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Abstract—The susceptibility of electroencephalography (EEG)
signal to artifacts is considered a major obstacle preventing the
deployment of relevant non-invasive neurotechnology. In spite
of a large body of literature dedicated to the identification,
rejection and removal of artifactual components in EEG, the
study of the impact that different artifacts may have on the
EEG signal properties has been mostly qualitative and focused
on the source (e.g. muscle activity, electromagnetic interference)
rather than the function generating them. This work takes
advantage of a unique dataset where EEG of 12 participants
elicited during the execution of 9 common human activities (e.g.,
speaking, blinking, etc.) is co-registered with electromyography
(EMG), electrooculography (EOG), accelerometer and gyroscope
sensors, and baselined to “resting” (artifact-free) intervals to
allow an exact, quantified assessment of the impact of artifacts.
We examine several metrics capturing different facets of the
influence of artifacts on EEG and measure the extent to which a
state-of-the-art artifact removal method is able to eliminate them.
In addition to an in-depth, quantified profiling of functional EEG
artifacts, our work provides valuable information for precisely
tuning the hyper-parameters of artifact rejection and removal
algorithms and for designing realistic brain-computer interface
(BCI) applications.

Index Terms—electroencephalography, artifacts, quantifica-
tion, functional artifacts, artifact removal

I. INTRODUCTION

Distortion of the temporal dynamics and spectral consis-
tency of electroencephalography (EEG) signals can occur
as a result of interference by a variety of sources, either
physiological (e.g., electrooculography (EOG) generated by
blinking or eye movements, electromyography (EMG) activity
of muscles close to the scalp, head and body movements) or
external to the body (e.g., electromagnetic activity emitted by
nearby devices, or by physical tampering with EEG sensors
and cables, etc.). Such perturbations of normal EEG activity
are termed “artifacts” and can be more formally defined as
electrical potentials that are picked up by EEG sensors but do
not reflect the brain’s neuronal activity [1].

Owing to its very low amplitude which is often orders of
magnitude smaller than that of the interference, EEG signal
is known to be extremely vulnerable to artifacts. In most
cases, the presence of artifacts can be determined by mere
visual inspection of the EEG signal scope. The neuroimaging
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community has thus been, early on, well aware of the potential
risks EEG artifacts may pose to the clinical or other applica-
tions of EEG and devised strategies to identify and cope with
these [2]–[4]. While the early literature has mostly focused on
the description, identification and rejection of artifacts (with a
clear focus on EOG sources), the advent of brain-computer
interface (BCI), an application that requires alleviating the
influence of all possible types of artifact in real-time and
in largely uncontrolled environments, has further contributed
to the technical progress of this field and shifted attention
from artifact detection/rejection to ”removal” techniques. The
term artifact removal (or correction) encompasses methods
concerned with the “cleaning” of artifact-contaminated EEG
signal intervals so as to keep them available in the processing
pipeline for continuous, uninterrupted BCI, rather than only
isolating these intervals and excluding them from further pro-
cessing (artifact rejection) [5]. A series of surveys capture the
gradual (including recent) progress, the increasing algorithmic
elaborateness and pervasiveness, and the overall vast amount
of work dedicated to this topic up to this day [3], [6]–[14].

Although the study of EEG artifacts has attracted consid-
erable attention, this line of research can be said to suffer
certain limitations. To begin with, there seems to be a tendency
for qualitative and indirect, rather than strict and quantitative,
characterization of artifacts, which further leads to similar
shortcomings in the evaluation and application of the cor-
responding rejection and removal algorithms. In support of
this, one may consider that despite the current abundance of
powerful artifact rejection and removal approaches, the main
defenses against artifacts in experimental designs remain the
guidelines to participants towards the avoidance of artifacts
in the first place, and the ”manual” visual inspection of raw
signals by experimenters to remove heavily affected data.
Also typical of the current state-of-the-art is the fact that,
even when elaborate techniques like blind source separation
(BSS) are employed to discern the artifact-inflicted from the
sound portions of EEG, the final classification of the ex-
tracted components into signal or artifact is still, usually, done
manually [15], including in popular toolboxes widely used
by the community. Furthermore, even where fully-automatic
approaches are pursued, there is no consensus among different
studies on the optimal criteria that can be used to reveal



the presence and influence of artifacts; similarly, the hyper-
parameters (e.g., thresholds applied on the different metrics)
are rather arbitrary and not guaranteed to generalize [5], [16].
Another two issues emerging from the recent literature [9],
[12]–[14] are the relative lack of universal and holistic EEG
artifact studies, with most works focusing exclusively on eye-,
muscle- or movement-related artifacts), and the related issue
that this research has investigated the differences between
potential sources of artifact, but not the ”functions” (i.e., the
human actions and activities) that create them. Because of this,
it is still hard to infer what the real impact of different kinds
of artifacts would be, especially in real-world settings.

The aforementioned limitations mostly stem from the un-
availability of suitable datasets (more specifically, the lack of
ground truth [17]) and metrics to study EEG artifacts. Profiling
of artifacts and the evaluation of the corresponding rejection
and removal methods are most often done on EEG segments
known to be contaminated with one or more (usually, but
not always, of known type) artifacts [11], [14]. Having only
such information at hand, there is no way to know which
components of the signal correspond to brain and which to
foreign activity. As a result, conventional, established metrics
for assessing the impact of noise in signal processing, like
Signal-to-Noise ratio (SNR), cannot be strictly measured. In
certain cases, artifact-free intervals are also not available for
comparative analysis. Hence, analyses is forced to be either,
as already mentioned, manual/qualitative, or indirect (e.g.,
increase of classification accuracy of a certain BCI after
artifact removal). Alternatively, researchers resort to artificial
datasets [5], [18], which however can considerably deviate
from realistic scenarios. It is interesting that even in studies
where some sort of ground truth is collected (e.g., parallel
sensor readings correlating with the artifact source), these may
be only used for the artifact rejection/removal algorithm and
not for evaluation, or only in expensive [17], artificial or–as
shown here–suboptimal ways [9], [18], [19], which highlights
the additional need for better metrics, able to optimally exploit
such ”imperfect” ground truth.

This work attempts to address to some extent such de-
ficiencies in the study of EEG artifacts, by introducing a
dataset specifically designed for the assessment of “functional”
artifacts, by highlighting the importance of using information-
theoretic metrics to optimally exploit indirect ground truth,
and by thereafter offering exact quantification of the impact
of various functional artifacts on EEG. In more detail, we
present and analyze a unique dataset where 12 subjects repet-
itively executed 9 different activities (e.g., speaking, blinking,
etc.) interleaved with resting/idling intervals, while acquiring
synchronously sampled EEG, EMG, EOG, accelerometer and
gyroscope sensor readings. Our study’s contribution is mul-
tifaceted. First, we profile and precisely characterize several
common functional artifacts, answering several open questions
pertaining to the overall impact of specific artifacts and to
the spatial and spectral locations most likely to be affected.
Second, we show that mutual information is superior to the
coefficients of correlation and determination when exploiting

indirect ground truth in the form of co-registered artifact-
related signals. Third, we examine several measures that have
been proposed in the literature for the identification of artifacts
and evaluate their fitness, thus also better informing the design
and parameterization of artifact rejection/removal methods
and of BCI application paradigms. Lastly, we quantitatively
evaluate the effectiveness of FORCe [5], a popular, fully-
automatic artifact removal method, strictly assessing the state-
of-the-art in this area.

II. METHODS

A. Participants

Twelve able-bodied, adult volunteers (1 female, all right-
handed, age 33.8±7.4) with no known medical condition took
part in the study. All subjects were informed in detail about the
purpose of the study and the experimental protocol and signed
written informed consent. The study was implemented in
accordance with the mandates of the Declaration of Helsinki.

B. Experimental design

As motivated in the introduction, the experimental design
targeted the simultaneous collection of EEG, facial EMG,
EOG, head accelerometer and gyroscope data while partici-
pants are executing a broad range of tasks that are likely to
contaminate the EEG signal with artifacts, and are essential
part of human actions and activities that frequently occur
in generic, everyday-life scenarios (i.e., functional tasks).
Execution of these tasks is interleaved with “resting” intervals
where subjects are required to idle and avoid any movement or
action that can generate artifacts, thus providing the artifact-
free baseline necessary to perform a comparative analysis.
Table I summarizes the ensemble of 10 tasks considered in
this study and any task-wise specific instructions given to the
subjects or observation for each case.

TABLE I
EEG ARTIFACT TASKS/CLASSES

Task Guidelines and comments

1 Resting Idling, avoidance of any movement
2 Channel pressing Press any EEG sensor with finger
3 Blinking Natural and repetitive
4 Eye movement Left/right, up/down, circular, random
5 Head movement Left/right, up/down, circular, random
6 Speaking Reading out loud presented text
7 Swallowing Natural, single repetition
8 Jaw clench Repetitive
9 Frowning Repetitive
10 Eyebrow raise Repetitive

All subjects underwent a single experimental session. A ses-
sion was divided into 8 blocks (each generating a single file)
to allow for necessary inter-block breaks taken at the subjects’
convenience. A block comprised 36 trials, each dedicated to
one of the 9 “active” artifact classes in Table I (i.e., excluding
the resting task), so that each specific artifact class is probed 4
times in each block and 32 times in total throughout a subject’s
session. For eye and head movements, each of the left/right,



up/down, circular or random (i.e., arbitrary and chosen by the
subject) movement sub-type is prompted in 2 of the 8 blocks,
so that each of these specific eye and head movement sub-
types is executed 8 times by each subject in total, and 32
instances are collected for the corresponding overall eye/head
movement class, as for all other artifact classes.

Fig. 1a graphically illustrates the timeline of a single trial.
Each trial begins with a 2 s long “resting” epoch indicated by a
fixation cross. As mentioned, subjects are instructed to “idle”
during these epochs, staying as still as possible and avoiding
any movement, activity or muscle twitch that could generate
artifacts. These epochs collectively provide the aforementioned
artifact-free baseline. The resting epoch is followed by a 5 s
long artifact epoch during which the participant performs
the particular artifact-generating task that the current trial is
dedicated to. The artifact class to be executed is cued by an
imperative message (e.g. ”Blink”, ”Speak”, ”Swallow”, ”Head
left/right”, etc.). The message stays on for the whole duration
of the artifact epoch of each trial. Its disappearance marks
the end of the artifact epoch and the beginning of a 2 s long
inter-trial epoch concluding the trial and allowing the subject
to shortly relax and prepare for the next one. A trial thus lasts
9 s in total. For the Speaking task, a random, short text extract
from Shakespeare’s plays is also presented during the artifact
epoch and subjects are required to read it out loud so as to
standardize the task at hand. Participants are further asked to
perform all tasks in a natural, ecological fashion, according
to their personal style and habits. For artifact tasks that may
naturally be very brief or even instantaneous (e.g. Blinking,
Eyebrow raise), subjects were instructed to perform several
repetitions within the 5 s epoch interval. For the Channel
Pressing task, subjects were free to tamper with (e.g., press
and/or softly pull) an arbitrary EEG sensor of their choice,
which could differ among the different trial repetitions of this
task. Overall, this experimental protocol accounts for 576 s of
artifact-free baseline and 180 s of each of the 9 artifact tasks
per subject. An experimental session would last approximately
90 minutes including preparation and inter-block breaks.

C. Experimental apparatus

During the experiment, subjects were comfortably seated
in front of an office desk, wearing a non-commercial mixed-
reality device named Elvira, which is developed by Mindmaze
SA (Lausanne, Switzerland). Elvira combines an active biosig-
nal acquisition system embedded into a virtual/augmented
reality (VR/AR) head-mount display (HMD) for cutting edge,
neuro-powered immersive mixed reality and biomedical ap-
plications [20]. The experimental paradigm’s graphical user
interface (GUI) elements were developed in Unity (Fig. 1a)
and displayed on Elvira’s HMD through cable connection
with a local personal computer. EEG and EOG/EMG signals
were synchronously sampled together with accelerometer and
gyroscope sensor readings at a sampling rate of 500Hz. A
total of 31 EEG locations of the international 10-20 place-
ment system were monitored (exact channel layout shown in
Fig. 1b) and referenced to both mastoids. The placement of

8 facial EMG/EOG electrodes used is shown as red dots in
Fig. 1c. The position of an additional EOG sensor bundled
with the EEG electrodes is shown in blue. Six degrees of
freedom (DOF) head acceleration and orientation were si-
multaneously captured through a 3-axis accelerometer and
a 3-axis gyroscope embedded in the HMD. We considered
that, combined together, these additional, diverse 15 channels
adequately describe the dynamics of each of the artifact classes
studied here (except for Channel Pressing) to implicitly offer
a measure of ground truth for our subsequent analysis.

Fig. 1. Experimental protocol and apparatus: (a) Timeline of an exemplary
trial of the experimental protocol. (b) EEG channel layout in the international
10-20 system. (c) Placement of facial EOG/EMG sensors.

D. Signal processing

Since our goal is to characterize artifacts and measure their
impact rather than reduce it, there is deliberately no use of
pre-processing operations on the raw EEG (e.g., spatial filters).
The only exception is the application of techniques to detrend
the EEG signal and remove the large offset differences ob-
served among different channels, which can subsequently af-
fect the assessment metrics employed although it’s completely
independent of the presence of artifacts. Specifically, EEG
signals are treated with a bandpass finite impulse response
(FIR) filter with 0.1 Hz low and 40 Hz high cut-off frequen-
cies applied on the entire block’s data (i.e., before epoch
extraction). Single epochs of all channels are further treated
with mean removal by subtracting the average epoch value
from all the epoch’s time samples. EEG spectrum is extracted
with Welch power spectral density (PSD) (periodogram) [21]
using 0.5 s long windows with 20% overlapping. For the band-
specific analysis the EEG channels are filtered with a bandpass
FIR filter at [1, 4] Hz for the δ, [4, 8] Hz for the θ, [8, 14] Hz
for the α, and [18, 30] Hz for the β band, respectively. As



Fig. 2. Artifact impact quantification. (a) Scalp distribution of MI , R2 and r for resting and all artifact classes and (b) increase (%) over the resting class.
(c) Boxplots of MI , R2 and r for all classes pulling all channels and subjects together and (d) pulling only the subjects’ maximum value channel for each
artifact. (e) Scalp distribution of increase (%) over the resting class for all artifact classes and EEG-only metrics MA,AA,SA,SR,K,AC,SD. The tampered
electrode in Channel Pressing is always exchanged with Cz for intuitive plotting. (f) Average (over subjects) MI , R2 and r for each artifact class for the
(f) maximum channel and the (g) average of 10 maximum channels of each subject and artifact. Note that the Channel Pressing artifact is not calculated for
MI ,R2 and r since it is not captured by non-EEG sensors.

an example of the state-of-the-art artifact removal capacity we
use the FORCe method elaborately described in [5].

E. Metrics for artifact impact assessment

As discussed, the major contribution of our work is the
strict quantification of the influence of EEG artifacts thanks
to the parallel acquisition of implicit ground truth in the form
of extra, non-EEG sensor data capturing the dynamics of
the artifact-inflicting sources. In that respect, we employ the
coefficients of correlation (Pearson) r and of determination
R2 (expressing the fraction of explained variance, based here
on the standard multiple linear regression estimator), that
have been proposed before in studies that did co-register
additional sensors for a limited number of artifacts, as well
as mutual information MI which, to our best knowledge,
has never been used in this context. For estimating the MI ,
we make use of the method and code in [22]. MI and R2

are inherently multivariate (i.e., directly take into account all
external sensors). For r, we correlate separately the EEG
electrodes with each external sensor and use the maximum
absolute value of these correlations.

Another contribution we seek to offer is the stricter pro-
filing of artifacts and their benchmarking against an artifact-
free baseline in terms of conventional (i.e., based on EEG-
only input) metrics that have been used by artifact detection
methods, thus potentially better informing their usage and
parameterization. In that regard, we include in our analysis
a (non-exhaustive) list mainly inspired by the comprehensive
work in [5] that comprises the maximum MA (more precisely:

the mean of the 10% highest absolute values), average AA

and standard deviation SA of the absolute value of the EEG
amplitude, the number of spikes per second (spike rate)
SR, the kurtosis K of the signal distribution, the sum of
the absolute values of the signal’s sample autocorrelation
function series (for 1000 lags) AC and the spectrum distortion
SD (as the average z-score deviation of the power of each
band of the artifact class’ spectrum from the resting class
spectrum). All metrics are computed separately for each of
the 31 EEG channels available after concatenating all subject
trials corresponding to each artifact class. The grand average
spectra used for calculating SD are computed per trial, without
concatenation and then averaged within each artifact class.

III. RESULTS

Fig. 2a-d demonstrate how the collected implicit ground
truth allows to precisely quantify the impact of artifacts
through metrics MI , R2 and r. The basic prerequisite for
any such metric is the existence of a theoretical lower bound
corresponding to ”completely artifact-free” data, i.e., when
EEG signals reflect only the underlying neuronal activity.
Ideally, this lower bound should be 0, or at least independent
of the experimental conditions (and, thus, reproducible and
comparable across all EEG recordings). Experimentally, EEG
collected under controlled “resting” conditions should score
close to this lower bound. Importantly, this condition must be
valid for all potential artifact sources (universality). It is further
desirable (but, not necessary) that there also exists an upper
bound corresponding to ”fully artifact contaminated” case, i.e.,



Fig. 3. (a) MI for resting and all artifact classes measured separately over frontal, central and occipital scalp regions and different frequency bands including:
full-band (“All”), δ ([1, 4] Hz), θ ([4, 8] Hz), δ ([8, 14] Hz), δ ([18, 30] Hz). (b) Scalp distribution of MI and (c) maximum channel MI for all artifact
classes before (first row) and after (second row) the application of FORCe [5].

when the presence of artifacts fully explains the observed EEG
which thus do not reflect at all brain activity. Satisfying these
conditions permits to not only identify the presence of artifacts,
but to exactly arrange them on an ordered ”axis of impact” and
proceed with exact inferences, e.g., that ”artifact X will have
double the impact of Y on channel Z”. Conventional EEG-
only metrics as shown in Fig. 2e do not comply with these
conditions. On the contrary, MI , R2 and r do so, subject to
the constraint that the external sensors available can capture
all examined artifact sources (this is the reason why Channel
Pressing is excluded from this analysis, as it is not captured
by any of the EMG, accelerometer and gyroscope sensors
available here). These metrics theoretically respect a 0-lower
bound (R2 and r also have a convenient theoretical upper
bound of 1). This is experimentally verified in Fig. 2a, as all
channels score close to 0 at the Rest class and close to 1 for the
frontal channels of the Blink and Eye Movement classes, as
anticipated. Deviations from the lower bound at the Rest class
may be explained by (ocular or other) artifacts that subjects
subconsciously generated despite the instructions given, as
well as by unavoidable physiological processes (breathing,
heart-beat, etc.) which may slightly influence all sensors. Such
deviations can be observed for all three metrics in Fig. 2
a (Rest class), but seem to be more intense for R2 (frontal
channels). Fig. 2c-d shed further light on this comparison,
confirming that maximally impacted frontal channels with R2

deviate substantially from 0 (see Rest in Fig. 2d) even if, over
the whole scalp, this effect is diminished (Fig. 2c), apparently
due to sensitivity of this metric to EOG sources. This reduces
the ability of R2 to discriminate between Rest and certain
artifact classes (Blink, Eye Movements, Frown, etc.). On the
other hand, r seems to suffer reduced overall sensitivity (i.e.,
small differences between Rest and even the strongest arti-
fact classes) and rarely approaches the theoretical maximum
(Fig. 2c-d). MI avoids these shortcomings, suggesting that
information theoretic metrics may be more suitable for this
task compared to statistical measures (r, R2). MI can also be

shown to have a theoretical upper bound, which however is
dependent on the entropy of the recorded signals and not very
convenient to estimate; this is not particularly detrimental, as
in practice the strongest artifacts seem to naturally asymptote
to an MI value close to 1.5. Fig. 2b shows that MI also
provides the smoothest scalp distributions of impact as %
increase over the Rest class.

Fig. 2e stands to show that conventional metrics relying only
on EEG are able, in combination, to capture the existence of
all functional artifacts studied here. This is very important as,
in the general case, EEG neurotechnology may not be able to
afford the recording of additional, external signals. However,
Figure 2e confirms the non-universality of all of these metrics,
as no single measure succeeds in detecting all artifact classes.
A possible exception seems to be the Kurtosis K, which,
nevertheless, seems to be relatively unstable. By showing
the response of each metric to each artifact (as % increase
with respect to Rest), this figure can be used to fine-tune
the parameters of artifact removal and rejection algorithms
employing these criteria.

Fig. 2f-g compare the impact of the functional artifacts
included in this work for profiling purposes. Fig. 2f focuses
on local intensity (the most impacted channel is compared),
while Fig. 2g takes also into account the spread (average
of the 10 most impacted channels). Observed in conjunc-
tion with Fig. 2a, the most interesting finding is that many
of the functional artifact classes tested, namely, Speaking,
Swallowing, Frowning, and Moving the Head, have in fact
very small impact on the [0, 40]Hz EEG band (thought to be
useful for BCI), negligible when compared with the Rest class
(i.e., impact is comparable to the slight artifacts induced even
when people are consciously trying to avoid them). On the
other hand, the particularly detrimental impact of actions like
Blinking, Moving the Eyes, Clenching the Jaw, etc., underlined
in the literature, is substantiated by the exact quantification
implemented here. It must be also noted that artifact impact
does not only depend on the type of artifact, but also on



the individual, as shown by a two-way ANOVA (maximum
channel MI as response variable) with significant main effects
for factors Artifact Class (F = 6.57, p < 10−7) and Subject
(F = 15.4, p < 10−13). The latter conclusion is reasonable,
since different individuals will tend to perform the same task in
a different manner, which influences the intensity of generated
artifacts.

Further to functional artifact profiling, Fig. 2a-b illustrate
in detail the topographic distribution and spread of the impact
of different artifacts. The anticipated susceptibility of frontal
electrodes in most cases is both apparent and anticipated.
What may be less expected and must be highlighted is the
considerable spread of Blinking and Eye movement artifacts to
occipital regions, as well as the occipital focus of Head Move-
ment artifacts (likely because of the associated neck EMG
activity) and Eyebrow Raise (probably because of concomitant
head movements). With regard to spectral profiling, Fig. 3
shows that slow EEG rhythms δ and θ account for almost
the entirety of artifact impact observed in full-band EEG,
irrespective of the artifact type. This is a highly unanticipated
result with significant implications for BCI and real-world
usage of EEG technology, as it seems that systems employing
or studying faster rhythms (e.g., a motor imagery BCI) wont
be particularly vulnerable to artifacts in any case.

Lastly, Fig. 3b-c proves that independent component analy-
sis (ICA)-based BSS artifact removal algorithms like FORCe
can very effectively eliminate all functional artifacts examined
here. It is also demonstrated that artifact-free EEG intervals
will indeed approach the theoretical lower bound of 0 MI , as
the application of FORCe suggests (Fig. 3c).

IV. DISCUSSION

This study has produced a unique dataset and investigated
metrics able to provide exact quantification of the impact of
EEG artifacts. We showed that mutual information is superior
for this task compared to statistical competitors previously
proposed. We have further compared and informed the design
and parameterization of EEG-based artifact detection metrics.
Profiling of functional artifacts indicates that in most cases
the spread and intensity of the influence of such artifacts
is minimal or negligible. Importantly, the impact is largely
limited to low frequency bands. This, together with the fact
that FORCe [5] has successfully alleviated all induced ar-
tifacts leads to the conclusion that artifact removal can be
broadly considered a solved problem (scientifically), with
further efforts directed to technical matters like real-time
implementations.

Ours study has been limited by the absence of sensors to
(better) quantify electrode tampering, neck activity and power-
line noise. Additionally, the computation of the r metric may
have been suboptimal and can be improved by investigating
suitable combinations of external sensors for each artifact
type (e.g., vertical/horizontal EOG bipoles), which, however,
must be noted to be a cumbersome or expensive task. Our
future work will focus on the benchmarking of popular artifact
removal methods with the tools derived here.
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