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Abstract—The motion signals are generated for a simulator 
user based on the visual understanding of the environment using 
virtual reality. In this respect, a motion cueing algorithm (MCA) 
is employed to reproduce the motion signals based on the real 
driving motion scenarios. Advanced MCAs are required to 
predict precise driving motion scenarios. Nonetheless, 
investigations on effective methods for predicting the driving 
motion scenarios accurately are limited. Current state-of-the-
art studies mainly focus on the averaged motion signals from 
several simulator users pertaining to a specific map or from 
feedforward neural network and non-linear autoregressive. The 
existing methods are unable to yield precise predictions of the 
driving scenarios. In this research, the echo state network and 
long short-term memory models are employed for the first time 
in MCA to forecast the driving motion signals. Our evaluation 
proves the efficiency of our proposed methods in comparison 
with existing methods. 

Keywords— modelling and prediction, computing 
methodologies, manipulators, signal processing.  

I. INTRODUCTION 
A motion simulator is a practical tool to simulate the 

dynamics of vehicles in combination with a virtual reality 
environment [1-5]. It is a safe and cost-effective tool for 
improving road safety, investigating intelligent transportation 
systems, and advancing vehicle manufacturing technologies 
[6-10]. Despite its usefulness, no simulator can follow the 
unfiltered driving motion signals because of the constrained 
workspace [11-20]. As a result, the motion cueing algorithm 
(MCA) [21, 22] is devised to re-generate the motion 
sensations for the simulator user to experience the same 
sensation as if in a vehicle, within the limited working area. 
MCA is divided to classical [23], adaptive [24-29], optimal 

[30-33] and model predictive [34-41] methods. In this regard, 
false motion cues lead to motion sickness in simulator users, 
which is the main disadvantage of the MCA. Motion sickness 
[42] occurs where there is a discrepancy between the motion 
sensation and actual motion as received by the human 
vestibular and visual systems. The vestibular system inside the 
inner ear is responsible for detecting the head motion, 
stabilising the visual axis, and maintaining the body and head 
postures [43]. The vestibular system consists of the otolith 
organs for sensing the translational motions and the 
semicircular canals for sensing the rotational motions. The 
otolith organs are not able to distinguish the difference 
between sustainable accelerations from tilt motions. As such, 
the sustainable acceleration sensation can be re-generated 
using somatogravic illusion inside the tilt-coordination 
channel [44]. 

The state-of-the-art MCAs, such as model predictive 
control (MPC), have been introduced recently to re-generate 
the high accurate motion signals [6]. The efficiency of MPC-
based MCA with time-varying reference signals depends on 
the prediction of the driving motion scenarios. In addition, the 
pre-positioning techniques are useful for varying the end-
effector centre to virtually enlarge the linear limitations of the 
simulator. Knowing the driving motion scenarios in advance 
along the prediction horizon is able to increase the efficiency 
of the current pre-positioning techniques through better 
understanding the motion signals. Mohammadi et al. [45] 
used the feedforward neural network (NN) in the MCA 
domain for the first time to predict the driving scenarios using 
a hidden layer with a size of 36 nodes. However, the method 
was not accurate enough to accurately anticipate the driving 
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motion signals in a long prediction horizon. Moreover, other 
researchers used the averaged motion signals to generate a 
pool of drivers as the predicted driving scenarios [6]. 

Both statistical and artificial intelligence methods have 
been employed to predict the time series data in recent years. 
Han et al. [46] used recurrent neural network (RNN) in the 
prediction of the complicated, chaotic time-series data. Their 
proposed RNN was trained via a self-adaptive 
backpropagation through time to increase the efficiency for 
multistep prediction applications. A long short-term memory 
(LSTM) model is used by Altche and de La Fortelle [47] to 
estimate the autonomous vehicles’ driving motion signal in 
highways along with longitudinal and lateral channels. The 
results of their proposed method satisfied both accuracy and 
safety terms in state-of-the-art applications. A conventional 
neural network (CNN) model is employed by Lee et al. [48] 
to predict the lane change for a model predictive controller 
[49] unit. Xin et al. [50] proposed the ensemble LSTM 
models to increase the prediction horizon of driving motion 
signal with indication of driver intention. Deo and Trivedi 
[51] increased the accuracy of Xin et al. [50] model by 
substituting the multi-layer LSTM with single-layer LSTM. 
The employed semantic-based intention and IntentNet is used 
by Hu et al. [52] and Casas et al. [53] to forecast the motion 
signals with higher accuracy, respectively. The first CNN-
LSTM model in prediction of driving motion signal is 
proposed by Zhao et al. [54] with concentration on driver 
action and road status. The prediction of driving motion 
signal using different scenarios are studied by Mozaffari et al. 
[55] based on input, output and prediction signals. Qazani et 
al. [56] improved the efficiency of the Mohammadi’s work 
[45] with consideration of different parameters such as car 
position in the road. Vural et al. [57] introduced the LSTM-
based adaptive learning using second-order Extended 
Kalman filter (EKF) to reach the online solution without 
dependency to the future information. Their proposed method 
was able to increase the accuracy 10%-45% compared to 
widely-used adaptive methods. Also, It was able to reduce the 
computational load 10%-15% compared to EKF. Kiran et al. 
[58] surveyed motion signal prediction methods using 
reinforcement learning techniques in autonomous vehicles. 
Qazani et al. [59] introduced the first nonlinear 
autoregressive (NAR) to predict the driving scenarios using a 
hidden layer with a size of 45 nodes and 100 time-delays. 
While it is the simplest and fastest method in forecasting, it 
yields low accuracy because of using single layer compared 
with other complex NN models.  

The previously proposed methods [45, 59] for the 
prediction of the driving motion signals in MCAs are not 
accurate enough because they focused on the lower 
computational load rather than the precision. Among various 
deep learning methods, long short-term memory (LSTM) and 
echo state network (ESN) achieve better results as compared 
with those traditional prediction methods. The LSTM model 
was proposed in [60] to address drawbacks of RNN such as 
strictly dependency on time lag and inability in capturing 
long-term dependencies with better capability of handling 
long data sequences using memory blocks. On the other hand, 
motivated by the development in neurophysiological studies, 

the ESN [61] has also been successfully used in many areas, 
including speech recognition, control, robotic, and noise 
modelling. To the best of the authors’ knowledge, ESN and 
LSTM have not been employed in the motion simulator 
domain for predictions of driving motion scenarios. 
Motivated by this research gap, we aim to design and develop 
a high-efficiency method using ESN and LSTM to anticipate 
the motion signals. 

In section II, the studies related to this research are 
discussed. The structure of the proposed ESN and LSTM 
methods are explained in section III. In section IV, the 
formulated ESN and LSTM models are trained and evaluated 
in simulated environments using the MATLAB software, with 
the outcomes discussed and analysed. Concluding remarks of 
this research are presented in section V. 

II. RELATED STUDIES 

A. Traditional Method 
Accurate prediction of time-series driving motion 

scenarios for use with the MCA is very critical to increasing 
the efficiency of the re-generated motion cues. The pre-
positioning technique is introduced in MCA to vary the centre 
of the end-effector in order to virtually increase the linear 
limitation of the simulator. The prediction of driving motion 
signals allows the pre-positioning algorithm to extract the 
best off-centre position with respect to the end-effector. 
Besides that, state-of-art MCA models, such as MPC-based 
MCA [6], needs the reference signal to obtain the best input 
signal while respecting the workspace limitations of the 
simulator platform. As a result, many studies use the time-
invariant reference signal in MPC-based MCA because there 
is very difficult, if not impossible, to precisely predict the 
reference signals [6]. 

As there is no systematic procedure to predict the driving 
motion scenarios, the most straightforward method is to 
record the motion signals from a pool of drivers and use an 
average of the generated motion signals as a representation of 
the predicted motion signals [6]. As different drivers have 
different driving behaviours, the use of an average of the mean 
generated motion signals is not reliable in advanced MCA 
models. 

B. Feedforward NN 
Mohammadi et al. [45] employed the feedforward NN 

(with a total of 49,262 inputs and 36 hidden neurons) to train 
and predict the motion signals for 2.5 seconds of motion. 
Also, Mohammadi et al. [45] divided the inputs and outputs 
of the training motion signals into five groups based on the ith 
sampling time, as follows: 

 𝑥𝑥in,𝑖𝑖 = [𝑥𝑥𝑖𝑖−5 𝑥𝑥𝑖𝑖−4 ⋯ 𝑥𝑥𝑖𝑖] (1) 

 𝑥𝑥out,𝑖𝑖 = [𝑥𝑥𝑖𝑖+1 𝑥𝑥𝑖𝑖+2 ⋯ 𝑥𝑥𝑖𝑖+5] (2) 

where 𝑥𝑥in and 𝑥𝑥out are the input and output of the network, 
which is the past and future of the motion signal at the current 
ith sampling time. The total numbers of input and output 
motion signals are:  

 𝑈𝑈in,𝑚𝑚 = ∑ 𝑥𝑥in,𝑛𝑛
𝑚𝑚
𝑛𝑛=1 ,∀𝑚𝑚 ∈ {−5,−4,⋯ ,0} (3) 

 𝑈𝑈out,𝑚𝑚 = ∑ 𝑥𝑥out,𝑛𝑛𝑚𝑚
𝑛𝑛=1 ,∀𝑚𝑚 ∈ {1,2,⋯ ,5} (4) 



where 𝑈𝑈in,𝑚𝑚 and 𝑈𝑈out,𝑚𝑚 are the total numbers of input (past) 
and output (future) motion signals at mth group. Then, the 
input and output of the network in each group can be 
calculated as: 

 𝑋𝑋in,𝑚𝑚(𝑖𝑖) = �𝑢𝑢𝑛𝑛�𝑖𝑖 + 𝑈𝑈in,𝑚𝑚−1 < 𝑛𝑛 < 𝑖𝑖 + 𝑈𝑈in,𝑚𝑚� (5) 

 𝑋𝑋out,𝑚𝑚(𝑖𝑖) = �𝑢𝑢𝑛𝑛�𝑖𝑖 + 𝑈𝑈out,𝑚𝑚−1 < 𝑛𝑛 < 𝑖𝑖 + 𝑈𝑈out,𝑚𝑚� (6) 

As the feedforward NN is not suitable for a large amount 
of data, the average data sample pertaining to each group is 
selected for further analysis to reduce the computational load. 
As such, the input and output vectors of the overall 
feedforward NN consist of five elements as follows: 

 𝑁𝑁𝑁𝑁in,𝑖𝑖 = [�̅�𝑥𝑖𝑖−5, �̅�𝑥𝑖𝑖−4,⋯ , �̅�𝑥𝑖𝑖] (7) 

 𝑁𝑁𝑁𝑁out,𝑖𝑖 = [�̅�𝑥𝑖𝑖+1, �̅�𝑥𝑖𝑖+2,⋯ , �̅�𝑥𝑖𝑖+5] (8) 

In this study, in order to increase the correlation coefficient 
(CC) of the prediction, a little amendment is applied in 
sequencing the inputs and outputs in comparison with 
Mohammadi et al. [45], which are presented in Eqs. (1-8). 
The input of all the investigated the algorithm is the history 
of the motion signal via choosing the following delays: 

 
〈1: 1: 25〉 + 〈26: 2: 50〉 + 〈52: 4: 100〉 +

〈104: 8: 200〉 + 〈208: 16: 500〉  (9) 

wherein 〈𝑎𝑎:𝑏𝑏: 𝑐𝑐〉, a is the start-point, b is the step, and c is the 
endpoint. Also, it should be noted that the output sequence is 
the input data for the next time-step. In addition, the output 
of the proposed model is the next time-step motion signal. 

C. NAR 
Qazani et al. [59] employed the non-linear autoregressive 

(NAR) (with a total of 300,00 inputs and 45 hidden neurons 
to train and predict the motion signals. It can reach better 
results compared with feedforward NN because feedforward 
NN is not able to estimate the non-mapping nonlinear 
behaviour of the system. It is due to the absence of feedback 
signals inside the feedforward NN. Then, the NAR model can 
easily predict the motion signals in a one-dimensional time 
series. While NAR is a simple model, the drawback is its 
inaccuracy in predictions. Because of the highly nonlinear 
behaviour pertaining to the driving motion signal, a nonlinear 
method is able to produce better prediction results in 
comparison with those from linear methods. The discretised 
NAR model for tackling a time series can be formulated as: 

 𝑦𝑦(𝑡𝑡) = 𝑓𝑓�𝑦𝑦(𝑡𝑡 − 1), 𝑦𝑦(𝑡𝑡 − 2),⋯ ,𝑦𝑦(𝑡𝑡 − 𝑝𝑝)� + 𝜖𝜖(𝑡𝑡)
 (10) 

where 𝑝𝑝 is the past values of the series used to predict the 
upcoming value; 𝑓𝑓  is an unknown function (which can be 
derived from optimisation [62] of the network weights and 
neuron bias); and 𝜖𝜖(𝑡𝑡) is the network error at time t. As NAR 
is a time-series NN model, the presented sequencing 
technique in Eq. (10) is defined as feedback delay in the 
proposed NAR. It should be noted that NAR chooses the next 
time-step motion signal as the output of the system without 
specifying to the network as it is a time-series, compatible 
model. 

The scaled conjugate gradient (SCG) is employed to train 
the model. It is a fast algorithm, as it computes the second-
order derivative without calculating the Hessian matrix. 
Among other training methods SCG has a rapid convergence 
speed which is based on supervised learning. Also, the SCG 
training method is supported by GPU to decrease the 
computational time of the training process. The training 
procedure of SCG is based on the second-order information 
of the model. This training method does not have any 
dependency to the other parameters with usage of the 
memory. The parameters are updated at each sampling time 
faster than other training methods. 

III. METHODOLOGY 
While the feedforward NN and NAR are the fast-training 

models in the prediction of the driving motion signal, they are 
not accurate methods to predict the motion signal accurately. 
Two deep learning methods, including ESN, and LSTM are 
examined in this section to anticipate the driving motion 
scenarios, as follows: 

A. ESN  
The ESN is a variant of RNNs proposed in [61], as 

motivated by the recent neurophysiological studies. Fig. 1 
presents a structure of the ESN model, which consists of the 
input, internal and output units. As a type of RNN, the ESN 
has a non-trainable recurrent module and a linear readout. 
The main part of the ESN is the internal unit, which consists 
of a huge number of neurons with random inter-and self-
connections. The internal unit is fixed, while the output 
connection is changed during the training process using 
online recursive least square or offline linear regression 
methods. The internal state 𝛆𝛆(𝑡𝑡) at the tth time step within the 
internal units of ESN is updated, as follows: 

 𝜀𝜀(𝑡𝑡) = 𝜑𝜑 �𝑤𝑤𝑖𝑖𝑛𝑛𝑥𝑥(𝑡𝑡) + 𝑤𝑤𝐷𝐷𝐷𝐷𝜀𝜀(𝑡𝑡 − 1) + 𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦(𝑡𝑡 − 1)�
 

  (11) 

where 𝜑𝜑  is the activation function (e.g. tanh function); 
𝜀𝜀(𝑡𝑡) = [𝜀𝜀1(𝑡𝑡),⋯ , 𝜀𝜀𝑀𝑀(𝑡𝑡)]T  and 𝑥𝑥(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡),⋯ , 𝑥𝑥𝑁𝑁(𝑡𝑡)]T 
are the input activation and internal state, respectively. In 
addition, 𝑦𝑦(𝑡𝑡 − 1) is the action based on the output neuron 
from the previous time step; while 𝑤𝑤𝑖𝑖𝑛𝑛, 𝑤𝑤𝐷𝐷𝐷𝐷, and 𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are 
the weight matrices of the input, internal, and feedback 
connections, respectively. Then, the ESN output, 𝑦𝑦(𝑡𝑡), at the 
tth time step is : 

 𝑦𝑦(𝑡𝑡) = 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜 �𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 . � 𝜀𝜀(𝑡𝑡)
𝑦𝑦(𝑡𝑡 − 1)�� (12) 

where 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜  is a linear or sigmoidal function based on the 
model complexity; 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜  is a weight matrix of the output 
connections (which can be regulated via an online or offline 
training process). The dimension of weight matrices with an 
M-neuron input, N-neuron reservoirs, and single-neuron 
output is 𝑤𝑤𝑖𝑖𝑛𝑛 ∈ 𝑅𝑅𝑁𝑁×𝑀𝑀 , 𝑤𝑤𝐷𝐷𝐷𝐷 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 , 𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ 𝑅𝑅𝑁𝑁×1  and 
𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 ∈ 𝑅𝑅1×𝑁𝑁, respectively. 

There are 600 neurons with sigmoidal activation functions 
inside the internal unit. The sparsity of the internal weight 
matrix is 30%, i.e., 30% of the internal weighting matrix are 



non-zero. These non-zeros elements should be between -0.5 
and 0.5. The input weight matrix is randomly selected formed 
between -0.25 and 0.25, with a prediction order equal to 15. 
There is no feedback connection between the output and 
internal neurons because of the predictive nature of the 
model. The spectral radius of the interval unit is 0.3, and the 
activation function of the output neuron is sigmoidal, owing 
to the highly nonlinear behaviour of the model. In order to 
extract the inputs and output of the ESN during the training 
process, the motion signals using Eq. (8) time-step delay at 
each time-step is saved in cell data as an input. Also, the next 
time-step of the motion signal along the future is saved in 
another cell to be used as output training data. Then, the 
trained network is able to anticipate the next time-step ahead 
of the current time at the current time. It means that the 
network is able to anticipate the next time-step motion signals 
by looking at 5 seconds of the motion signal history. Table I 
shows the hyperparameters of the proposed ESN. 

B. LSTM 
The RNN is a useful method to predict the driving motion 

scenarios in view of the dynamical nature of the motion 
signals. Its internal memory blocks are able to process an 
arbitrary sequence of inputs using the internal memory in 
order to facilitate learning of the temporal sequence. 
Unfortunately, the RNN has some drawbacks, including strict 
dependence on time lag and the inability to capture the long-
term dependencies. Finding the optimal time lag is based on 
a time-consuming, trial-and-error method. Pre-positioning of 
the motion simulator is to vary the centre of the end-effector 

in order to virtually enlarge the linear displacement 
limitations of the end-effector. In addition, to exploit the 
reference time-varying MPC method, the quality of the 
predicted motion signals is crucial. While it is difficult to 
train the RNN using 5–10 time lags because of the 
diminishing gradient problem, Hochreiter and Schmidhuber 
[60] had demonstrated the effectiveness of the LSTM to 
address these disadvantages of the RNN. Owing to the 
unpredictable behaviours of the simulator users, the re-
generated motion signals are highly arbitrary. At the same 
time, the RNN is able to handle the arbitrary sequential data 
samples because of the feedback connections. The gradient 
information eliminates or destroys if an extremely long 
sequence is employed for learning. As an improved version 
of the RNN, the LSTM model is capable of handling a long 
sequence of data samples using its memory blocks. Fig. 2.a-
b shows a schematic structure of the LTSM model and its 
layers for the prediction of time-series driving motion 
scenarios. Based on Fig. 2.a, the proposed LSTM model for 
predicting the motion scenario is composed of an input 
generator unit, normalisation unit, sequence input layer, 
followed by a hidden layer with 400 neurons, regression 
output, and predicted motion scenarios. The output is 
generated by a fully connected layer and a regression layer. It 
should be noted that during the training process of the model, 
the inputs and outputs are defined to the model based on the 
history of the motion signal (duration of 5 seconds) and actual 
future of the motion signal (next time-step) respectively. In 
addition, 𝑚𝑚𝑖𝑖 and 𝑐𝑐𝑖𝑖 are the hidden state and cell state at time 
step t, as shown in Fig. 2.b, respectively. 

The forgotten historical information and updated memory 
units facilitate learning in the LSTM model. It consists of 
three gates, namely the input, output, and forget gates. Each 
gate is composed of the dot product and sigmoid function to 
protect the gradient information against distortion or 
elimination, as well as to control the information flow. Fig. 3 
presents a memory block depicting f multiplicative gating 
units to determine the information flow and memory cells to 
connect and memorise the temporal state. 

The model input and output sequences are denoted by 𝑥𝑥 =
(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇)  and 𝑚𝑚 = (𝑚𝑚1,𝑚𝑚2,⋯ ,𝑚𝑚𝑇𝑇) , respectively 
where 𝑇𝑇 is the prediction period. The memory cell of the jth 
neuron at time t is denoted by 𝑐𝑐𝑜𝑜

𝑗𝑗, The output of the jth neuron, 
𝑚𝑚𝑜𝑜

𝑗𝑗, is : 

 𝑚𝑚𝑜𝑜
𝑗𝑗  = 𝑜𝑜𝑜𝑜

𝑗𝑗 tanh�𝑐𝑐𝑜𝑜
𝑗𝑗�. (13) 

where 𝑜𝑜𝑜𝑜
𝑗𝑗 is the output gate that decides the information to be 

propagated. The output gate is expressed as: 

 𝑜𝑜𝑜𝑜
𝑗𝑗  = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑜𝑜 + 𝑈𝑈𝑜𝑜𝑚𝑚𝑜𝑜−1 + 𝑉𝑉𝑜𝑜𝑐𝑐𝑜𝑜)𝑗𝑗. (14) 

where 𝑚𝑚𝑜𝑜−1  and 𝑐𝑐𝑜𝑜  are the vector representations of 𝑚𝑚𝑜𝑜−1
𝑗𝑗  

and 𝑐𝑐𝑜𝑜
𝑗𝑗 , respectively; while 𝑊𝑊𝑜𝑜 , 𝑈𝑈𝑜𝑜 , and 𝑉𝑉𝑜𝑜  are the diagonal 

weight matrices that require online tuning with respect to the 
minimisation of a loss function. In addition, 𝜎𝜎 is a standard 
logistic sigmoid function defined as:  

 𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

. (15) 

 
Fig. 1.  The schematic structure of the ESN model. 

 
TABLE I 

THE SIMULATION SETUP PARAMETERS FOR THE LSTM NN METHOD 

Index (unit) Value 

LSTM 

Input Signal [𝑢𝑢𝑖𝑖−500 𝑢𝑢𝑖𝑖−499 ⋯ 𝑢𝑢𝑖𝑖] 
Output Signal [𝑢𝑢𝑖𝑖+1 𝑢𝑢𝑖𝑖+2 ⋯ 𝑢𝑢𝑖𝑖+200] 

Time Step 0.01 Second 
Maximum Number of 

Training Epoch 500 

Minimum Batch Size 120 
Count of Hidden Layers 

in LSTM Unit 400 

ESN 

Nr 50 
Rate of leak 0.3 

spectral radius 0.5 
regularization 1×10-8 

washout 100 
 



The focus of the memory cell is a recurrent constant error 
carousel (CEC) unit, which is activated to generate the cell 
state. The CEC helps to eliminate the error by opening and 
closing the multiplicative gates in the LSTM model. The 
memory cell, 𝑐𝑐𝑜𝑜

𝑗𝑗 , should be updated at each time step by 
elimination of the current memory cell and addition of the 
new memory value, �̃�𝑐𝑜𝑜

𝑗𝑗, as follows: 

 𝑐𝑐𝑜𝑜
𝑗𝑗  = 𝑓𝑓𝑜𝑜

𝑗𝑗𝑐𝑐𝑜𝑜−1
𝑗𝑗 + 𝑖𝑖𝑜𝑜

𝑗𝑗�̃�𝑐𝑜𝑜
𝑗𝑗. (16) 

where the new memory value is : 

 �̃�𝑐𝑜𝑜
𝑗𝑗  = tanh(𝑊𝑊𝑏𝑏𝑥𝑥𝑜𝑜 + 𝑈𝑈𝑏𝑏𝑚𝑚𝑜𝑜−1)𝑗𝑗. (17) 

A forget gate is used to prohibit the internal cell values 
from increasing without limit while continuing the time series 
mechanism (instead of segmenting). Then, the outdated 
information flow resets, and the CEC weight is substituted 
with the multiplicative forget gate activation. After updating 
the memory cell based on the new memory value, the forget 
gate, 𝑓𝑓𝑜𝑜

𝑗𝑗, is computed as: 

 𝑓𝑓𝑜𝑜
𝑗𝑗 = 𝜎𝜎�𝑊𝑊𝑓𝑓𝑥𝑥𝑜𝑜 + 𝑈𝑈𝑓𝑓ℎ𝑜𝑜−1 + 𝑉𝑉𝑓𝑓𝑐𝑐𝑜𝑜−1�

𝑗𝑗
. (18) 

where 𝑊𝑊𝑓𝑓, 𝑈𝑈𝑓𝑓, and 𝑉𝑉𝑓𝑓 are the diagonal weight matrices. The 
same methodology is adopted in the input gate, which 
determines the reserved new features as follows: 

 𝑖𝑖𝑜𝑜
𝑗𝑗 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑜𝑜 + 𝑈𝑈𝑖𝑖ℎ𝑜𝑜−1 + 𝑉𝑉𝑖𝑖𝑐𝑐𝑜𝑜−1)𝑗𝑗. (19) 

where 𝑊𝑊𝑖𝑖 , 𝑈𝑈𝑖𝑖 , and 𝑉𝑉𝑖𝑖  are the diagonal weight matrices. It 
should be noted that the value of the three gates is between 0 
and 1. The LSTM output is formulated as: 

 𝑦𝑦 = 𝑔𝑔(𝑊𝑊𝑑𝑑ℎ𝑜𝑜 + 𝑏𝑏𝑑𝑑). (20) 

where 𝑔𝑔  is a centred logistic sigmoid function within the 
range [−2,2], i.e.,  

 𝑔𝑔(𝑥𝑥) = 4
1+𝑒𝑒−𝑥𝑥

− 2. (21) 

Training of the LSTM is based on a modified real-time 
recurrent learning (RTRL) and a truncated backpropagation 
through time (BPTT) along with the gradient descent 
optimisation method. The loss function is defined as the sum 
of square errors. The memory cell shortens the errors by 
exploiting the linear CEC of the memory cell. Inside the CEC, 
the error recedes and is discharged from the cell in a degraded 
exponential manner. This is the main capability of the LSTM 
in dealing with a long prediction horizon, as compared with 
the RNN. The training process of the LSTM continuously 
updates the weight matrices in each layer, 𝑊𝑊𝑜𝑜 =
〈𝑊𝑊𝑜𝑜,𝑈𝑈𝑜𝑜 ,𝑉𝑉𝑜𝑜,𝑊𝑊𝑏𝑏 ,𝑈𝑈𝑏𝑏 ,𝑊𝑊𝑓𝑓 ,𝑈𝑈𝑓𝑓 ,𝑊𝑊𝑖𝑖 ,𝑈𝑈𝑖𝑖 ,𝑊𝑊𝑑𝑑 , 𝑏𝑏𝑑𝑑〉 , with respect to 
minimising the loss function. Table I shows the LSTM 
parameters used in this study, including the epoch size, batch 
size, numbers of layers and neurons. The inputs and outputs 
of the network during the training process have been shown in 

 
Fig. 2.  (a): This diagram of the proposed LSTM NN; (b): The Architecture 
of the LSTM layer. 

 
Fig. 3.  A memory block depicting the data flow at time step t. 

 
TABLE II 

THE RESULTS OF BAYESIAN OPTIMIZATION ALGORITHM FOR THREE SUB-CHANNELS OF THE LONGITUDINAL CHANNEL USING ALL DATA. 
Item Feedforward NN NAR ESN LSTM 

 Training Testing Training Testing Training Testing Training Testing 

MSE 5.6479×10-4 1.4×10-3 1.1×10-3 1.1×10-3 3.4397×10-4 1.4593×10-6 3.5590×10-4 3.2774×10-4 

RMSE 2.38×10-2 3.8×10-2 3.26×10-2 3.26×10-2 5.8649×10-3 1.2080×10-3 1.8865×10-2 1.8104×10-2 

NMSE 2.858×10-1 1.216×10-1 2.704×10-1 1.704×10-2 1.1327×10-1 10521×10-3 2.2666×10-1 5.5772×10-2 

Mean -
8.2732×10-5 -1.19×10-2 1.7941×10-

4 1.46×10-2 -
2.0109×10-3 1.09167×10-4 -2.8729×10-3 -4.1207×10-3 

STD 2.38×10-2 3.61×10-2 3.26×10-2 2.91×10-2 5.8651×10-3 1.2040×10-3 1.8646×10-2 1.7641×10-2 

R2 1 9.999×10-1 9.999×10-1 9.997×10-1 1 1 1 1 

 



the first and second rows of Table I. It is shown that the input 
and output of the LSTM during the training process are as 
same as the feedforward NN and ESN, which is explained 
before. The trained LASTM is able to predict the next motion 
signal by looking at 5 seconds of the motion. 

IV. RESULTS AND DISCUSSIONS 
The ESN and LSTM for the prediction of time-series 

driving motion scenarios are modelled using MATLAB. Our 
previous method using the feedforward NN [63] and NAR 
[59] are used for performance comparison. A total of 754,923 
data samples are recorded via a six-lap drive-in road track 
using Rigs of Rods (RoR) simulation software (version 
0.39.5) with its soft-body physics engine. The motion 
scenarios are composed of different manoeuvres such as 
parking, braking, sudden motion and sharp turning. Fig. 4.a 
shows the road track and the position of the vehicle in 5 laps. 
Also, Fig. 4.b presents the linear acceleration signal along the 
x-axis for the last lap of the driving, which is a candidate as a 
test data of the investigated methods. The four investigated 
models are used to estimate the driving motion signals along 
the x-axis. The same method can be employed to forecast the 
motion signals along both the y-axis and z-axis. It should be 
noted that the training, validation, and test processes contain 
90%, 5%, and 5% of the data samples, respectively.  

The error is the difference between the target and the 
obtained linear acceleration signal of the motion simulator 
platform. The mean of the error during the training and 
testing process of the LSTM is -2.8729×10-3 and -4.1207×10-

3 m/s2, respectively. Also, the standard deviation of the error 
during the training and testing process of the LSTM is 

1.8646×10-2 and 1.7641×10-2 m/s2, respectively. It should be 
noted that the shape of the error profiles of the feedforward 
NN, NAR, and LSTM are symmetric, while the shape of the 
error profiles of the ESN is a bit skewed right, respectively. 
The R-square between the actual and predicted linear 
acceleration signal of the autonomous vehicle [64] during the 
testing process are 1, 1, 0.9997 and 0.9999 using LSTM, 
ESN, NAR, and feedforward NN, respectively. The higher R-
square of the proposed LSTM proves the efficiency of the 
model handling the prediction of the linear acceleration signal 
compared with other investigated methods. 

Table II represents the root means square error (RMSE), 
mean square error (MSE), normalised root mean square error 
(NRMSE), rank correlation (RC), mean error (ME), and 
standard deviation (STD) of four investigated methods during 
the training and testing process. 

The ESN method yields better results in the estimation of 
the driving motion signals with low RMSE and high R-square 
scores. While training of the ESN method is not time-
consuming, it has an excellent performance in achieving a 
perfect R-square metric in the prediction of the motion signals. 

V. CONCLUSION 
In utilising the simulator for vehicle dynamics evaluation, it is 
not possible to generate the motion signals of a real vehicle 
because of the physical and dynamical limitations of the 
platform. As a result, an MCA is used to re-generate the 
motion signals and keep the motion sensation of the simulator 
as close to that of a real vehicle as possible while satisfying 
the workspace boundary constraints. The effectiveness of the 
MCA, either filter-based (traditional) or predictive-based 
(advanced), can be reinforced using accurate estimation of the 
driving motion signals. This can be achieved through the pre-
positioning technique for filter-based MCA models or time-
varying reference for predictive-based MCA models. In the 
literature, researchers mainly use the averages of re-generated 
motion signals from various operators as the estimate motion 
signals. While a symmetric way to forecast the motion signals 
using the feedforward NN and NAR have shown successes, 
the methods are not scalable to using large data sets. In this 
study, the ESN, and LSTM deep learning models, have been 
developed to estimate the motion signals, yielding higher 
accuracy rates in comparison with the feedforward NN and 
NAR. It is due to the structure of the ESN and LSTM, as they 
consist of many layers to handle the complexity of the data. 
Evaluated with comprehensive simulation studies in 
MATLAB, the ESN has produced the best results, with a 
perfect R-square score. Nevertheless, a low computational 
load is required for ESN training. As a future study, highly 
advanced machine learning methods [65-71] with 
consideration of physiological data [22, 72-75] will consider 
for prediction of the motion signal. 

REFERENCES 
[1] H. Asadi, S. Mohamed, C. P. Lim, and S. Nahavandi, "Robust 

optimal motion cueing algorithm based on the linear quadratic 
regulator method and a genetic algorithm," IEEE Transactions on 
Systems, Man, and Cybernetics: Systems, vol. 47, no. 2, pp. 238-
254, 2016. 

[2] M. R. C. Qazani, H. Asadi, S. Khoo, and S. Nahavandi, "A linear 
time-varying model predictive control-based motion cueing 
algorithm for hexapod simulation-based motion platform," IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, vol. 
51, no. 10, pp. 6096-6110, 2019. 

  
Fig. 4.  (a) The training data for duration of five loops along the road map; 
(b) translational testing data of driving motion scenario along x-axis. 



[3] N. Mohajer, S. Nahavandi, H. Abdi, and Z. Najdovski, 
"Enhancing passenger comfort in autonomous vehicles through 
vehicle handling analysis and optimization," IEEE Intelligent 
Transportation Systems Magazine, 2020. 

[4] N. Mohajer, H. Asadi, S. Nahavandi, and C. P. Lim, "Evaluation 
of the path tracking performance of autonomous vehicles using 
the universal motion simulator," in 2018 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC), 2018: 
IEEE, pp. 2115-2121.  

[5] S. Pedrammehr, H. Asadi, and S. Nahavandi, "A study on 
vibrations of hexarot-based high-G centrifugal simulators," 
Robotica, vol. 38, no. 2, pp. 299-316, 2020. 

[6] M. Dagdelen, G. Reymond, A. Kemeny, M. Bordier, and N. 
Maïzi, "Model-based predictive motion cueing strategy for 
vehicle driving simulators," Control Engineering Practice, vol. 
17, no. 9, pp. 995-1003, 2009. 

[7] M. R. C. Qazani et al., "Kinematic analysis and workspace 
determination of hexarot-a novel 6-DOF parallel manipulator 
with a rotation-symmetric arm system," Robotica, vol. 33, no. 8, 
pp. 1686-1703, 2015. 

[8] M. R. C. Qazani, S. Pedrammehr, and M. J. Nategh, "An 
investigation on the motion error of machine tools’ hexapod 
table," International Journal of Precision Engineering and 
Manufacturing, vol. 19, no. 4, pp. 463-471, 2018. 

[9] M. R. C. Qazani, V. Mohammadi, H. Asadi, S. Mohamed, and S. 
Nahavandi, "Development of Gantry-Tau-3R Mechanism Using 
a Neuro PID Controller," in ACRA 2019: Proceedings of the 
Australasian Conference on Robotics and Automation, 2019: 
[Australian Robotics & Automation Association], pp. 1-8.  

[10] M. R. C. Qazani, H. Asadi, S. Mohamed, S. Nahavandi, J. Winter, 
and K. Rosario, "A Real-Time Motion Control Tracking 
Mechanism for Satellite Tracking Antenna Using Serial Robot," 
in 2021 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC), 2021: IEEE, pp. 1049-1055.  

[11] S. Pedrammehr, M. R. C. Qazani, H. Asadi, and S. Nahavandi, 
"Control system development of a hexarot-based high-G 
centrifugal simulator," in 2019 IEEE International Conference on 
Industrial Technology (ICIT), 2019: IEEE, pp. 78-83.  

[12] S. Pedrammehr, M. R. C. Qazani, H. Asadi, and S. Nahavandi, 
"Kinematic manipulability analysis of hexarot simulators," in 
2019 IEEE International Conference on Industrial Technology 
(ICIT), 2019: IEEE, pp. 133-138.  

[13] M. R. C. Qazani, H. Asadi, and S. Nahavandi, "A new gantry-tau-
based mechanism using spherical wrist and model predictive 
control-based motion cueing algorithm," Robotica, vol. 38, no. 8, 
pp. 1359-1380, 2020. 

[14] S. Pedrammehr, H. Asadi, and S. Nahavandi, "The forced 
vibration analysis of hexarot parallel mechanisms," in 2019 IEEE 
International Conference on Industrial Technology (ICIT), 2019: 
IEEE, pp. 199-204.  

[15] S. Pedrammehr, M. R. C. Qazani, H. Asadi, and S. Nahavandi, 
"Manipulability Analysis of Gantry-Tau parallel manipulator," in 
ACRA 2019: Proceedings of the Australasian Conference on 
Robotics and Automation, 2019: [Australian Robotics & 
Automation Association], pp. 1-7.  

[16] M. R. C. Qazani, H. Asadi, S. Pedrammehr, and S. Nahavandi, 
"Performance analysis and dexterity monitoring of hexapod-
based simulator," in 2018 4th International Conference on 
Control, Automation and Robotics (ICCAR), 2018: IEEE, pp. 
226-231.  

[17] M. R. C. Qazani, S. Pedrammehr, and M. J. Nategh, "A study on 
motion of machine tools’ hexapod table on freeform surfaces with 
circular interpolation," The International Journal of Advanced 
Manufacturing Technology, vol. 75, no. 9-12, pp. 1763-1771, 
2014. 

[18] M. R. Chalak Qazani, S. Pedrammehr, A. Rahmani, M. 
Shahryari, A. Khani Sheykh Rajab, and M. M. Ettefagh, "An 
experimental study on motion error of hexarot parallel 
manipulator," The International Journal of Advanced 
Manufacturing Technology, vol. 72, no. 9, pp. 1361-1376, 2014. 

[19] S. Pedrammehr, M. R. C. Qazani, and S. Nahavandi, "A novel 
axis symmetric parallel mechanism with coaxial actuated arms," 
in 2018 4th International Conference on Control, Automation 
and Robotics (ICCAR), 2018: IEEE, pp. 476-480.  

[20] M. R. Chalak Qazani, S. Pedrammehr, H. Abdi, and S. 
Nahavandi, "Performance evaluation and calibration of gantry-
tau parallel mechanism," Iranian Journal of Science and 

Technology, Transactions of Mechanical Engineering, vol. 44, 
no. 4, pp. 1013-1027, 2020. 

[21] M. Chalak Qazani, "Modelling and simulation of a motion cueing 
algorithm using prediction and computational intelligence 
techniques," Deakin University, 2020.  

[22] H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, and D. R. 
Zadeh, "Human perception-based washout filtering using genetic 
algorithm," in International Conference on Neural Information 
Processing, 2015: Springer, pp. 401-411.  

[23] H. Asadi et al., "A particle swarm optimization-based washout 
filter for improving simulator motion fidelity," in 2016 IEEE 
International Conference on Systems, Man, and Cybernetics 
(SMC), 2016: IEEE, pp. 001963-001968.  

[24] M. R. C. Qazani, H. Asadi, T. Bellmann, S. Mohamed, C. P. Lim, 
and S. Nahavandi, "Adaptive Washout Filter Based on Fuzzy 
Logic for a Motion Simulation Platform With Consideration of 
Joints’ Limitations," IEEE Transactions on Vehicular 
Technology, vol. 69, no. 11, pp. 12547-12558, 2020. 

[25] M. R. C. Qazani, H. Asadi, M. Rostami, S. Mohamed, C. P. Lim, 
and S. Nahavandi, "Adaptive motion cueing algorithm based on 
fuzzy logic using online dexterity and direction monitoring," 
IEEE Systems Journal, 2021. 

[26] M. R. C. Qazani, H. Asadi, T. Bellmann, S. Perdrammehr, S. 
Mohamed, and S. Nahavandi, "A new fuzzy logic based adaptive 
motion cueing algorithm using parallel simulation-based motion 
platform," in 2020 IEEE International Conference on Fuzzy 
Systems (FUZZ-IEEE), 2020: IEEE, pp. 1-8.  

[27] H. Asadi, C. P. Lim, S. Mohamed, D. Nahavandi, and S. 
Nahavandi, "Increasing motion fidelity in driving simulators 
using a fuzzy-based washout filter," IEEE Transactions on 
Intelligent Vehicles, vol. 4, no. 2, pp. 298-308, 2019. 

[28] H. Asadi, T. Bellmann, S. Mohamed, C. P. Lim, A. Khosravi, and 
S. Nahavandi, "Adaptive Motion Cueing Algorithm using 
Optimized Fuzzy Control System for Motion Simulators," IEEE 
Transactions on Intelligent Vehicles, 2022. 

[29] H. Asadi, S. Mohamed, and S. Nahavandi, "Incorporating human 
perception with the motion washout filter using fuzzy logic 
control," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 
6, pp. 3276-3284, 2015. 

[30] H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, and M. 
Oladazimi, "An optimal washout filter based on genetic 
algorithm compensators for improving simulator driver 
perception," in DSC 2015: Proceedings of the Driving Simulation 
Conference & Exhibition, 2015: Max Planck Institute for the 
Advancement of Science, pp. 1-10.  

[31] M. R. C. Qazani, H. Asadi, and S. Nahavandi, "An Optimal 
Motion Cueing Algorithm Using the Inverse Kinematic solution 
of the Hexapod Simulation Platform," IEEE Transactions on 
Intelligent Vehicles, 2021. 

[32] M. R. C. Qazani, H. Asadi, S. Mohamed, C. P. Lim, and S. 
Nahavandi, "An optimal washout filter for motion platform using 
neural network and fuzzy logic," Engineering Applications of 
Artificial Intelligence, vol. 108, p. 104564, 2022. 

[33] H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi, "A linear 
quadratic optimal motion cueing algorithm based on human 
perception," in ACRA 2014: Proceedings of Australasian 
Conference on Robotics and Automation, 2014: Australian 
Robotics and Automation Association, pp. 1-9.  

[34] M. R. C. Qazani, H. Asadi, and S. Nahavandi, "A decoupled 
linear model predictive control-based motion cueing algorithm 
for simulation-based motion platform with limitted workspace," 
in 2019 IEEE International Conference on Industrial Technology 
(ICIT), 2019: IEEE, pp. 35-41.  

[35] H. Asadi et al., "A model predictive control-based motion cueing 
algorithm using an optimized nonlinear scaling for driving 
simulators," in 2019 IEEE International Conference on Systems, 
Man and Cybernetics (SMC), 2019: IEEE, pp. 1245-1250.  

[36] M. R. C. Qazani, H. Asadi, and S. Nahavandi, "A model 
predictive control-based motion cueing algorithm with 
consideration of joints’ limitations for hexapod motion platform," 
in 2019 IEEE International Conference on Systems, Man and 
Cybernetics (SMC), 2019: IEEE, pp. 708-713.  

[37] M. R. C. Qazani, H. Asadi, and S. Nahavandi, "A motion cueing 
algorithm based on model predictive control using terminal 
conditions in urban driving scenario," IEEE Systems Journal, vol. 
15, no. 1, pp. 445-453, 2020. 



[38] M. R. C. Qazani, H. Asadi, S. Mohamed, and S. Nahavandi, "An 
Inverse Kinematic-based Model Predictive Motion Cueing 
Algorithm for a 6-DoF Gantry-Tau Mechanism," in ACRA 2019: 
Proceedings of the Australasian Conference on Robotics and 
Automation, 2019: [Australian Robotics & Automation 
Association], pp. 1-9.  

[39] M. R. C. Qazani, H. Asadi, S. Mohamed, C. P. Lim, and S. 
Nahavandi, "A Time-Varying Weight MPC-Based Motion 
Cueing Algorithm for Motion Simulation Platform," IEEE 
Transactions on Intelligent Transportation Systems, 2021. 

[40] M. R. C. Qazani et al., "An MPC-based Motion Cueing 
Algorithm Using Washout Speed and Grey Wolf Optimizer," in 
2021 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC), 2021: IEEE, pp. 1627-1633.  

[41] M. R. C. Qazani et al., "Whale Optimization Algorithm for 
Weight Tuning of a Model Predictive Control-Based Motion 
Cueing Algorithm," in 2021 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC), 2021: IEEE, pp. 1042-
1048.  

[42] A. Koohestani et al., "A knowledge discovery in motion sickness: 
a comprehensive literature review," IEEE access, vol. 7, pp. 
85755-85770, 2019. 

[43] D. E. Angelaki and K. E. Cullen, "Vestibular system: the many 
facets of a multimodal sense," Annu. Rev. Neurosci., vol. 31, pp. 
125-150, 2008. 

[44] E. Groen and W. Bles, "How to use body tilt for the simulation of 
linear self motion," Journal of Vestibular Research, vol. 14, no. 
5, pp. 375-385, 2004. 

[45] A. Mohammadi, S. Asadi, K. Nelson, and S. Nahavandi, "Future 
reference prediction in model predictive control based driving 
simulators," in Australasian conference on robotics and 
automation (ACRA2016), 2016.  

[46] M. Han, J. Xi, S. Xu, and F.-L. Yin, "Prediction of chaotic time 
series based on the recurrent predictor neural network," IEEE 
transactions on signal processing, vol. 52, no. 12, pp. 3409-3416, 
2004. 

[47] F. Altché and A. de La Fortelle, "An LSTM network for highway 
trajectory prediction," in 2017 IEEE 20th International 
Conference on Intelligent Transportation Systems (ITSC), 2017: 
IEEE, pp. 353-359.  

[48] D. Lee, Y. P. Kwon, S. McMains, and J. K. Hedrick, 
"Convolution neural network-based lane change intention 
prediction of surrounding vehicles for acc," in 2017 IEEE 20th 
International Conference on Intelligent Transportation Systems 
(ITSC), 2017: IEEE, pp. 1-6.  

[49] M. R. C. Qazani, H. Asadi, and S. Nahavandi, "High-fidelity 
hexarot simulation-based motion platform using fuzzy 
incremental controller and model predictive control-based 
motion cueing algorithm," IEEE Systems Journal, vol. 14, no. 4, 
pp. 5073-5083, 2019. 

[50] L. Xin, P. Wang, C.-Y. Chan, J. Chen, S. E. Li, and B. Cheng, 
"Intention-aware long horizon trajectory prediction of 
surrounding vehicles using dual lstm networks," in 2018 21st 
International Conference on Intelligent Transportation Systems 
(ITSC), 2018: IEEE, pp. 1441-1446.  

[51] N. Deo and M. M. Trivedi, "Multi-modal trajectory prediction of 
surrounding vehicles with maneuver based lstms," in 2018 IEEE 
Intelligent Vehicles Symposium (IV), 2018: IEEE, pp. 1179-1184.  

[52] Y. Hu, W. Zhan, and M. Tomizuka, "Probabilistic prediction of 
vehicle semantic intention and motion," in 2018 IEEE Intelligent 
Vehicles Symposium (IV), 2018: IEEE, pp. 307-313.  

[53] S. Casas, W. Luo, and R. Urtasun, "Intentnet: Learning to predict 
intention from raw sensor data," in Conference on Robot 
Learning, 2018: PMLR, pp. 947-956.  

[54] T. Zhao et al., "Multi-agent tensor fusion for contextual trajectory 
prediction," in Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2019, pp. 12126-
12134.  

[55] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. 
Mouzakitis, "Deep learning-based vehicle behavior prediction for 
autonomous driving applications: A review," IEEE Transactions 
on Intelligent Transportation Systems, 2020. 

[56] M. R. C. Qazani, H. Asadi, S. Mohamed, and S. Nahavandi, 
"Prepositioning of a land vehicle simulation-based motion 
platform using fuzzy logic and neural network," IEEE 
Transactions on Vehicular Technology, vol. 69, no. 10, pp. 
10446-10456, 2020. 

[57] N. M. Vural, S. Ergut, and S. S. Kozat, "An efficient and effective 
second-order training algorithm for lstm-based adaptive 
learning," IEEE Transactions on Signal Processing, 2021. 

[58] B. R. Kiran et al., "Deep reinforcement learning for autonomous 
driving: A survey," IEEE Transactions on Intelligent 
Transportation Systems, 2021. 

[59] M. R. C. Qazani, H. Asadi, S. Mohamed, C. P. Lim, and S. 
Nahavandi, "Prediction of Motion Simulator Signals Using Time-
Series Neural Networks," IEEE Transactions on Aerospace and 
Electronic Systems, 2021, doi: Accepted Recently. 

[60] S. Hochreiter and J. Schmidhuber, "Long short-term memory," 
Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997. 

[61] H. Jaeger, "The “echo state” approach to analysing and training 
recurrent neural networks-with an erratum note," Bonn, 
Germany: German National Research Center for Information 
Technology GMD Technical Report, vol. 148, no. 34, p. 13, 2001. 

[62] M. R. C. Qazani, S. M. J. Jalali, H. Asadi, and S. Nahavandi, 
"Optimising Control and Prediction Horizons of a Model 
Predictive Control-Based Motion Cueing Algorithm Using 
Butterfly Optimization Algorithm," in 2020 IEEE Congress on 
Evolutionary Computation (CEC), 2020: IEEE, pp. 1-8.  

[63] B. Conrad and S. F. Schmidt, "A study of techniques for 
calculating motion drive signals for flight simulators," 1971. 

[64] T. Tettamanti, A. Mohammadi, H. Asadi, and I. Varga, "A two-
level urban traffic control for autonomous vehicles to improve 
network-wide performance," Transportation research procedia, 
vol. 27, pp. 913-920, 2017. 

[65] M. R. C. Qazani, H. Asadi, M. Al-Ashmori, S. Mohamed, C. P. 
Lim, and S. Nahavandi, "Time Series Prediction of Driving 
Motion Scenarios Using Fuzzy Neural Networks:* Motion Signal 
Prediction Using FNNs," in 2021 IEEE International Conference 
on Mechatronics (ICM), 2021: IEEE, pp. 1-6.  

[66] K. Kumar et al., "SpinalXNet: Transfer Learning with Modified 
Fully Connected Layer for X-Ray Image Classification," in 2021 
IEEE International Conference on Recent Advances in Systems 
Science and Engineering (RASSE), 2021: IEEE, pp. 1-7.  

[67] M. R. C. Qazani, V. Pourmostaghimi, M. Moayyedian, and S. 
Pedrammehr, "Estimation of tool–chip contact length using 
optimized machine learning in orthogonal cutting," Engineering 
Applications of Artificial Intelligence, vol. 114, p. 105118, 2022. 

[68] M. R. C. Qazani, H. Parvaz, and S. Pedrammehr, "Optimization 
of Fixture Locating Layout Design Using Comprehensive 
Optimised Machine Learning," 2022. 

[69] F. Nazari, N. Mohajer, D. Nahavandi, A. Khosravi, and S. 
Nahavandi, "Comparison Study of Inertial Sensor Signal 
Combination for Human Activity Recognition based on 
Convolutional Neural Networks," arXiv preprint 
arXiv:2206.04480, 2022. 

[70] F. Nazari, Nahavandi, D., Mohajer, N., & Khosravi, A, 
"Comparison of Deep Learning  Techniques on Human Activity 
Recognition using Ankle Inertial Signals," presented at the 
International Conference on Systems, Man, and Cybernetics 
(SMC), 2022. 

[71] F. Nazari, Mohajer, N., Nahavandi, D., & Khosravi, A, 
"Comparison of gait phase detection using traditional machine 
learning and deep learning techniques," 2022. 

[72] M. Oladazimi, F. Molaei-Vaneghi, M. Safari, H. Asadi, and S. 
Aghay Kaboli, "A review for feature extraction of EMG signal 
processing," in 4th International Conference on Computer and 
Automation Engineering (ICCAE 2012), 2012: ASME Press, pp. 
85-94.  

[73] M. R. C. Qazani et al., "A Fast and Reliable Approach for Driving 
Style Customization in Autonomous Vehicles," in 2021 IEEE 
International Conference on Systems, Man, and Cybernetics 
(SMC), 2021: IEEE, pp. 1869-1875.  

[74] F. Nazari, N. Mohajer, D. Nahavandi, A. Khosravi, and S. 
Nahavandi, "Critical Review of Exoskeleton Technology: State 
of the art and development of physical and cognitive human-robot 
interface," arXiv preprint arXiv:2111.12860, 2021. 

[75] F. Nazari, D. Nahavandi, N. Mohajer, and A. Khosravi, "Human 
Activity Recognition from Knee Angle Using Machine Learning 
Techniques," in 2021 IEEE International Conference on Systems, 
Man, and Cybernetics (SMC), 2021: IEEE, pp. 295-300.  

 


	I. Introduction
	II. Related Studies
	A. Traditional Method
	B. Feedforward NN
	C. NAR

	III. Methodology
	A. ESN
	B. LSTM

	IV. Results and Discussions
	V. Conclusion
	References


