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Abstract—Existing Simultaneous Localization and Mapping
(SLAM) approaches are limited in their scalability due to
growing map size in long-term robot operation. Moreover,
processing such maps for localization and planning tasks leads
to the increased computational resources required onboard.
To address the problem of memory consumption in long-term
operation, we develop a novel real-time SLAM algorithm, MeS-
LAM, that is based on neural field implicit map representation.
It combines the proposed global mapping strategy, including
neural networks distribution and region tracking, with an
external odometry system. As a result, the algorithm is able to
efficiently train multiple networks representing different map
regions and track poses accurately in large-scale environments.
Experimental results show that the accuracy of the proposed
approach is comparable to the state-of-the-art methods (on
average, 6.6 cm on TUM RGB-D sequences) and outperforms
the baseline, iMAP∗. Moreover, the proposed SLAM approach
provides the most compact-sized maps without details distortion
(1.9 MB to store 57 m3) among the state-of-the-art SLAM
approaches.

Index Terms—SLAM, Visual SLAM, Real-time SLAM, Neu-
ral Field based SLAM, Implicit Mapping, Sensors Fusion, 3D
Deep Learning, Large Scale Mapping

I. INTRODUCTION

A. Motivation

Nowadays, the area of autonomous robotics is developing
at a very high pace. Its market constituted 1,61 billion USD
in 2021 and is expected to grow 13 times by 2030 [1].
For the last decade, mobile robots have been successfully
implemented in many areas including goods delivery [2],
warehouse logistic [3]–[6], autonomous transport, disinfec-
tion [7], [8], and agriculture [9]. Autonomous robots are start-
ing to work alongside humans executing tasks of increasing
complexity. Such wide area of application requires robotic
systems, including both hardware and software parts, to be
robust, safe and efficient in challenging environments, e.g.
in day and night conditions [10]. As a part of the software
architecture, autonomous robots typically have a perception
subsystem that mainly solves the problem of Simultaneous
Localization and Mapping (SLAM). It generates a map and
defines the position of the robot within the map at the same
time. Thus, SLAM is a crucial task that must be solved
accurately and efficiently to perform primary robot operation.
Currently, many research collectives, both academic and
industrial, are aimed at developing new SLAM approaches,
designing task-driven methods and improving the existing
pipelines to increase their robustness.

Fig. 1. Distribution of regions assigned to a single neural network for
rendering. Top: in green — left region, in blue — right region, in between
— regions intersection. In the middle: corresponding regions rendering. At
the bottom: the final merged global map without visible stitching.

B. Problem Statement

One of the questions that arise in the SLAM problem is
lifelong robot operation, which involves storage, modifica-
tion, and access to large-sized maps, e.g. point clouds of
cities. There are two major types of maps by structure: dense
and sparse. Sparse maps contain an insignificant amount of
data about the scene (objects on them are barely recognizable
by humans); hence, they are light-weighted compared to
dense maps. Contrariwise, dense maps include rich infor-
mation about the environment; such maps are useful in
static and dynamic object recognition, semantic segmentation
and object tracking. Furthermore, they are understandable
for the human perception that can facilitate the human-
robot interaction area. However, memory consumption by
dense maps is high, and their processing involves more
computational resources to load and operate within. Thus,
solving the SLAM problem implies a trade-off between
required map density and available resources during both
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Fig. 2. MeSLAM Overview.

map creation and maintenance.
The high requirements for computational resources result

in increased costs spent on data storage and other hardware,
therefore enlarging the overall cost of robotics solution
implementation. This work is aimed to research the question
of achieving low memory consumption by dense mapping in
SLAM systems for large-scale environments.

C. Related Works

1) Sparse SLAM: SLAM approaches that output sparse
maps are regularly either visual-based or LIDAR-based.
In general, the first group consists of four steps: feature-
based frontend, local mapping that defines and tracks local
keyframes, loop closure detection, and bundle adjustment
(BA). State-of-the-art approaches like ORB-SLAM3 [11],
OV2SLAM [12] and DXSLAM [13] are designed in this
paradigm. Although these methods are highly accurate, an
empty featureless environment can easily distract their per-
formance since they rely only on visual data. Moreover, the
map consistency strongly depends on the number of features
detected and matched, thereby, plain scenes result in very
sparse maps or even loss of tracking.

Another group of SLAM methods that provide sparse
maps is LiDAR-based solutions [14], [15]. They lack the
disadvantages inherent to visual-based solutions, yet the
sparsity of the maps strongly depends on the LiDAR model
used in a setup. The higher horizontal and vertical angles of
view, and number of laser pairs in LiDAR result in denser
maps.

2) Dense SLAM: As for dense SLAM approaches, Kinect-
Fusion [16] obtains a dense 3D map based on voxel represen-
tation by combining current depth images in the voxel space
and using camera positions calculated by the ICP algorithm.
Its improvement, Kintinuous [17], provides dense mesh-
based mapping of relatively large environments in real-time.
However, these algorithms lack loop closure detection, which
leads to higher accumulated errors and results in inaccurate
3D models. Another approach, ElasticFusion [18], provides
dense globally consistent surfel-based maps of scalable envi-
ronments without any post-processing steps, including pose
graph optimization. Optimization, especially bundle adjust-
ment, is rarely used or used with approximation in dense

SLAM methods due to a huge number of variables. BAD
SLAM [19] is a unique real-time dense SLAM approach that
is able to implement bundle adjustment optimization for 3D
map and positions without commonly used approximation.
Although these dense methods have visually consistent 3D
maps, they are unable to generate smooth continuous maps
without holes.

3) Neural Field Approaches: Both dense and sparse meth-
ods require higher memory consumption with the growth
of map size or with the increased level of details obtained
during the long operation on the same scene. Thus, the
implicit scene representation based on neural fields gains
large popularity due to the high capability of such methods
to learn and store an environment in a compact form. The
core idea of NeRF [20] is the optimization of neural radiance
fields to render photorealistic novel views of cluttered scenes
with high precision and continuous properties. However,
the method is aimed at the reconstruction of small-sized
objects (not rooms), and its main disadvantage is the sig-
nificant time of training. Contrariwise, the kiloNeRF [21]
approach has drastically decreased the time of NeRF recon-
struction by exploiting multiple tiny Multi-Layer Perceptron
(MLP) networks instead of the large one used in the NeRF
method. This concept provides real-time operation without
precision decrease, but the limited space of reconstruction
is not addressed in the paper. Another approach, Block-
NeRF [22] addresses the reconstruction of large-scale scenes.
The algorithm is able to make the map of the city scene.
However, both kiloNeRF and Block-NeRF methods solve the
reconstruction task and not the SLAM one.

Based on NeRF ideas of neural radiance field optimiza-
tion, iMAP [23] proposes a real-time SLAM method that
optimizes position simultaneously with the MLP training.
The real-time operation is reached thanks to the reduction
of the MLP size used in the original paper, and the use
of depth map information. However, the utilization of a
single MLP leads to the network “forgetting” visited regions
of the map, especially, in the case of large environments.
NICE-SLAM [24] introduces a SLAM method with hierar-
chical scene representation which is optimized along with
pretrained geometric priors and results in a detailed recon-
struction of a large indoor scene. Although decomposition



of the environment results in a partial solution to the scaling
problem, their discretization is tiny and, therefore, is hardly
applicable for outdoors. Moreover, the usage of a pretrained
network and training of the features instead results in a coarse
reconstruction.

D. Contribution

We propose a novel SLAM algorithm for large-scale
environment mapping with low memory consumption. It
is achieved by the combination of recent achievements in
neural implicit map representation with a proposed network’s
distribution strategy. The distribution module of our networks
enables the usage of multiple MLP networks; each network’s
parameters implicitly represent a map of the region (local
map) assigned to it. Moreover, the proposed distribution
strategy provides the stitching of local maps into a global one
without deformation, distorted overlapping and displacement;
the example of obtained global map is shown in Fig. 1.
Further, we propose a novel idea of combining external
odometry with neural field-based optimization for efficient
pose tracking in intersecting regions, and smooth stitching
of local maps.

II. METHODOLOGY

The overview of the proposed SLAM system is depicted
in Fig. 2. RGB-D frames that include colored images and
depth maps are transferred on algorithm’s input; odometry is
calculated for each RGB-D frame. Further, the odometry is
combined with the joint neural-based optimization proposed
in iMAP. During the joint optimization, the RGB-D frame
is used to simultaneously refine the pose and neural network
weights, which represent the current map of the region.
During operation, the global mapping module distributes
networks in the environment utilizing refined poses and
determines the current working region involved in joint
optimization. Other regions, not involved in the optimization
at the current step, are stored. The whole environment or
its parts can be reconstructed using the corresponding region
set.

A. Odometry

iMAP estimates the current pose using the previous one as
initial and optimizes it according to the current frame. This
approach strongly depends on the quality of neural network
training achieved before the pose optimization begins; e.g.
better performance in pose estimation can be reached if
the network was pretrained for a while in a static start
position. However, the use of external odometry decreases
the relations between pose estimation accuracy and quality
of network pretraining, and we use this property for robust
tracking in intersecting regions. Fig. 3 demonstrates that lack
of odometry leads to imprecise global mapping with the
presence of artifacts, displacements, and false objects.

The odometry for each RGB-D frame is calculated us-
ing Colored Point Cloud Registration [25] algorithm. The
method optimizes extended for RGB-D frame photometric
and geometric objectives, providing point cloud alignment
along both the normal and tangent directions. Then, the
odometry calculated in each frame is used as the initial pose
estimation before pose optimization to the current frame.

Fig. 3. Influence of external odometry and smoothing on mapping. On the
top: the smoothed mapping without external odometry — displacements,
false objects and artifacts. In the middle: non-smoothed mapping with
external odometry — many artifacts. At the bottom: mapping with external
odometry and smoothing — no displacements, no false objects, small
artifacts.

B. Joint Optimization

Joint optimization handles neural network parameters,
representing the current map, and poses simultaneously. The
map is refined by training Multi-Layer Perceptron (MLP)
which parameters implicitly reflect the current map region.
MLP architecture is represented in Fig. 4. The neural implicit
representation is able to return color (RGB) and density (σ)
for each point on the local map. To calculate them at each
point of the local map, the network takes the point spatial
coordinates (x, y, z) as input (scaled in [−1, 1] range), then
applies Gaussian positional embedding γ, and, finally, returns
the calculated values of color and density in the taken point
after fully connected MLP body.

To refine the map, we use the NeRF strategy of rendering a
predicted RGB-D frame from the current pose by integrating
obtained colors and densities, and updating the MLP weights
by minimizing geometric and photometric losses between
the predicted frame and the real one. Further, the odometry
pose at the current frame, instead of the previous pose in
iMAP approach, is optimized by gradient descent together
with MLP parameters. Thus, the current pose and current
local maps are estimated by the joint optimization process.

The joint optimization process is inspired by the iMAP.
However, we want to emphasize the importance of map co-
ordinates (x, y, z) scaling into [−1, 1] range. This is achieved
by utilizing the following transformation matrix:



Fig. 4. The architecture of MLP network. The yellow block is input data;
the red one — output. RGB data is obtained after sigmoid activation, while
density σ — after ReLU activation. The green block is Gaussian positional
embedding. Blue elements represent fully-connected MLP layers with ReLU
activations. The numbers inside the blocks are dimensions. The symbol “+”
is concatenation.

Twc =


Xr − x

Rwc Yr − y
Zr − z

0 0 0 1

 ,

where Rwc is the rotation between the camera and
world/region coordinate system (world and region are not
rotated related to each other), (x, y, z) is the current camera
pose in world coordinate system, (Xr, Yr, Zr) are the coor-
dinates of the region’s origin in the world coordinate system.

C. Global Mapping

Following the iMAP work, our approach utilizes the MLP
network to implicitly represent a map. The usage of a
single MLP has limitations to the working region size due
to the limitation in neural network generalization capacity,
in other words, in the “remembering” ability. We propose
to use multiple MLP networks that are distributed in the
environment. Thus, each single MLP network represents only
a part of the environment, e.g. some region, assigned to this
network. The local map is the map of such region. The global
map can be obtained by merging local maps that are stored
in the implicit form of neural network parameters.

The global mapping module consists of two processes.
The first one, the networks distribution process, divides the
environment into regions, while the second one, the region
tracking process, monitors the current pose to define which
local map should be involved in the joint optimization pro-
cess. Each local map has intersections with the neighboring
regions. Fig. 1 demonstrates the global map that consists of
green (left) and blue (right) local maps, and their intersection
in the middle. The size of each local map is fixed and
constitutes 30 m3; the neighboring regions have 20% of
intersections with each other.

When MeSLAM is launched, the MLP network distribu-
tion process creates the first local map around the initial
pose. During operation, it adds new local maps when the
pose enters the intersection area, and initializes the new
neural network in the new region using the parameters of
the previous local map. For a visited region, MeSLAM uses
corresponding network parameters stored for this region.

At each time moment, MeSLAM uses only one MLP for
joint optimization, that decreases computational load relative
to the use of all intersected MLPs at the same time. The
knowledge of which region to use for join optimization is

TABLE I
ATE RMSE ON TUM RGB-D DATASET FOR STATE-OF-THE-ART

METHODS

fr1/desk (cm) fr2/xyz (cm) fr3/office (cm)
iMAP 4.9 2.0 5.8
iMAP* 14.8 7.78 11.5
MeSLAM (ours) 6.0 6.54 7.5
ORB-SLAM2 1.6 0.4 1.0
NICE-SLAM 2.7 1.8 3.0
Kintinuous 3.7 2.9 3.0

provided by the region tracking process. However, when a
pose is in the intersection area, MeSLAM uses the working
MLP for joint optimization, and the other one from the
intersection is trained but does not influence pose optimiza-
tion. When a pose crosses the middle of an intersection, the
following region becomes the working one and is used in
the joint optimization process. The region working in joint
optimization is depicted in Fig. 2 in red square.

D. Reconstruction

The proposed global mapping procedure corrects the shift
between local maps. An exponential smoothing and mean
prediction in the intersected regions are used. Fig. 3 demon-
strates the reconstruction result before and after the smooth-
ing. In the intersection, we use mean predictions with weights
exponentially decreased from the region center. The proposed
stitching technique creates a smooth and continuous global
map, and removes the artifacts caused by different quality of
each neural network training.

III. EXPERIMENTS AND RESULTS

To validate the performance of the proposed MeSLAM,
three sets of experiments were carried out. The first one
is the evaluation and comparison of the accuracy of the
proposed approach and state-of-art SLAM methods. The
second experiment is devoted to the comparison of iMAP
and the proposed algorithm performance in a large scale
environment. Finally, the third experiment is aimed at the
comparison of map sizes obtained by state-of-the-art and
proposed MeSLAM approaches.

A. TUM Evaluation

TUM RGB-D dataset [26] is used to evaluate and com-
pare the accuracy of proposed approach with state-of-the-art
SLAM methods: iMAP [23], iMAP∗ (re-implementation of
iMAP that is not open-source), ORB-SLAM2 [27], NICE-
SLAM [24] and Kintinuous [17]. The calculated metric of
SLAM accuracy is Absolute Trajectory Error (ATE RMSE)
in cm.

The results of the experiment are summarized in Table I.
In general, MeSLAM shows lower accuracy than state-of-art
ORB-SLAM2 metrics, although the values are comparable
(e.g. 6.0 cm against 1.6 cm in fr1/desk sequence). In addition,
MeSLAM performs more accurately than iMAP* in all
sequences and, furthermore, demonstrates stable accuracy
results regardless of sequence thanks to the usage of odom-
etry in MeSLAM. The standalone odometry has significant
drift within even a short time. However, the combination of
external odometry with neural-based optimization provides



Fig. 5. Trajectories of MeSLAM, iMAP∗, MeSLAM standalone odometry,
and ground truth trajectory on TUM RGB-D dataset, fr3/office sequence

Fig. 6. MeSLAM trajectory vs. iMAP in large environment

more accurate, smooth and converged to ground truth trajec-
tories compared to the standalone neural field-based method
utilized in iMAP. The example of trajectories is demonstrated
in Fig. 5.

B. Large Scene Evaluation

To evaluate and compare the performance of the proposed
MeSLAM and state-of-the-art iMAP∗ in large environments,
an indoor dataset consisting of a long trajectory was recorded
using a RealSense D435 camera; both colored and depth
data are captured at 15 frames per second with a resolution
of 640x480. Both methods are launched on the collected
dataset. The estimated and ground truth trajectories are
presented in Fig. 6. iMAP∗ loses its tracking after 60% of the
dataset path and is not able to adequately reflect the map of
the environment. Such failure happens because of limitations
in the “remembering” capacity of its neural network. It is
impossible to fit large-scale scenes into a small network.
Contrariwise, the proposed MeSLAM successfully performs
both tracking and mapping due to the networks distribution
strategy. The final global map produced by MeSLAM is
presented in Fig. 7.

C. Map Size Evaluation

In order to evaluate the map sizes, we collected a large-
scale indoor dataset sequences that consist of images and
depth maps using the same setup as in III-B experiment. The

Fig. 7. MeSLAM map in a large environment, library

TABLE II
MAP SIZE IN MB FOR STATE-OF-THE-ART METHODS

Method Sequence duration
30s 60s 90s 120s 150s

KinectFusion [MB] 70.1 98.9 158.2 276.7 436.6
ElasticFusion [MB] 17.5 29.0 38.2 53.5 63.6
RTAB-Map [MB] 8.7 17.0 25.1 33.1 37.9
BAD SLAM [MB] 13.1 50.0 86.4 109.1 123.8
ORB-SLAM2 [MB] 18.9 21.9 30.4 34.4 38.8
MeSLAM (ours) [MB] 1.9

Fig. 8. Map representation over time for MeSLAM and BAD SLAM.
MeSLAM represents the environment by continuous function and improves
the quality over time without increasing required memory, BAD SLAM
represents the environment as dense points that increases required memory
when the amount of points is increased

location captured on each sequence is the same with volume
57 m3. However, the duration of each sequence varies from
30 to 150 sec with a step of 30 sec. Thus, a longer sequence
can provide more details about the same scenes due to the
bigger amount of images and depth maps taken from diverse
angles of view, i.e. longer operation time in the volume.

Four dense and one sparse state-of-the-art SLAM meth-
ods: KinectFusion [16], ElasticFusion [18], RTAB-Map [28],
BAD-SLAM [19] and ORB-SLAM2 [27], were launched on
each dataset sequence along with our approach, MeSLAM.
The measurable parameter is the size of the obtained 3D map
in MB.

Table II demonstrates the common trend for all methods
except the proposed one: the size of the map increases
if the operation duration is longer. The proposed method,
MeSLAM, shows the fixed size of the map (1.9 MB for
57 m3) because it is stored in the implicit representation as
network parameters. Despite the fact that a longer sequence
results in better parameters training and, therefore, more
detailed map representation depicted in Fig. 8, the map,
stored as network parameters, does not grow in its size.
However, when a map is stored in explicit representation,
e.g. point cloud (all methods except ours), its size grows
with the increasing level of scene details; thus, it is costly in
terms of disk space. The most efficient map storage among
listed state-of-the-art methods is obtained by the RTAB-Map
algorithm. Although the proposed approach outperformed the
map size of RTAB-Map 4.5 and 19.9 times in 30 sec and
150 sec sequences, MeSLAM maps, being continuous and
smooth, are still inferior to the most advanced in terms of



the level of map details BAD SLAM method. Fig. 8 the
comparison of map details for BAD SLAM and MeSLAM
approaches.

IV. CONCLUSION AND DISCUSSION

In this work, we presented a novel dense neural-based
SLAM approach, MeSLAM, for large scale environments
with low memory consumption. Firstly, the utilization of
odometry alongside the joint optimization process provides
precise and stable accuracy of the proposed method. Experi-
mental results have shown that MeSLAM has on average 6.6
cm ATE on TUM RGB-D sequences, which is comparable
to the state-of-the-art methods, ORB-SLAM2, NICE-SLAM
and Kintinuous, and outperforms the baseline iMAP∗ with
average accuracy 11.8 cm. Secondly, MeSLAM’s global
mapping module, that includes the networks distribution
and region tracking processes, enables precise mapping of
large scenes by decomposing it into regions and stitching
them at the time of reconstruction. Experimental results have
demonstrated that such an approach surpasses the original
iMAP method in the capability of precise tracking and
mapping in the large environment. Finally, it is validated that
the proposed approach is able to efficiently store the large-
sized maps: it requires only 1.9 MB to store 57 m3 while
other state-of-the-art methods occupies from 8.7 to 436.6 MB
of space to store the same-sized scene.

In future work, authors consider development of bundle
adjustment for a global map representation consisting of
intersected parts.
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