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Abstract— Brain-computer interface (BCI) is used for com-
munication between humans and devices by recognizing hu-
mans’ status and intention. Communication between humans
and a drone using electroencephalogram (EEG) signals is one
of the most challenging issues in the BCI domain. In particular,
the control of drone swarms (the direction and formation)
has more advantages compared to the control of a drone.
The visual imagery (VI) paradigm is that subjects visually
imagine specific objects or scenes. Reduction of the variability
among subjects’ EEG signals is essential for practical BCI-
based systems. In this study, we proposed the subepoch-wise
feature encoder (SEFE) to improve the performances in the
subject-independent tasks by using the VI dataset. This study is
the first attempt to demonstrate the possibility of generalization
among subjects in the VI-based BCI. We used the leave-one-
subject-out cross-validation for evaluating the performances.
We obtained higher performances when including our proposed
module than excluding our proposed module. The DeepConvNet
with SEFE showed the highest performance of 0.72 among
six different decoding models. Hence, we demonstrated the
feasibility of decoding the VI dataset in the subject-independent
task with robust performances by using our proposed module.

Index Terms— Brain-computer interface (BCI), Electroen-
cephalogram (EEG), Subject-independent task, Visual imagery
(VI), Deep convolutional neural network.

I. INTRODUCTION
Brain-computer interface (BCI) has emerged as a technol-

ogy with great prospects used for communication between
humans and devices by recognizing humans’ status and
intention. The non-invasive BCI is one of the BCI techniques
that has many advantages, such as high stability and low cost
compared to the invasive BCI [1]–[4]. Recently, non-invasive
BCI systems have been used for controlling external devices
[5]–[7] or early detecting some diseases [8], [9].

One of the most attractive issues is communicating with a
drone using the electroencephalogram (EEG) signals with
robust performances because the EEG signals can reflect
the humans’ intention [10]–[15]. Yu et al. [11] presented
a development of a practical implementation of a BCI
by utilizing low-cost technologies and asynchronous signal
processing techniques for EEG signal acquisition and pro-
cessing to navigate a quadcopter. Especially, the control of
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drone swarms has been developed by increasing the level
of artificial intelligence techniques. The control of drone
swarms includes the direction and formation. Karavas et
al. [13] presented the preliminary results of a hybrid brain-
machine interface that combined information from the brain
and an external device They instructed the subjects to spread-
out and fall-in drone swarms consisting of three drones.
Koizumi et al. [16] examined EEG source activity during
the visual motion imagery via comparison with the visual
motion perception. They instructed the subjects to imagine
the movement of a drone in three planes (up/down, left/right,
and forward/backward).

EEG-based BCI systems have been developed with various
kinds of paradigms which are approximately sorted into the
exogenous and endogenous paradigms. Among them, the
visual imagery (VI), one of the endogenous BCI paradigms,
lets users imagine more intuitively. VI is a paradigm in
which the users visually imagine specific objects or scenes.
Hence, compared to other BCI paradigms, VI is an important
paradigm for the formation control of specific objects. Since
the VI can be performed regardless of the complexity of
the movement, it is not difficult to perform the task, and
thus the data is less contaminated due to low fatigue [17]–
[19]. Kosmyna et al. [20] investigated the possibility to build
the VI. They instructed the subjects to observe a visual cue
of one of two predefined images (a flower or a hammer)
and then imagine the same cue. Kwon et al. [21] developed
a 3-dimensional BCI training platform and applied it to
assist the user in performing more intuitive imagination
in the visual motion imagery experiment. They presented
statistical evidence that the visual motion imagery has a high
correlation between the prefrontal and occipital brain regions.

A few groups have conducted the analyses for the VI-
based EEG data utilizing the convolutional neural network
(CNN). Castro et al. [22] investigated the use of deep learn-
ing techniques that involve inherent and embedded feature
selection and extraction in their hidden layers. Hence, they
did not require an explicit and human-intervened selection of
features. Their results represented that deep learning-based
BCI systems performed significantly better in comparison to
the conventional methods.

Most related studies have needed calibration procedures,
which require approximately 20-30 min. for data acquisition
and model training. Hence, it is essential to reduce the
variability among subjects’ EEG signals for practical BCI-
based systems. The degradation of performance occurs when
we apply the trained EEG decoding model using the dataset
of a specific subject to the dataset of other subjects. In
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other words, the optimal model is different for each subject,
and this problem leads to the reduction of practicality. In
order to increase the practicality of the BCI system, the high
variability among subjects needs to be reduced. Kwon et
al. [23] proposed a subject-independent framework based on
the deep CNN using the motor imagery (MI)-based EEG
database. They demonstrated that the classification accuracy
of their model outperforms that of subject-dependent models.
Jeon et al. [24] proposed a novel framework that learns
class-relevant and subject-invariant feature representations in
an information-theoretic manner, without using adversarial
learning. They evaluated the proposed method over two
public large dataset (e.g., GIST MI [25] and OpenBMI [26]
dataset). However, most of the studies related to the subject-
independent BCI are mainly focused on the MI-based BCI.
In other words, few studies are in progress on the subject-
independent BCI using the VI.

In this study, we acquired EEG signals in the VI experi-
ment which are related to control the drone swarms using
our designed experimental paradigm. The classes used in
the VI experiment consisted of the most essential formation
control in the control of drone swarms (spread-out, fall-in,
and hovering). In addition, we proposed the subepoch-wise
feature encoder (SEFE) to improve the performances in the
subject-independent task. For the VI classification in the
subject-independent tasks, we used the leave-one-subject-out
(LOSO) cross-validation for evaluating the performances. To
the best of our knowledge, this is the first study to general-
ization among subjects in the VI-based BCI for controlling
the formation of drone swarms with robust performances.

The remainder of this article is organized as follows. In
Section II, we explain the materials and methods. Details
of the experimental results are showed in Sections III. In
Section IV, we discuss the analyses. Finally, Section V
concludes this article.

II. MATERIALS AND METHODS

A. Subjects

Ten healthy subjects (S1-S10, ten males, aged 25.5 (±3.1))
participated in our experiment. The experimental environ-
ment and protocols were approved by the Institutional Re-
view Board at Korea University (KUIRB-2020-0318-01).
Before the experiment, all subjects were informed about the
experimental protocols and consent according to the Decla-
ration of Helsinki. In addition, we informed the subjects to
get adequate sleep (over seven hr.) and avoid any alcohol the
day before the experiment.

B. Experimental Environment

We used the signal amplifier (BrainAmp, Brain Products
GmbH, Germany) for measuring EEG signals. We set up the
sampling frequency to 500 Hz and a 60 Hz notch filter was
used to remove DC noise. We acquired EEG signals using
64 EEG channels that were placed on the subjects’ scalps
according to the international 10/20 system. We placed the
reference electrode at FCz and the ground electrode at FPz.
Before acquiring EEG signals, we injected the conductive
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Fig. 1. (a) Information of visual cues provided to the subjects in the visual
perception section and (b) experimental paradigm for acquiring EEG signals
in the VI experiment. The fixation cross of 4 sec. was used for eliminating
any possible afterimages.

gel into the subjects’ scalp to lower the impedance of the
EEG electrodes to 10 kΩ or less.

C. Experimental Paradigm

The VI paradigm was designed to control the formations of
a swarm of drones. Three different classes (spread-out, fall-
in, and hovering) were provided to the subjects in the video
as shown in Fig. 1(a). One trial consists of four components.
A fixation cross is first provided for 2 sec. to measure stable
EEG signals. The video is then presented to the subject for
4 sec. in random order among three tasks. A fixation cross
is then provided for 4 sec. to remove the afterimage of the
video. A blank image is then provided for 4 sec. during
which time the subject performs the VI task. We acquired
50 trials per class, and a total of 150 trials were collected
per subject. See Fig. 1(b) for more details.

D. EEG Preprocessing

We conducted the processing of EEG signals using an
OpenBMI toolbox [26] and a BBCI toolbox [27] in a
MATLAB 2019b. The recorded EEG data were band-pass
filtered between 0.5 to 50 Hz using a fifth-order Butterworth
filter and were downsampled to 250 Hz.

E. Subepoch-wise feature encoder (SEFE)

We used three CNN architectures (the DeepConvNet
[28], ShallowConvNet [28], and EEGNet [29]) as decoding
models. The DeepConvNet consists of four convolutional
blocks followed by a dense classification layer. Each block
consists of convolution, batch norm, an exponential linear
unit (ELU) activation function, max pooling, and dropout
layer. In particular, the first convolution block consists of
consecutive temporal and spatial convolutions, which effec-
tively encode spatial information between EEG channels.
The remaining three blocks are constructed using only
temporal convolution. The ShallowConvNet is constructed
inspired by the filter bank common spatial pattern [30]. Like
the first convolutional block of the DeepConvNet, it uses
consecutive temporal-spatial convolutions, followed by a
square activation function, an average pooling, a logarithmic
activation function, and finally, a dense classification layer.
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Fig. 2. Architectures of three decoding models for EEG classification. (a) DeepConvNet, (b) ShallowConvNet, and (c) EEGNet. The red box indicates
the part we applied our proposed SEFE to the three conventional decoding models.

The last decoding model, the EEGNet, is characterized by
a small number of parameters, using depthwise separable
convolution. The network consists of temporal convolution
and spatial convolution blocks using depth-wise convolution,
followed by depth-wise separable convolution blocks. Each
convolutional block uses a batch norm and dropout, and an
ELU function is used as an activation function.

In this study, we proposed the module that can increase
the performances in three conventional models. Our proposed
module makes the structure of the classifier deepen relatively
by adding the 1×1 convolutional block between the CNN
structure of the three decoding models and a dense classi-
fication layer as shown in Fig. 2. The 1×1 convolutional
block consists of a convolutional layer that has 64 1×1
filters, a rectified linear unit (ReLU) activation function layer,
and a convolutional layer that has 32 1×1 filters. Since
we instructed the subject to imagine a scene for 4 sec.,
we assumed that the data features would contain temporal
information. Hence, we proposed the SEFE to focus on

temporal information when training the model. Here, we
have successfully conducted making the classifier deeper
while increasing the number of parameters which was a small
amount.

F. Performance Evaluation

We used the LOSO cross-validation for the subject-
independent validation. One subject from ten subjects is
selected as a test subject. We divided the dataset of the
remaining subjects by a ratio of eight (training set) to two
(validation set) for each subject. We trained the classifier
using the training set. The performance evaluation was then
performed using the dataset of the test subject as the input
of the classifier.

As described above, the validation set is sampled within
the source subjects. We haven’t selected the model based on
data from other fully held out subjects that belong to neither
the source subjects nor the target subject. Because, unlike
other fields that only use the clean dataset, BCI data is very
noisy as it is collected at the actual application level, and
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*p <0.001

Fig. 3. Results of decoding normalized to the average performance across
all decoding models including the statistical analyses.

it also has inefficiency/illiteracy problems [26], [31]. When
using whole data of a specific subject as a validation set, if
the dataset is contaminated with noise or BCI illiterate data,
the dataset could not play a role as a complete validation set.

III. RESULTS

Fig. 3 indicated an overview of the overall performances
of the six different decoding models (three decoding models
w/o SEFE and three decoding models w/ SEFE). We obtained
higher performances when using the models w/ SEFE than
using the models w/o SEFE. When comparing the perfor-
mances among the models w/ SEFE, the DeepConvNet w/
SEFE showed the highest performance of 0.72, and both
ShallowConvNet w/ SEFE and EEGNet w/ SEFE showed
a performance of 0.69. In addition, when comparing the
performance among the models w/o SEFE, in this case
as well, the DeepConvNet w/o SEFE showed the highest
performance with 0.67, and the ShallowConvNet w/o SEFE
and EEGNet w/o SEFE represented the performance of 0.64
equally.

To verify the classification performance difference be-
tween the models w/o SEFE and w/ SEFE, we applied
the paired t-test with Bonferroni’s correction. Initially, we
validated the normality and homoscedasticity due to a small
number of samples. The normality for each conventional
method applying the Shapiro–Wilk test was satisfied with
a null hypothesis (H0), and the assumption of homoscedas-
ticity based on Levene’s test was also met for each group.
Hence, we conducted a statistical analysis between the
models w/o SEFE and w/ SEFE which satisfied these con-
ditions. The statistically significant differences in perfor-
mance existed between each model w/o SEFE and w/ SEFE
(p<0.001).

Table I, Table II, and Table III showed the overall VI
classification performances in the subject-independent task
using the decoding models w/o SEFE and w/ SEFE among
all subjects. We repeated the validation four times after
adopting a different shuffle order each time. In Table I, the
DeepConvNet w/ SEFE showed higher average accuracy than
the DeepConvNet w/o SEFE, and the numerical difference
was 0.05. In the case of two models, S6 showed the highest
accuracies of 0.72 and 0.77, respectively, and S4 represented

TABLE I
COMPARISON OF PERFORMANCES FOR THE VI CLASSIFICATION IN THE

SUBJECT-INDEPENDENT TASK BETWEEN THE DEEPCONVNET W/O

SEFE AND W/ SEFE

Subject

DeepConvNet w/o SEFE [28] DeepConvNet w/ SEFE

1st

acc.

2nd

acc.

3rd

acc.

4th

acc.
Average

1st

acc.

2st

acc.

3rd

acc.

4th

acc.
Average

S1 0.66 0.65 0.70 0.67 0.67 0.71 0.72 0.72 0.69 0.71

S2 0.70 0.68 0.71 0.70 0.70 0.76 0.73 0.75 0.75 0.75

S3 0.66 0.68 0.66 0.67 0.67 0.75 0.77 0.75 0.75 0.76

S4 0.56 0.58 0.59 0.58 0.58 0.61 0.63 0.59 0.62 0.61

S5 0.71 0.68 0.71 0.70 0.70 0.76 0.74 0.76 0.75 0.75

S6 0.73 0.71 0.74 0.72 0.72 0.78 0.76 0.78 0.75 0.77

S7 0.68 0.69 0.68 0.68 0.68 0.73 0.73 0.73 0.73 0.73

S8 0.69 0.69 0.68 0.69 0.69 0.74 0.72 0.72 0.74 0.73

S9 0.65 0.64 0.67 0.66 0.66 0.69 0.69 0.67 0.70 0.69

S10 0.62 0.65 0.64 0.63 0.64 0.69 0.69 0.70 0.69 0.69

Average 0.67 0.66 0.68 0.67 0.67 0.72 0.72 0.72 0.72 0.72

Std. 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05

TABLE II
COMPARISON OF PERFORMANCES FOR THE VI CLASSIFICATION IN THE

SUBJECT-INDEPENDENT TASK BETWEEN THE SHALLOWCONVNET W/O

SEFE AND W/ SEFE

Subject

ShallowConvNet w/o SEFE [28] ShallowConvNet w/ SEFE

1st

acc.

2nd

acc.

3rd

acc.

4th

acc.
Average

1st

acc.

2st

acc.

3rd

acc.

4th

acc.
Average

S1 0.62 0.65 0.65 0.64 0.64 0.67 0.68 0.65 0.67 0.67

S2 0.68 0.68 0.67 0.68 0.68 0.71 0.70 0.70 0.71 0.71

S3 0.65 0.65 0.67 0.65 0.66 0.66 0.66 0.64 0.65 0.65

S4 0.57 0.58 0.54 0.56 0.56 0.67 0.69 0.67 0.66 0.67

S5 0.71 0.69 0.67 0.69 0.69 0.75 0.74 0.75 0.75 0.75

S6 0.74 0.74 0.74 0.72 0.74 0.76 0.76 0.73 0.75 0.75

S7 0.65 0.64 0.65 0.66 0.65 0.72 0.72 0.70 0.71 0.71

S8 0.70 0.67 0.69 0.69 0.69 0.68 0.70 0.68 0.67 0.68

S9 0.57 0.58 0.57 0.57 0.57 0.64 0.66 0.66 0.64 0.65

S10 0.58 0.58 0.58 0.57 0.58 0.63 0.63 0.63 0.62 0.63

Average 0.65 0.65 0.64 0.64 0.64 0.69 0.69 0.68 0.68 0.69

Std. 0.06 0.06 0.06 0.05 0.06 0.04 0.04 0.04 0.04 0.04

the lowest accuracies of 0.58 and 0.61, respectively. As
shown in Table II, the average accuracy of the Shallow-
ConvNet w/ SEFE was 0.05 higher than that of the Shal-
lowConvNet w/o SEFE. In the case of the ShallowConvNet
w/o SEFE, the highest accuracy was obtained by S6, but S4
represented the lowest accuracy. Also, in the performance of
the ShallowConvNet w/ SEFE, S5 and S6 showed the highest
accuracy of 0.75 equally, and S10 represented the lowest
accuracy of 0.63. In Table III, the EEGNet w/ SEFE showed
0.05 higher average accuracy than the EEGNet w/o SEFE. In
the case of the two models, S6 showed the highest accuracies
of 0.72 and 0.78, respectively. Also, S4 and S9 represented
the lowest accuracies of 0.57 and 0.61, respectively.

Also, Table IV showed the number of parameters in each



TABLE III
COMPARISON OF PERFORMANCES FOR THE VI CLASSIFICATION IN THE

SUBJECT-INDEPENDENT TASK BETWEEN THE EEGNET W/O SEFE AND

W/ SEFE

Subject

EEGNet w/o SEFE [29] EEGNet w/ SEFE

1st

acc.

2nd

acc.

3rd

acc.

4th

acc.
Average

1st

acc.

2st

acc.

3rd

acc.

4th

acc.
Average

S1 0.64 0.68 0.67 0.65 0.66 0.69 0.69 0.71 0.70 0.70

S2 0.67 0.70 0.69 0.68 0.69 0.72 0.70 0.72 0.72 0.72

S3 0.66 0.63 0.64 0.65 0.64 0.69 0.70 0.69 0.71 0.70

S4 0.55 0.58 0.57 0.58 0.57 0.62 0.60 0.62 0.65 0.62

S5 0.71 0.68 0.69 0.69 0.69 0.73 0.75 0.74 0.73 0.74

S6 0.72 0.71 0.72 0.74 0.72 0.78 0.77 0.78 0.78 0.78

S7 0.61 0.66 0.63 0.64 0.64 0.68 0.68 0.70 0.66 0.68

S8 0.68 0.66 0.68 0.67 0.67 0.71 0.70 0.71 0.69 0.70

S9 0.58 0.58 0.58 0.58 0.58 0.62 0.60 0.62 0.59 0.61

S10 0.57 0.56 0.61 0.58 0.58 0.62 0.62 0.63 0.64 0.63

Average 0.64 0.64 0.65 0.65 0.64 0.69 0.68 0.69 0.69 0.69

Std. 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.05

TABLE IV
COMPARISON OF THE NUMBER OF PARAMETERS AMONG ALL DECODING

MODELS

Name of model # of parameter

DeepConvNet w/o SEFE 108,485

DeepConvNet w/ SEFE 318,669
ShallowConvNet w/o SEFE 103,520

ShallowConvNet w/ SEFE 108,224
EEGNet w/o SEFE 3,400

EEGNet w/ SEFE 9,832

model. The differences in the number of parameters existed
between each model w/o SEFE and w/ SEFE. We confirmed
that the number of parameters increased in all models when
including the SEFE. When comparing with the models
between including the SEFE and excluding the SEFE, the
number of parameters and the performance increased in the
case of including the SEFE. In other words, we proved that
the increase in the number of parameters due to the SEFE
was closely related to performance improvement.

IV. DISCUSSION
As represented in Fig. 3, Table I, Table II, and Table

III, we obtained the highest performance when using the
DeepConvNet w/ SEFE among six decoding models. In
addition, three models w/ SEFE outperformed three models
w/o SEFE. We showed the increase of performances by
adding the 1×1 convolutional block in the end part of
models. Therefore, the DeepConvNet w/ SEFE that had the
deepest structure and the largest number of parameters of
318,669 could show the best performance. In contrast, the
EEGNet w/o SEFE which had the least number of parameters
of 3,400 showed the lowest performance. In other words, our
proposed SEFE increased the number of parameters closely
with the performance.

Simply, a large number of parameters does not mean that
the performance would be high. The number of parameters in
the DeepConvNet w/o SEFE was 108,485, which was larger
than those of the ShallowConvNet w/ SEFE and the EEGNet
w/ SEFE, but the performances of the ShallowConvNet
w/SEFE and the EEGNet w/SEFE were higher than that of
the DeepConvNet w/o SEFE. In other words, our proposed
SEFE increased the number of parameters while maintaining
the inherent characteristics of each model.

For increasing the practicality of BCI, studies for a
subject-independent BCI system are essential. When com-
mon features are extracted from various source subjects and a
classifier is trained using common features, a training session
would not be performed from a target subject. However, most
subject-independent studies are generally conducted applying
the MI. Compared to the MI, the VI has the advantage that
subjects have less difficulty in performing tasks, and thus
data contamination by fatigue is less. Hence, the VI is an
important element in the endogenous BCI system, and a
study for the VI-based subject-independent BCI system is
essential for the practicality of BCI.

We used a relatively larger amount of data when training
the model through the subject-independent model training
compared with the subject-dependent model. Since it was
essential that the model must capture variability in the
source data and extract robust features, the models including
the SEFE were more effective in the subject-independent
task compared to the shallow models that showed high
performance in the conventional subject-dependent task.

V. CONCLUSION AND FUTURE WORKS

In this study, we represented the feasibility of decoding the
VI-based three classes in the subject-independent task. We
obtained EEG signals in the VI experiment for controlling
the essential formations of drone swarms (spread-out, fall-
in, and hovering). Moreover, we proposed an encoder that
makes the structure of the classifier deepen relatively to
focus on temporal information when training the model
for improving the performances of the VI classification in
the subject-independent task. We validated the performances
using six decoding models (the DeepConvNet w/o SEFE and
w/ SEFE, the ShallowConvNet w/o SEFE and w/ SEFE,
and the EEGNet w/o SEFE and w/ SEFE). We showed an
increase in performances when using deeper structure models
which apply our proposed module to the end part of the
conventional models. The DeepConvNet w/ SEFE showed
the highest performance of 0.72 among six decoding models.

In future works, we will propose a deep learning-based
model that can be used in analyzing the EEG signals which
are acquired in various endogenous paradigms for the prac-
tical BCI systems and can perform the subject-independent
tasks with robust classification performances. To this end,
we plan to collect EEG signals based on new experimental
paradigms, and in addition, we will apply various data
augmentation methods to solve a lack of data problem.
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