the high profile successes have
been within game-play domains [1], [2]. Most of the major
successes of RL have been within the single-agent or two-
player games. Some problems, don’t naturally fit into this
paradigm and are more appropriately modelled as larger
MARL problems where agents behave cooperatively, com-
petitively or both in a shared environment [3]. Due to the
increase in the number of agents, the complexity of the
interactions with the environment are exacerbated and in
recent years considerable research has been undertaken with
the intention of addressing the issues this introduces. Some
of the major challenges include environment non-stationarity
[4] and credit reward assignment [5]. Some examples of
work undertaken include Multi-Agent Deep Deterministic
Policy Gradients (MADDPG) [3], where a centralised critic
is utilised to reduce non-stationarity, Counterfactual Multi-
Agent Policy Gradients (COMA) for the multi-agent credit
assignment problem and DIAL [6] introduces a method to

facilitate communication. A comprehensive overview of RL
and MARL can be found in [5] and [7] respectively.

III. ASSET MAINTENANCE PLANNING

This sections reviews relevant efforts addressing the multi-
asset maintenance planning and also applications of RL for
asset management.

A. Maintenance of Network of Assets

Markov decision processes have been widely used to
model asset deterioration and to develop maintenance plans.
The problem of finding the optimum maintenance policy for
a component is formulated as an MDP in [8]. The policy for
determining when the component should be maintained, is
obtained via unichain policy iteration algorithms. Authors of
[9] use partially-observable MDPs as basis of a methodology
for assessing the benefits of condition monitoring systems.

While these works address mainly single asset scenarios,
MDPs have also supported models of multi-asset systems.
A model to optimize the predictive maintenance policy for a
multi-system multi-component network of assets is presented
in [10]. The policy is obtained using a genetic algorithm
that enable exploitation of the benefits of grouping system
interventions and overlapping downtime in a two-bridge
network. A MDP is also used to formulate a joint Condition-
Based Component Replacement and Inventory Control Pol-
icy (CBRICP) in [11]. Dynamic programming is used to
solve the CBRICP, determining the optimal maintenance and
inventory actions for k-out-n:F systems.

B. Reinforcement Learning for AM

Several works have addressed the use of single agent RL
for asset maintenance planning. A RL model for determin-
ing the optimal timing for maintenance while maintaining
reliability of the system is presented in [12]. The model
was shown to effectively optimise maintenance scheduling
considering expected reward and mean time between failures
(MTBF). In [13], a Monte Carlo RL (MCRL) approach is
used to find the optimal preventive maintenance strategy for
multiple components of a group of assets, with application
to a fleet of military trucks. The authors showed that MCRL
enabled learning of the transition probabilities of the un-
derlying MDP while optimising at asset system-level rather
than locally. A method combining Q-learning algorithm and
an ensemble of Artificial Neural Networks (ANN) enables
learning of the optimal operation and maintenance policy for
a power grid [14]. Despite the reported high computational
time required, a distinct feature of this method is the ability
to potentially consider large systems with high dimensional
state-action spaces. The benefits of neural networks with
RL are also exploited in [15], where the Double Deep-Q
Network (DDQN) framework is applied to determine the
preventive maintenance policies that reduce the cost in a
serial production line system.

The MARL framework has been less exploited for address-
ing asset maintenance planning problems. A small system of

two machines and one buffer is considered in [16], where au-
thors propose a cost-sharing-RL algorithm that outperforms
single-agent RL when comparing the system average costs.
Likewise, authors of [17] show the benefits of a multi-agent
configuration where the RL framework enables reduction
of downtime and maintenance costs comparing to other
available strategies in a parallel production line system. Deep
Centralised Multi-Agent Actor Critic (DCMAC) is proposed
for obtaining the maintenance policy of multi-component
systems, with application to a truss bridge [18]. Authors
of [19] combine Genetic Algorithms (GA) and MARL to
maximise average revenue rate of a manufacturing system
with intermediate buffers. This revenue considers the cost of
corrective and preventive maintenance of the entire system as
part of the agent’s reward function. The GA assumes global
visibility of the system and periodically signals agents to
adjust their actions. While there has been efforts to address
cases of larger multi-component systems [18] and small scale
multi-asset systems [16], [17] separately, the use of RL
frameworks to address the complexity of maintenance policy
computation in networks of multi-assets multi-component
systems is still to be explored.

IV. PROBLEM FORMULATION

The system of interest is a network of m assets (A) each
one with n components (c) that follow cycles of deterioration
and maintenance. The key elements of the problem are
further described below.

A. Component Level

Each component is modelled as a MDP as illus-
trated in Fig. 1. The continuous state space Sc =
{s0, s1, ..., sk, sk+1, ..., sb−1, sb} represents the states of the
component until breakdown (sb). Where, each state is col-
lated from observation of the component’s sensors which
are inherently noisy. The deterioration rate λk determines
the change in condition from state sk to state sk+1, where
the probability of the component transitioning directly to sb
increases as the component matures.

At every state, three distinct actions are considered: Do
nothing (a0), Component Replacement (a1) and Component
Repair (a2). a1 results in the state of the component being
returned to s0. a2 generally restores state of the component,
however as the component is restored multiple times, the
effect is reduced. This is shown in Fig. 1a.

B. System Level

Given each component’s MDP, the natural way to model
the decision problem for the entire system (network) is a
stochastic game [20]. This can be defined by the tuple,
Γ = (S,U , r, p, Z,O, n, γ). Where S, denotes the state
space from which an agent observes ZN according to an
observation function O. For the entire system the state
S depends on the states of the assets A, whose state is
the aggregation of their components states. U , denotes the
joint action to which each agent contributes an action un.
Similarly to the states, the joint action for the system can

c(1)

1

s0 sk

λsk

a0

sk+1

λsk+1

a0

sb−1

λsb−1

a0

sb

λsb

a0

a1

(a) Replacement action a1 taken at sb

c(2)

1

s0 sk

λsk

a0

sk+1

λsk+1

a0

sb−1

λsb−1

a0

sb

λsb

u0

a2ε21

(b) Component Repair action a2 with effectiveness ε

Fig. 1: MDP showing two actions taken for components
c
(1)
1 and c(2)1 of assets 1 and 2 respectively. State transitions

are paired with the actions a that lead to the next state. λ
represents the deterioration rate. sb represents a component
breakdown. “Do nothing” actions are dashed.

be regarded as the set of actions taken for each asset at
a given time. An asset possible actions are defined by the
cartesian product of the set of for their components e.g. “Do
nothing“ for a0 and “Component repair“ for a2. The reward
function, r, is defined as r : S × U → R. The transition
probability, p, defines the transitions between states and can
be represented as p : S × U → Ω(S), where the output is a
probability over the states. Finally, to enable convergence of
the cumulative rewards, a discount factor is introduced such
as γ ∈ [0, 1). Multiple definitions of r are possible capturing
different aspects of interest of the network of assets, such
as the topology or the dynamic workloads for each asset. As
illustrated in Fig. 2, the goal is to find asset level maintenance
policy (π∗) to determine the actions to take such that the
expected cumulative discounted reward (r) is maximised.

V. MARL FOR ASSET MAINTENANCE

This section presents the approach for solving the problem
defined in Section IV based on the MARL framework. The
solution approach comprises the definition of the joint reward
function r and the strategies that agents use to find policies
that maximise the cumulative discounted reward which they
experience.

A. Reward Definition

r = −α
∑
i∈n

Ri − β
∑
i∈n

Ti (1)

The intention is to find a network maintenance strategy
that maximises network profitability. The reward function is
formulated as shown in Equation 1, where this was derived
from conversations with domain experts. Ri represents the
cost of maintenance operation scheduled by asset i and Ti is

A(
1)

A(
2)

A(
3)

A(
4)

A(
...)

A(
n)

c(1) 1
...

c(1) m

c(2) 1
... c

(2)

m

c(3) 1
... c

(3)

m

c(4) 1
...

c(4) m
c(...)1
... c

(...)

m

c(n) 1
... c

(n)

m

r1
r2

rt
...

u(1)

u(2)

u(3)

u(4)

u(...)

u(n)

U1

U2

Ut
π∗

...

Fig. 2: Maintenance actions u are taken in a network of n
assets A, each one with m components c. For a given time
t, a joint action u(k) is taken for each asset, contributing to
a network action Ut. The goal is to find the policy π that
maximises the cumulative joint reward r.

a binary variable referring to the assets operational status (1
if the asset is unavailable and 0 otherwise). This formulation
captures the trade-off between maintenance and network
availability which is used as a proxy for profitability. The
importance of these diametrically opposing objectives can
be controlled through appropriate selection of α and β.

B. Learning Strategies

The target task could be approached in a centralized
manner, where a single agent is responsible for learning and
executing a maintenance policy for all assets. As discussed
by [18], single agent RL can struggle with large discrete
action spaces. In this case, the action space is likely to
be very large due to significant numbers of assets and
the action space scaling exponentially. A more practical
approach and one that is considered in this work is a
decentralized solution where techniques from MARL are
applied with the intention of improving training efficiency
and learning cooperative policies. Agents are assigned to
assets and are responsible for their associated maintenance
decisions. By decentralizing, there are also other benefits
including a reduction in communication overheads, system
robustness (as a centralized controller presents a single point
of failure), and the framework supports the introduction of
new assets [21].

The stochastic game (Section IV-B) defines the agents
observations as being comprised of raw sensor values from
which agents must learn a policy π : Z → u with the
intention of maximizing the cumulative reward which the
collective of agents experience. Due to their versatility,
agents policies are parametrized by expressive Deep Neural

Networks (DNN), where LSTMs are utilized due to their
capacity to extract temporal correlations.

Deep MARL approaches can take considerable time to
train and hence training within simulation is considered to
be the most viable path to deployment. A recent example of
this strategy is the work undertaken by [22] where they train
a policy within a simulator to control a stratospheric balloon
for telecommunications applications and then successfully
deploy it in the real-world. The work introduced in this
paper utilises a custom simulator, but more generally a
Digital Twin [23] is a viable option for algorithm training
where asset models could be refined through integration of
real-world data. The use of a simulated environment also
provides opportunity to investigate system response in rare
circumstances, which is beneficial from a system resilience
perspective.

The utilisation of a simulation to train MARL also brings
algorithmic benefits like Centralised Training Decentralised
Execution (CDTE) [6]. This common MARL paradigm fa-
cilitates the introduction of extra information within training
to improve training efficiency as long as this information is
not required when the model is deployed [3]. A number of
approaches exist including Multi-Agent Deep Deterministic
Policy Gradients (MADDPG) [3] and Q-MIX [24], for
example.

MADDPG considers a modification to Actor-Critic (AC)
[5] for the MARL domain. Within single-agent RL AC
(or Independent AC in [3]) the Actor is responsible for
selection of actions and is conditioned on the observation of
an individual agent and the critic provides feedback to the
agent about the return associated with its selected action and
is conditioned on the action and state of the agent. When
naively applied to a MARL problem, this can encounter
issues with non-stationarity as any estimate of the value
which the critic produces is implicitly dependent on the
state and policies of other agents. In MADDPG, the critic
is centralized and is conditioned on the observations of
all agents. By doing so, the problems aforementioned can
be reduced where Lowe et al suggest that it improves the
consistency of gradient signals [3]. Notably, when it comes
to deployment the centralized critic is not required as it is
not necessary for inference.

C. MAAC

The MADDPG approach is adapted for the preventive
maintenance task and implemented into Advantage Actor-
Critic (A2C) due to DDPG not supporting continuous action
spaces. A2C was selected mostly because of its ease of
implementation. Algorithm 1 presents the Multi-Agent Actor
Critic (MAAC) base workflow used in this paper. The algo-
rithm calculates the Advantage A, Policy gradient ∇θJ(θ)
and Value function gradient ∇φJ(φ) with the functions
detailed in Equations 3, 4 and 5 respectively.

D. convMAAC

h(k)
n = σ

Wk
∑

v∈N (n)∪{n}

hv√
|N (n)||N (v)|

 (2)

In situations where there is a high number of agents, as
there will be in any realistic network maintenance operation
the utilisation of a centralized critic may invoke significant
computational expense due to it being parameterised by a
fully connected network. To aid in model scalability, the
problem is cast as a Graph Regression task. Thus Graph
Convolutional Networks (GCN) [25] are used to learn useful
node embeddings which capture topological information and
then a mean operation on the set of node embeddings is
used to reduce the graph to a fixed length vector. Where the
associated graph G = {V,E} is defined by the connections
between elements in the network. Equation 2 defines the
operation of the GCN, where hku refers to the encoding
of agent n after k convolutions and is initialised to Zu
at k = 0, Wk is a trainable weight matrix, and N{n}
represents the set of neighbours of agent n. This results
in a model with significantly less parameters than the fully
connected equivalent, MAAC. This modification is referred
to as convolutional MAAC (convMAAC) hence forth.

A(Z,U) = r + γV (Z ′)− V (Z) (3)

∇θJ(θ) = Eπθ
[∇θ log πθ(Z, u)A(Z,U)] (4)

∇φJ(φ) = EVφ
[∇θr + γV (Z ′)− V (Z)] (5)

Algorithm 1: Multi-Agent Actor-Critic algorithm
Input: Γ
Output: πθ, Vφ
initialise πθ and Vφ ;
for episodes do

t = 0;
Initialise episode buffer D;
while not terminal do

Get states Zt from env;
Sample ut ∼ π(·|Zi,t) ∀i ∈ N ;
Receive r, and new observations Zt+1;
Store (Zt, Zt+1, π(ui|Zi,t), r) in D;
t = t + 1;

end
For all samples in D;
Compute Advantage using Equation 3;
Compute Policy Gradient using Equation 4;
Compute Value Gradient using Equation 5;
θ ← θ − αθ∇θJπ(θ);
φ← θ − αφ∇φJφ(φ);

end

TABLE I: Experiment parameters, where the numbers associ-
ated with actions ux are their costs and the components RUL
are initialised randomly according to a uniform distribution.
Note that the the actions ux which apply to both components
are proportionally cheaper, this assumption is based on an
operations engineer travel time being reduced relative to the
equivalent actions concurrently.

Parameter Value
Number of assets 9

Max maintenance operations per timestep 2
Episodes 3000

Episode length 100
u0, Do nothing 0
u1, Replace c1 0.3
u2, Repair c2 0.1
u3, Replace c2 0.3

u4, Replace c1 and c2 0.55
u5, Repair c1 0.1

u6, Repair c1 and c2 0.175
Component RUL U(95, 105)

α 1
β 1

VI. SIMULATED CASE STUDY: RADIO ACCESS
NETWORKS

The proposed approach is applied to the maintenance
of the telecommunications infrastructure deployed within
a region of interest. Particularly, the assets of interest are
RAN base stations (BS) and the components are the network
equipment units used in each BS. This definition is specific
to this use case, however the granularity to which assets and
components are defined might change from case to case.

As network elements can be connected according to dif-
ferent topologies, this case study considers two scenarios:
complete network and star topologies. The first scenario
involves a number N of BS directly connected with each
other. This version of the problem results in the unavailability
of a BS only impacting the users within its coverage range.
In the second scenario, a central router interconnects the
N − 1 BS. Hence, the failure of the central router will be
significantly detrimental to the function of the network.

A. Implementation

The algorithms discussed in Section V are implemented
in PyTorch. The agents utilise parameter sharing [26] and
comprise of a separate network for the actor and the critic.
Both algorithms utilise the same actor architecture consisting
of a 2-layer Multilayer Perceptron (MLP) followed by a
2-layer LSTM. The critic follows broadly the same struc-
ture but have slight differences to allow for architectural
differences. MAAC’s critic comprises of approximately 1.2
million parameters and utilises a 2-layer MLP followed by a
2-layer LSTM which takes as input the concatenation of all
agents observations and outputs the state value. convMAAC’s
critic comprises of approximately 610 thousand parameters
and utilises a 2-layer MLP which encodes the observation
of all agents separately, and then all encodings are passed

into a 2-layer GCN, the output is then averaged node-wise
and passed into a 2-layer LSTM which then outputs the state
value. To optimise the model we utilise a grid-search across
parameters, where the hyperparameters utilised within the
experiments are depicted in Table III. Training is performed
on a Nvidia RTX 2080Ti and takes 30 minutes for a full run.
WandB [27] is used for experimental logging and the GCN
is implemented using DGL [28].

B. Experiments

The parameters used in the experiments are presented in
Table I. These are set based on discussions with partners
of the NG-CDI project1 and try to reflect dynamics of real
scenarios. It is assumed that components of each asset are in-
dependent of each other and maintenance actions take 1 time
step to be completed. The actions that involve joint repair of
an asset’s associated components are the most cost effective
solution reflecting the reduction in travel time for engineers.
The episodes consists of 100 time-steps which is equivalent
to approximately 5 full life-cycles of a component and the
agents are trained for 3000 episodes. At each time-step
the agents observe five concurrent sensor readings and can
request maintenance for the next maintenance window. This
resource is constrained to a maximum of two maintenance
jobs at a time step for the entire network. Reflecting the
assumption that there will be some finite number of available
operations engineers at any one time step. If the number of
maintenance requests exceed the number of resources, the
assignment of resource to the requested jobs is decided ran-
domly among the requested jobs. All network elements are
assumed to be deployed simultaneously in factory condition
where there is some variance in longevity.

The derived policies are compared to two maintenance
baselines including a corrective maintenance policy and a
preventive maintenance policy. The corrective policy requests
for component replacement upon failure. The preventive
policy, takes the form of a distributed oracle which can
observe the Remaining Useful life (RUL) of the asset’s
component and requests maintenance resource when the
RUL drops below 20. To demonstrate the impact of critic
centralisation Independent Actor-Critic (IAC) [29] agent is
implemented too, where the architecture follows a similar
structure to convMAAC and MAAC.

C. Results and Discussion

Comparisons of the algorithms performances for the two
topologies analysed can be found in Fig. 3. Fig. 3a shows
the cumulative reward obtained as the agents learn their
policies. We find that the convMAAC and MAAC are both
effective at converging towards a high cumulative reward,
with convMAAC learning slightly quicker. IAC appears to
encounter difficulties in learning an effective policy, where
this policy was found to be approximately uniformly ran-
dom regardless of the topology. The differences in MARL
learning algorithms performance highlight the importance of

1https://www.ng-cdi.org/

TABLE II: Final Algorithm performances, where the first number is the mean and the second number the standard deviation.

Model Complete Network Star Topology
Network Availability Maintenance frequency Network Availability Maintenance frequency

MAAC 0.9972, 0.0035 0.8981,0.1356 0.998, 0.0019 0.8864, 0.07219
convMAAC 0.9997, 0.0005 1.1001, 0.1525 0.9997, 0.0012 1.092, 0.1678

IAC 0.9803, 0.0088 7.4490, 1.4560 0.97, 0.008 8.4631, 0.0699
Corrective 0.8750, 0.0084 1.1118, 0.0744 0.7911, 0.0181 1.111, 0.0769
Preventive 0.9638, 0.0100 1.0863, 0.1169 0.9384, 0.0331 1.0738, 0.1039

(a) (b)

Fig. 3: Key MARL parameters throughout training. (a) Cumulative reward and (b) Maintenance request per time step.

Fig. 4: Example degradation of an asset maintained by
MARL agent. C1 and C2 represent components and u4 and
u6 represent actions 4 and 6 respectively. Where u4 is a
joint replacement and u6 is a joint repair of both components
simultaneously.

the centralised critic in training, as without it, it is difficult
to estimate the true value within the environment as it is
partially observable. There are no significant performance
differences among the two analysed topologies, although the
learning convergence is slightly faster in the case of the
complete topology. Where, this is likely due to the marginal
increase in complexity introduced by the more complex star
topology. The behaviour is similar in terms of the number
of maintenance requests per time-step (Fig. 3b). Additional

TABLE III: Model Hyperparameters

Model Actor LR Critic LR Gradient Clipping
MAAC 0.0001 0.0005 1.0

convMAAC 0.0001 0.0005 1.0
IAC 0.00005 0.0005 0.5

results for network availability and maintenance frequency
are presented in Table II. This shows that MAAC and
convMAAC outperform corrective and preventive baselines.

The policies derived by the convMAAC and MAAC in
general learn to alternate between full system repair and
replacement operations and infer this directly from noisy
sensor data. This suggests that, given the experiment pa-
rameters, the agents understand that performing repair is
a preferable operation to replacement and that coordinating
jobs at a single site is cost-effective. An annotated example
trajectories for individual assets and the actions taken by the
corresponding agent can be found in Fig. 4. It shows that
the agents are risk adverse and tend to perform preventive
maintenance of the asset when the components have a RUL
of approximately 40. Where this is the point in an assets
degradation where the probability of failure for an asset starts
to increase more rapidly. This is seemingly a pragmatic and
reasonable decision if the possibility of contention among
agents for the limited maintenance resource available is
considered.

Perhaps this could be driven further down by facilitating
communication between agents which may enable them to

have a better understanding of the full system state but
this comes with associated overheads and privacy concerns.
Through this algorithmic implementation no potentially sen-
sitive information has to traverse the network and it achieves
remarkable performance considering.

VII. CONCLUSIONS AND FUTURE WORK

This paper provided an analysis of how to apply MARL to
a network maintenance problem considering the practicalities
of training and deployment. The proposed MARL model was
applied to a representative Radio Access Network mainte-
nance task where the top performing algorithm, convMAAC,
achieved a network availability increase of 3.49% and 6.13%
in the complete and star topologies over a preventive mainte-
nance baseline whilst maintaining similar levels of network
maintenance.

In future work we plan to expand the scope and realism of
our experimental setting whilst exploring methods to improve
algorithmic performance. From an application perspective
avenues include evaluation in real-world deployments, con-
sidering variation in numbers and type of assets over the
network lifetime, and integration of a supervisory agent to
select between maintenance jobs in place of the random
selection when demand exceeds supply and variation in both
the amount of available maintenance resource and cost of the
supply. From an algorithmic prospective there is opportunity
to consider the multi-agent credit assignment problem and
the potential of communications to aid in more effective and
conscientious repair policies.

ACKNOWLEDGMENT

The authors would like to thank colleagues from BT for
the fruitful discussions.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, vol. abs/1312.5602, 2013.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature, vol.
550, no. 7676, pp. 354–359, oct 2017.

[3] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA:
Curran Associates Inc., 2017, p. 6382–6393.

[4] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht,
“Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement
Learning,” Tech. Rep., 2019.

[5] R. Sutton and A. Barto, Reinforcement Learning - An Introduction,
2nd ed. Cambridge: MIT Press, 2018.

[6] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in Pro-
ceedings of the 30th International Conference on Neural Information
Processing Systems, ser. NIPS’16. Red Hook, NY, USA: Curran
Associates Inc., 2016, p. 2145–2153.

[7] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Autonomous Agents and
Multi-Agent Systems, vol. 33, no. 6, p. 750–797, Oct 2019.

[8] G. K. Chan and S. Asgarpoor, “Optimum maintenance policy with
Markov processes,” Electric Power Systems Research, vol. 76, no. 6-
7, pp. 452–456, 2006.

[9] R. Srinivasan and A. K. Parlikad, “Value of condition monitoring
in infrastructure maintenance,” Computers & Industrial Engineering,
vol. 66, no. 2, pp. 233–241, 2013.

[10] Z. Liang and A. K. Parlikad, “Predictive group maintenance for
multi-system multi-component networks,” Reliability Engineering and
System Safety, vol. 195, no. October 2019, p. 106704, 2020.

[11] J. Wang and X. Zhu, “Joint optimization of condition-based mainte-
nance and inventory control for a k-out-of-n:F system of multi-state
degrading components,” European Journal of Operational Research,
vol. 290, no. 2, pp. 514–529, 2021.

[12] M. Knowles, D. Baglee, and S. Wermter, “Reinforcement learning for
scheduling of maintenance,” Res. and Dev. in Intelligent Syst. XXVII:
Incorporating Applications and Innovations in Intel. Sys. XVIII - AI
2010, 30th SGAI Int. Conf. on Innovative Techniques and Applications
of Artificial Intel., pp. 409–422, 2011.

[13] S. R. Barde, S. Yacout, and H. Shin, “Optimal preventive maintenance
policy based on reinforcement learning of a fleet of military trucks,”
Journal of Intelligent Manufacturing, vol. 30, no. 1, pp. 147–161,
2019.

[14] R. Rocchetta, L. Bellani, M. Compare, E. Zio, and E. Patelli, “A rein-
forcement learning framework for optimal operation and maintenance
of power grids,” Applied energy, vol. 241, pp. 291–301, 2019.

[15] J. Huang, Q. Chang, and J. Arinez, “Deep reinforcement learning
based preventive maintenance policy for serial production lines,”
Expert Systems with Applications, vol. 160, p. 113701, 2020.

[16] X. Wang, H. Wang, and C. Qi, “Multi-agent reinforcement learning
based maintenance policy for a resource constrained flow line system,”
Journal of Intelligent Manufacturing, vol. 27, no. 2, pp. 325–333,
2016.

[17] A. Kuhnle, J. Jakubik, and G. Lanza, “Reinforcement learning
for opportunistic maintenance optimization,” Production Engineering,
vol. 13, no. 1, pp. 33–41, 2019.

[18] C. P. Andriotis and K. G. Papakonstantinou, “Managing engineering
systems with large state and action spaces through deep reinforcement
learning,” Reliability Engineering and System Safety, vol. 191, no.
April, p. 106483, 2019.

[19] B. Li and Y. Zhou, “Multi-component Maintenance Optimization: An
Approach combining Genetic Algorithm and Multiagent Reinforce-
ment Learning,” 2020 Global Reliability and Prognostics and Health
Management, PHM-Shanghai 2020, 2020.

[20] L. S. Shapley, “Stochastic Games,” in Proceedings of the national
academy of sciences 39.10, vol. 39, 1953, pp. 1–7.

[21] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” Innovations in multi-agent systems and
applications-1, pp. 183–221, 2010.

[22] M. G. Bellemare, S. Candido, P. S. Castro, J. Gong, M. C. Machado,
S. Moitra, S. S. Ponda, and Z. Wang, “Autonomous navigation of
stratospheric balloons using reinforcement learning,” Nature, vol. 588,
no. 7836, pp. 77–82, 2020.

[23] M. Grieves, Virtually Perfect: Driving Innovative and Lean Products
through Product Lifecycle Management, 11 2011.

[24] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster,
and S. Whiteson, “QMIX: Monotonic value function factorisation for
deep multi-agent reinforcement learning,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
PMLR, 10–15 Jul 2018, pp. 4295–4304.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

[26] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in In Proceedings of the Tenth International Conference
on Machine Learning. Morgan Kaufmann, 1993, pp. 330–337.

[27] L. Biewald, “Experiment tracking with weights and biases,”
2020, software available from wandb.com. [Online]. Available:
https://www.wandb.com/

[28] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[29] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual Multi-Agent Policy Gradients,” 32nd AAAI Confer-
ence on Artificial Intelligence, AAAI 2018, pp. 2974–2982, may 2017.

