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Abstract—Anthropomorphic robot avatars present a con-
ceptually novel approach to remote affective communication,
allowing people across the world a wider specter of emotional
and social exchanges over traditional 2D and 3D image data.
However, there are several limitations of current telepresence
robots, such as the high weight, complexity of the system that
prevents its fast deployment, and the limited workspace of the
avatars mounted on either static or wheeled mobile platforms.

In this paper, we present a novel concept of telecommuni-
cation through a robot avatar based on an anthropomorphic
swarm of drones; SwarMan. The developed system consists of
nine nanocopters controlled remotely by the operator through
a gesture recognition interface. SwarMan allows operators
to communicate by directly following their motions and by
recognizing one of the prerecorded emotional patterns, thus
rendering the captured emotion as illumination on the drones.
The LSTM MediaPipe network was trained on a collected
dataset of 600 short videos with five emotional gestures. The
accuracy of achieved emotion recognition was 97% on the test
dataset.

As communication through the swarm avatar significantly
changes the visual appearance of the operator, we investigated
the ability of the users to recognize and respond to emotions
performed by the swarm of drones. The experimental results
revealed a high consistency between the users in rating emo-
tions. Additionally, users indicated low physical demand (2.25
on the Likert scale) and were satisfied with their performance
(1.38 on the Likert scale) when communicating by the SwarMan
interface.

Index Terms—human-robot interaction, telecommunication
systems, long short-term memory (LSTM) networks, multi-
agent systems, affective communication

I. INTRODUCTION

With the latest development in robotics and telepresence
technology, along with the production of robots for man-
ufacturing purposes, more attention is paid to the use of
robots in everyday life. Novel research topics are emerging
in the field of service robots, suggesting their application
as companions to improve the mental state of humans. To

The reported study was funded by RFBR and CNRS according to the
research project No. 21-58-15006.

Fig. 1. (a) User interaction with SwarMan avatar. (b) The remote avatar
performs gestures in front of the camera. (c) Point landmarks of the
recognized ”Happy” gesture.

achieve the necessary behavior complexity, robots have to
accurately determine the state of the user to establish natural
communication.

For example, Muhammad Abdullah et al. [1] developed
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the emotion recognition system that uses the voice features
in addition to the facial expressions of a human for the robot
assistant functionality.

Companion robots can play with children and teach them,
as proposed in the research by Leite et al. [2] in which the
developed robots responded empathetically to several of the
children’s affective states. In addition to the voiced indication
of certain emotions and the body language, several papers are
focused on robots that can broadcast the emotional state by
their eyes, e.g., an eyeball robot developed by Shimizu et al.
[3].

Mobile robots are actively used as agents in teleoperation
and telepresence tasks for affective communication. Most of
these robots are designed to resemble the human body and
to perform various operations similar to a human [4]. How-
ever, telecommunication through the robotic avatar requires
delivering the robot to the working area, which often proves
challenging either due to the bulkiness of the robot or due
to the dangerous environment. The operator stations have
been equipped to organize the work of stationary robots, as
suggested in the research of Christian Lenz and Sven Behnke
[5], for telemanipulation by anthropomorphic avatar arms.

The mentioned above scenarios propose highly sufficient
robotic systems. However, the mobility of the mentioned
above robots is strictly limited by the workspace of the
robot’s upper body and the physical dimensions of the mobile
platform. Moreover, their implementation may be challeng-
ing to the user due to the high mass and relatively slow op-
eration of these systems. Meanwhile, a swarm of drones can
serve as an effective remote-control tool. Several researchers
explored applications of the robotic swarms in teleoperation,
for example, Serpiva et al. [6] with the SwarmPaint system
that utilizes a swarm of gesture-controlled drones to change
formations and paint by the light in the air. Recently, due to
the fast developments in telepresence technologies alongside
virtual and mixed reality technologies, the teleoperation of
drones avatars is suggested by Cordar et al. [7] for human
telepresence and foster empathy with virtual agents and
robots

In this paper, we propose a novel approach to the task of
telepresence, involving a swarm of drones in broadcasting
emotions from the operator to the user.

II. RELATED WORKS

Anthropomorphic robot avatars were extensively inves-
tigated and improved in recent years. Such systems as
TELESAR VI developed by Tachi et al. [8] allow dexterous
remote manipulation and communication through an avatar
designed to resemble the upper body of the human.

Several researchers investigated effective communication
through robot avatars. For example, Tsetserukou et al. [9]
explored remote affective communications and proposed the
robotic haptic device iFeel IM to augment the emotional
experience during online conversations. Bartneck et al. [10]
explored the dependence of human emotion perception on the
character’s embodiment, showing that there is no significant
difference in the perceived intensity and recognition accuracy
between robotic and screen characters. Chao-gang et al.
[11] proposed a facial emotion generation model based on
random graphs for virtual robots. A fuzzy emotion system

that controls the face and the voice modules was developed
by Vasquez et al. [12] for a tour-guide mobile robot.

Though facial expressions play a major role in emotional
recognition, the dynamic body postures could be recognized
with relatively high precision. Matsui et al. [13] proposed a
motion mapping approach to generate natural behavior for
humanoid robots by copying human gestures. Cohen et al.
[14] explored children’s reactions to the iCat and NAO robots
and achieved to design of well-recognized body postures for
NAO. The end-to-end neural network model was developed
by Yoon et al. [15] to generate sequences of human-like
gestures enhancing NAO speech content. The variational
auto-encoder framework was implemented by Marmpena et
al. [16] for generating numerous emotional body language
for the anthropomorphic Pepper robot.

III. SYSTEM ARCHITECTURE

In the developed architecture shown in Fig. 2 the user
interacts with the avatar swarm by visual interpretation of
the emotion while the avatar operator performs the various
body pose gestures to operate the avatar swarm of drones.
The tracking and localization of the drones are done through
the VICON mocap system which consists of 12 infra-red
(IR) cameras.

Fig. 2. Layout of the SwarMan system.

In the remote environment, the operator performs various
gestures which showcase different emotions. These poses are
captured by a DL-based gesture recognition algorithm which
includes the major upper-body nine landmarks which include
head, neck, left-shoulder, right-shoulder, left-elbow, right-
elbow, right-hand and left-hand. These landmarks are then
passed to the decision-making and agent allocation algorithm
where along with the localized positions of the swarm the
designated positions of the swarm of drones are calculated
according to the relative positions of the major nine joints
of the human upper body pose. The user interacts with the
swarm of drones visually to understand the emotions that
the operator was trying to perform. Along with the different
poses of the emotions, the light rings on the drones also
convey a psychological effect on the user for interpreting
the type of emotion which includes green for happy, red for
angry, white for neutral, yellow for confusion, and blue for
sad.

IV. TRAJECTORY GENERATION AND SWARM CONTROL

For a more immersive experience and intuitive control,
the operator of the avatar is controlling the swarm of drones



through a camera feed. The operator’s body landmarks are
collected and then used for trajectory generation and Gesture
recognition (V). Based on the calculated trajectory, each
drone is assigned a role to fly as in the swarm, e.g., left
hand, right shoulder, and head.

A. Trajectory Generation

The operator’s body is being tracked using the MediaPipe
Holistic pipeline and the resulting body landmarks are ex-
tracted from the camera feed. Since the body landmarks are
in the camera frame, both the landmarks’ positions and the
body scale are dependent on the operator’s distance from the
camera. Transformation of the axis is needed to represent the
swarm in the real remote environment. Let S be the camera
coordinate frame; we assume a coordinate frame S′ with an
origin at the head landmark in the camera frame; thus the
position p′ of a body landmark p relative to S′ is given by:

p′ = p− h (1)

where h is the head position relative to S, p is the body
landmark position. Using the resulting points, a tree of
vectors is constructed, shown in (Fig. 3).

Fig. 3. Vector representation of the tracked body landmarks with coordinate
frames.

The vectors [−→v1 ,−→v2 , ...,−→v8] are the unit vectors pointing
from each parent landmark to child landmark, relative to S′,
and is described as:

−→vm =
p′m − p′n
‖ p′m − p′n ‖

, (2)

where p′n is the parent landmark position, p′m is the child
landmark position.

An accurately body-scaled formation can be obtained by
multiplying each unit vector by the actual length of the
correspondent operator’s body part, thus eliminating the
change in swarm size with the change in the operator-camera
distance. Since the list [−→v1,−→v2 , ...,−→v8 ] represents the positions
of the target formation in the frame S′, where the head
landmark is the origin, then by choosing the position of head
drone in the real environment we can represent each target
in the formation using the recursive equation shown in:

Pm = −→vm ∗ Lm + Pn (3)

where Pm, Pn and Lm are the child point target in the real
environment, the parent point target in the real environment,
and the length of the correspondent operator’s body part,
respectively. P0 is equal to the needed head position in the
real environment.

B. Agent Assignment

Crazyflie drones are used in the system utilizing the
Crazyswarm ROS package, the package offers some re-
liable solutions for swarm management. integrating with
Crazyswarm solutions, dynamic agent assignment helps the
system be less complex, easy to set up, and more reliable.
The drones are starting at random positions and are assigned
to target positions in the formation based on the minimum
value of a cost function. Euclidean distance from the drone’s
starting position to the target position is used as a cost
function. The protocol is explained in algorithm 1.

Algorithm 1 Agent Assignment Algorithm
1: Initiate
2: Swarm = [Drone1, Drone2, ..., Drone9]
3: Targets = [P1, P2, ..., P9]
4: Assigned = []
5: for P in Targets do
6: costs = []
7: for Drone in Swarm do
8: if Drone NOT in Assigned then
9: cost = f(P,Drone)

10: costs.append(cost)
11: else
12: Pass
13: end if
14: end for
15: i =indexof(min(costs))
16: Assigned.append(Swarm[i])
17: Swarm[i].target = P
18: end for

The Euclidean distance f is implemented as a cost func-
tion, which is calculated as given by:

f(p, q) =

√√√√ 3∑
i=1

(qi − pi)2 (4)

where pi is the target landmark position, qi is the position
of the drone of the swarm. The result of the task assignment
is shown in Fig. 4.

The successful agent assignment is achieved with the
developed algorithm by finding the nearest available drone
to the formation target.

C. Collision Avoidance

To avoid the inter-agent collision, Artificial Potential Field
(APF) was implemented. The APF algorithm is simply mod-
eling the target way-point as an attraction field and obstacles,
other swarm agents, as repulsion filed. A navigation policy
is constructed by calculating the resultant virtual force on
the agent, using it to steer the drone away from obstacles
toward the target. Since the drones are flying in a close
formation, the repulsive potential is modeled to only act



Fig. 4. Agent assignment results: Drones in random starting position
assigned to target formation.

within a sphere of influence surrounding each drone. The
radius r0 of the implemented sphere of influence, 7, where
[0.2, 0.2, 0.4]T as the down-wash of drones were affecting
each other, the z component was increased compared to the
x and y components. The overall potential Usum, shown in:

Usum(x, y, z) = Uatt(x, y, z) + Urep(x, y, z) (5)

where Uatt is the attraction potential and Urep is the repul-
sion potential. The attraction potential is defined in:

Uatt(x, y, z) = ξ ‖Pdrone − Ptarget‖2 (6)

where Pdrone is the drone current position, Ptarget is the
drone desired position, and ξ is the scaling factor. The
repulsive potential is defined in:

Urep(x, y, z) =

{
1
2η(

1
ρ(x,y,z) −

1
r0
)2 , ρ ≤ r0

0 , ρ > r0
(7)

where ρ(x, y, z) is the distance function and η is the constant
scaling factor. The distance function ρ(x, y, z) is imple-
mented as Manhattan distance described as:

ρ(p, q) =

3∑
i=1

| qi − pi | (8)

where p and q are the drone position and the obstacle
position, respectively.

V. GESTURE RECOGNITION

In the process of interaction between a swarm of drones
and a user, we used five simple, most commonly expressed
emotions during communication: happiness, sadness, anger,
confusion, and neutrality shown in Fig. 5. To achieve an
immersive experience for the operator as well as the user

gesture recognition is added based on body tracking. While
the user communicates through body tracking, rendering
his motion into avatar poses representing his feelings, the
system can help the operator convey the mentioned basic
emotions through drone illumination utilizing gesture recog-
nition. Thus, when the operator wants to convey to the user
happiness, a simple victory hands up is recognized by our
model while the swarm of drones repeats the operator’s
movements, it changes the color of the agents’ light ring
to green as a hint to the user. The system renders white,
blue, red, and yellow to convey neutrality, sadness, anger,
and confusion, respectively.

To automatically change the illumination during broad-
casting different emotions, a gesture recognition technique
based on deep learning was implemented to run in parallel
with body tracking (Fig. 6).

Fig. 6. Dynamic gesture recognition deep learning network architecture.

The network was trained for 100 epochs (Fig. 7), achieving
accuracy on the test dataset of 97%.

Fig. 7. Dynamic gesture recognition training. a) Loss. b) The categorical
accuracy.

The speed of drones within a swarm is limited. Therefore,
the operator cannot change position instantly, which necessi-
tates the use of dynamic gestures rather than static ones. The



Fig. 5. Example of gestures representing emotions. a) Neutral. b) Happy. c) Sad. d) Angry. e) Confused.

implemented gesture recognition technique utilizes a deep
neural network with an architecture that uses Long short-
term memory (LSTM) blocks to store data about the past
positions of key points in a single sequence .

To train the neural network, sequences of body landmarks
were used; each sequence consists of 30 video frames. Land-
marks were extracted from each frame using the MediaPipe
Holistic framework, as discussed in Section IV. A custom
dataset was collected from six participants. We gathered
body landmarks from 600 collected videos for training on
the recognition of our five basic gestures.

Real-time recognition accuracy during user studies was
93%. The user study was performed with a mixed group of
participants; part of them didn’t take part in recording the
training dataset.

VI. EXPERIMENTAL EVALUATION

Participants: We invited 10 participants (two females and
eight males) aged from 22 to 26 (mean = 23.9, std =
1.22), to experience the visual interpretation of five different
emotions from swarm avatar. Eight of the participants had
not previously worked with drones, while two participants
had interacted with drones several times.

Procedure: The experimental procedure applied for emo-
tion evaluation is based on the methodology suggested
by Ajili et al. [17] for accessing virtual avatar expressive
gestures performed with four basic emotions selected from
Russell’s Circumplex model of affect (happy, sad, angry, and
calm). In this paper, we proposed adding the fifth emotion
of confusion to represent knowledge emotions [18] on top of
the basic emotions mentioned above. Users watched a series
of poses performed by the swarm avatar in simulation.

Users were not being influenced by other external factors
such as the sound or color of the drones. After watching the
avatar performance, each user rated the degree to which they
perceived expressed emotions on a 5-point Likert scale (1
being strongly disagreed, 3 being neutral and 5 being strongly
agreed).

Experimental results:
To validate the internal consistency of user responses, we

computed Cronbach’s alpha as a metric used to assess the
reliability of a set of Likert scale, it is expressed as a number
between 0 and 1. The mean of Cronbach’s alpha is > 0.8
for all emotions, indicating the high consistency between the
users’ evaluation of the performed emotions. All emotions
were evaluated relatively high by the users with the emotion

TABLE I
CONFUSION MATRIX OF EMOTION RECOGNITION

Estimated emotion
Performed emotion Happy Sad Angry Neutral Confused

Happy 4.50 1.20 2.80 2.10 1.70
Sad 1.90 4.20 1.80 2.70 2.40

Angry 2.40 2.20 4.00 1.60 2.90
Neutral 2.80 1.80 2.40 3.70 1.50

Confused 2.50 1.80 2.40 1.50 3.80

of happiness being accessed higher than others (mean 4.5
out of 5).

A. User evaluation of the SwarMan by NASA-TLX based
Questionnaire

All participants invited to the emotion recognition exper-
iment were then invited to communicate with each other
through the SwarMan interface. After the experiment, each
participant was asked to complete a questionnaire based
on The NASA Task Load Index (NASA-TLX) and three
extra questions which give information such as age, gender
of the participant, and previous experience with drones.
An additional parameter of Intuitiveness was added to the
questionnaire to evaluate how natural was avatar-based com-
munication. Therefore, the participants provided feedback on
seven questions:

• Mental Demand: How much mental and perceptual
activity was required (e.g. deciding, calculating, etc)?
Was the task easy or demanding, simple or complex?
(Low - High)

• Physical Demand: How much physical activity was
required? Was the task easy or demanding, slack or
strenuous? (Low - High)

• Temporal Demand: How much time pressure did you
feel due to the pace at which the tasks or task elements
occurred? Was the pace slow or rapid? (Low - High)

• Overall Performance: How successful were you in per-
forming the task? How satisfied were you with your
performance? (Perfect - Failure)

• Effort: How hard did you have to work (mentally and
physically) to accomplish your level of performance?
(Low - High)

• Frustration Level: How irritated, stressed, and annoyed
versus content, relaxed, and complacent did you feel
during the task? (Low - High)



• Intuitiveness: How natural was the experience? How
intuitive did you find the swarm avatar response to your
emotions? (Intuitive - Artificial)

The results of the NASA-TLX based survey are shown in
Fig. 8.

Fig. 8. Subjective feedback on the 5-point NASA-TLX based Likert scale.

We conducted a chi-square analysis based on the frequency
of answers in each category. The chi-square test of indepen-
dence revealed that the participants’ experience with drones
does not affect the evaluation of swarm avatar control criteria,
such as tiredness (χ̃2 = 2.66, p = 0.92), temporal demand
(χ̃2 = 2.3, p = 0.94) and intuitiveness (χ̃2 = 1.33, p = 0.98).
In summary, participants did not feel any additional physical
effort during the gesture control performance (mean of 1.9 on
the 5-point scale). The majority of users did not experience
Frustration (mean of 1.4 on the 5-point scale). In addition,
the same users rated their overall performance satisfactory.
All participants evaluated the system as intuitive (mean of
1.5 on the 5-point scale).

VII. CONCLUSION

We present a novel concept of telecommunications operat-
ing through an anthropomorphic drone swarm. The presented
system utilized body tracking for trajectory generation to
intuitively operate an anthropomorphic swarm of drones in a
remote environment. Stable Control of the swarm of drones
was realized using an artificial potential field algorithm and
agent assignment based on minimum distance-based cost.
The proposed system allows users to experience an effective
human-swarm interaction utilizing the DNN-based gesture
recognition technique. We achieved an acceptable gesture
recognition accuracy of 93% during our user studies, ren-
dering the recognized gestures into illumination to enhance
the user’s affective experience. Based on the performed user
studies, operators of the system have found it intuitive (1.5
on the Likert scale) with overall low physical and mental
demand (1.88, 2.25 on the Likert scale respectively). With the
high maneuverability, scalability, low cost, low weight, and
small storing size, the usage of the SwarMan swarm-based
avatar can potentially provide a solution for a wide scope of
problems existing in current applications of anthropomorphic
robots in telepresence.

We plan to develop and integrate larger drones with higher
payload in the system to allow operators physical interaction
with the remote environment as well as with users through
the sense of touch. The integration of more capable agents
has the potential to increase the usability of the system and
offers more solutions in telepresence applications.
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