

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/167042

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/167042
mailto:wrap@warwick.ac.uk

Writing Accessible and Correct Test Scenarios for
Automated Driving Systems

Antonio Bruto da Costa
WMG

University of Warwick
Coventry, United Kingdom

antonio.bruto-da-costa@warwick.ac.uk

Patrick Irvine
WMG

University of Warwick
Coventry, United Kingdom

patrick.irvine@warwick.ac.uk

Xizhe Zhang
WMG

University of Warwick
Coventry, United Kingdom
jason.zhang@warwick.ac.uk

Siddartha Khastgir
WMG

University of Warwick
Coventry, United Kingdom
s.khastgir.1@warwick.ac.uk

Paul Jennings
WMG

University of Warwick
Coventry, United Kingdom

paul.jennings@warwick.ac.uk

Abstract—For Automated Driving Systems (ADSs), vehicle
safety and functional correctness are assessed against scenarios
the ADS would encounter - within or outside its operational de-
sign domain (ODD). A scenario specifies conditions and events
that an ADS is expected to respond to when deployed. Scenario
specifications underpin the V&V life-cycle, and are used by
a diverse set of stakeholders - from engineers to regulators.
Due to the diversity in stakeholder expertise, scenarios must be
available at different levels of detail, and further the chance of
writing syntactically or semantically incorrect scenarios is high.
Present-day Scenario Description Languages (SDLs) need to be
supported by technologies to help authors compose scenarios
and provide a mechanism for easy translation into executable
forms for virtual or real-life testing. This paper addresses these
issues by building on the existing two-level abstraction WMG-
SDL in the following ways, (1) introducing a human-readable,
natural language SDL, replacing the former Level-1 SDL, and
complementing the more detailed Level-2 SDL, which is now
syntax aligned with the ODD Taxonomy defined in ISO 34503,
and (2) providing a tool consisting of a parser and a validator to
assist writing syntactically and semantically correct scenarios.
Our tool may be used within a graphical scenario editing
interface or on the command-line. Further, for developers, an
object-oriented interface for parsed scenarios enables further
development and integration with off-the-shelf ADS simulation
and language tools. The tools and technologies described in this
paper are to be made open-source.

Index Terms—scenario, scenario definition language, parser-
validator, verification and validation, automated driving sys-
tems.

I. INTRODUCTION

Over the past decade, developments in vehicle autonomy
have been progressing rapidly. The need for autonomy is
being increasingly asserted due to potential for reduced on-
road injuries and fatalities [1], as well as improved traffic
characteristics [2]. In an effort to develop automated driving
systems (ADS’) that realize a 20% quality improvement over
human drivers, it was previously believed that 11 billion
training and testing miles would be required. This philosophy

has rightly evolved to stress on quality of miles driven over
quantity [3]. The philosophy of quality of miles expresses the
need to evaluate ADS function and performance under vary-
ing conditions that the ADS may find itself when operating,
and one that exposes itself to hazards [4]. The operating con-
ditions (environmental, road, and other dynamic conditions)
under which an automated driving system (ADS) operates
is termed as its Operational Design Domain (ODD). In the
verification and validation (V&V) life-cycle for an ADS,
scenarios are the key assets used to identify failures [3],
[5], [6], and may be defined on the basis of the ADS’s
ODD. Ulbrich et al [6] define a scenario as a ‘temporal
development between several scenes in a sequence of scenes.
Every scenario starts with an initial scene. Action and events
as well as goals & values may be specified to characterise
this temporal development in a scenario. Other than a scene,
a scenario spans a certain amount of time.’

Due to the widespread adoption of scenario-based testing
as a part of the V&V approaches [7]–[11], many Sce-
nario Description Languages(SDLs) have been developed.
A SDL is a plain-text format for describing a scenario.
Some of the available languages include the WMG two-level
abstraction SDL [12], Scenic [13], Fortellix M-SDL [14],
GeoScenario [15] and ASAM OpenX Standards [16], [17].
Other specification techniques such as graphical interfaces
for scenario generation and testing, including IPG Car-
Maker [18] and MATLAB toolboxes [19] support ASAM
OpenX-Standards for scenario descriptions. At the time of
writing this article, with different parties having different
preferences in specification, no universal SDL for ADS sce-
narios exists. While the ASAM OpenX-Standards body has
attempted to develop a standard SDL, the existing OpenSce-
nario(v1.1) [16] and OpenDrive(v1.7) [17] languages have
had limited adoption due to the diverse set of stakeholders
who need to use them and due to internal processes of various
organisations. Designing an SDL is a challenging exercise,

and most available SDL solutions are single syntax solutions,
that try to be everything at once - composable (allowing
mixing component specifications across scenarios), extensi-
ble, reusable, readable to diverse audiences and expressive
(allowing specifying high levels of detail). Readability and
expressiveness are mutually opposing characteristics. Non-
technical readers of scenarios (such as regulators) should
not be required to understand syntax to be able to assess a
scenario-based ADS safety case. The focus of this article is
on the WMG-SDL [12] which proposes having a two-level
abstraction plain-text language for scenarios, Level-2 being
more detailed than Level-1. WMG-SDL has seen widespread
support from by ADS manufacturers and regulators, with the
online SafetyPool database [20], [21] supporting searching,
sharing, and using scenarios. However, the Level-1 WMG-
SDL syntax proposed [12] falls short from being close to a
robust natural language description, which is one of the gaps
this paper aims to address.

Having a language for specifying scenarios is only one
part of the scenario narrative. Writing correct specification
requires expertise. The diverse stakeholder audiences that
would author, modify and compose scenarios in a SDL
makes for a high probability of errors in specification. With
increasing attention being given to ADS V&V activities,
larger numbers are able to contribute scenarios to the wider
Safety PoolTM Scenario Database [21]. The past WMG-
SDL [12] did not have the support of scenario authoring
tools to enable authors to write and check for correctness of
scenarios, nor is there a mechanism to interface WMG-SDL
with off-the-shelf ADS testing platforms (virtual or real-life).

This paper addresses these gaps in the following ways:

1) A natural-language SDL that replaces the older Level-
1 WMG-SDL [12] to address broader stakeholders. It
is then possible to automate the translation of the code-
like detailed Level-2 WMG-SDL into the abstract, new
Level-1 natural language SDL that is readable for non-
verification engineers and non-programmer audiences.
The Level-2 WMG-SDL is also now syntax aligned
with the ODD Taxonomy defined by the BSI-PAS
1883:2020 and ISO 34503.

2) We develop a framework consisting of parsers and
validators for checking the correctness of scenarios
written in both Level-1 and Level-2 WMG-SDL. This
consists of a domain-specific language tool providing
authors with syntax and semantic validation support for
writing correct scenarios in WMG-SDL. The tool uses
Eclipse Xtext/Xtend [22], [23] to define formal syntax
rules and create custom semantic validator checks. The
tool can be used as a binary/executable or as part of an
Integrated Development Environment (IDE) for online
validation.

The rest of this paper is organized as follows: Section II
discusses related work. Section III presents our proposal for
a natural language SDL, while Section IV presents the archi-
tecture we develop using Eclipse Xtext for developing correct

scenarios, along with object-oriented extensions for further
integration with other off-the-shelf tools. In Section V, we
demonstrate the outcomes of using the language parser for
preparing scenarios that are correct by specification and
with outcomes validated via simulation. Section VI provides
conclusions and observations on the work presented herein.
Note that the tools and technologies presented in this paper
are to be made open-source.

II. RELATED WORK

With increasing automation and system complexities, hav-
ing complete and correct test scenario specifications is a
necessity. Defining a safety-case for ADS’s is a fundamental
step in safely integrating them into society. The case for using
smart-miles to assess safety, where quality trumps quantity,
has been repeatedly asserted [3], [6], [24] and scenarios have
become the foundation on which the present V&V lifecycle
is built. Scenarios define test-cases under which the vehicle is
assessed, and an ADS’s response to a scenario forms the ba-
sis of this safety case. Due to the wide variety of stakeholders
involved in the V&V process, four levels of abstraction have
been proposed: (1) functional, (2) abstract, (3) logical and (4)
concrete [25] . The reason for this is that different stages of
the V&V pipeline require analysis performed by experts from
varying areas of expertise, each varying in the level of detail
with which they describe scenarios [9]. It is also necessary
to be able to move between levels of detail, from less detail
(functional, representing a higher level of abstraction) to
more detail (logical and concrete ready-to-execute scenarios,
representing lower levels of abstraction) [5], [12].

These studies [3], [5], [6], [9], [12] elude to the fact
that specification writing is an expertise that varies across
humans. Imposing a specification language that is very
technical and complex to use, would be counter-productive
to utilizing scenarios in the V&V pipeline. Writing scenarios
in complex languages increases the probability of an human-
error, and consequentially incorrect scenarios.

Language development for machine consumption - com-
pilers and translators, have been a subject of study since the
late 1940s [26], with advances still being made today. With
increasing automation in a multitude of domains, one of the
more popular advances in compiler/translator technologies
has been in tools for defining Domain-Specific Languages
(DSLs). DSLs are languages tailored to specific domains,
with gains had in expressiveness and ease of use when
compared with general-purpose languages in the broader
domain [27]. In particular, the Eclipse Xtext [22] framework
is one for developing DSLs that has proven to be power-
ful, providing a complete parser-validator infrastructure that
open-standard Language Server Protocol (LSP) [28].

The Xtext framework provides support for syntax colour-
ing (enhancing readability), syntax and semantic error check-
ing, auto-completion, code folding, viewing code outline
structures, and other useful features for domain specific
language applications [22]. The contributions presented in
this paper are geared towards writing correct, accessible

scenarios. In addition to introducing tool support for scenario
writing - by creating correctness checker and parsers, we for-
mulate two DSLs, one for an overhauled WMG-SDL Level-1
that allows writing natural-language scenarios, and one for
WMG-SDL Level-2. Developing WMG-SDL languages as
DSLs in Xtext enables us to treat scenarios as objects, and
this opens up WMG-SDL for use in any ADS V&V testing
flow in a variety of test environments (simulation or real-
world). In the following section, we present our natural-
language functional WMG-SDL (Level-1) as it mirrors the
more detailed Level-2 scenario specification.

III. NATURAL LANGUAGE SCENARIO DESCRIPTION
LANGUAGE

This section describes our new natural language Level-1
WMG-SDL which allows for writing functional and abstract
scenario descriptions. The new language is designed to read
more naturally while conveying complex scenario conditions
in a well-structured and clear format. WMG-SDL is specified
in terms of four elements of the scenario, scenery, scripted
actor dynamics, environment and unscripted traffic. Due to a
limitations of space, we use examples to demonstrate the
changes in syntax, while a complete syntax of the new
Level-1 and Level-2 WMG-SDL are available as an online
resource [29].

A. Scenery

The scenery elements describe stationary items, such as
roads and junctions, buildings, as well as state-changing
items such as traffic lights, and bridges.

Consider the scenery illustrated in the map in Figure 1.
The older Level-1 specification [12] for the scenery is in
Figure 2. The same description, written using the new natural
language Level-1 SDL specification as shown in Figure 3.
The updated syntax is designed to read more naturally.

Fig. 1. Road-Junction map of scenery elements around Coventry, Google
Maps, 2022

B. Scripted Dynamics

In WMG-SDL a component on dynamic elements specifies
the behaviour of scripted actors. General traffic is defined as
a separate component (Section III-D). The scenario does not
script or control the behaviour of the Ego vehicle, the Vehicle
Under Test (VUT). The dynamics defines the manoeuvre
behaviour of other actors (vehicles, bicycles, pedestrians).

Fig. 2. Past WMG-SDL Level-1 Scenery Specification for Fig. 1

Fig. 3. Natural Language WMG-SDL Level-1 Scenery Specification for
Fig. 1

These actors’ behaviours may cause the VUT to react, and
similarly non-VUT actors’ behaviours may be triggered by
observed behaviours of the VUT.

The dynamic elements are a collection of mutually ex-
clusive blocks, each block containing a set of synchronous
behaviours as shown in Figure 4. The mutually exclusive
blocks of synchronous behaviours may be triggered asyn-
chronously. In a behaviour block, actors may synchronize
behaviours in phases that run parallel in time, or serially in
time. The execution of a phase is conditioned on an invariant
that must hold true while the phase is active.

To demonstrate the proposed natural language syntax, we
use a scenario of a pedestrian crossing the road in front of
a vehicle. The past Level-1 syntax, shown in Figure 5, is
replaced by the new Level-1 syntax shown in Figure 6.

C. Environment

The environment component defines the weather, particu-
lates, illumination, connectivity capabilities and time of day.
The proposed natural language Level-1 SDM syntax for the
environment is shown in Figure 8, while the older syntax is
shown in Figure 7.

D. Unscripted Traffic

The traffic element of a scenario defines non-scripted, but
intelligently controlled traffic. The traffic specification must
specify the traffic density (number of expected vehicles in
a road section), volume (vehicles generated per unit time),

Initial

Actor v1

Phase n

Cn
1

Actor v2

Cn
2

Actor v3

C1
3 Cm

3

Exit

Phase 1

C1
1

C1
2

Time
Phase nPhase 1

Phase mPhase 1

Synchronized Phased Activities

Phase kPhase 1

Actor v4

Ck
4C1

4

Fig. 4. SDL multi-actor dynamics synchronized by condition-controlled
phases, or sequenced in series. Multiple asynchronous blocks of a similar
form may be specified. A block’s entry and exit are condition-controlled.
Actors v1 and v2 have manoeuvres/actions/activities that are synchronized
as phases running in parallel. Actor v3 is conditioned to begin its first phase
only after the last (nth) phase of v1 and v2 are complete. Actor v4 executes
asynchronously of the others.

Fig. 5. Past WMG-SDL Level-1 Dynamics Specification

average speed, source and sink. An example of the contem-
porary syntax for Level-1 description of traffic between roads
R1 and R2 is shown in Figure 9.

We propose that traffic specification in Level-1 natural
language descriptions be a suffix to the description of the
scenery. For instance, for Road1 (R1) (and similarly R2),
we would state:

Here the suffix with moderate traffic is appended to the
specification of the road’s scenery element.

The impact of the new WMG-SDL Level-1 syntax on
scenario readability is more prominent in descriptions of
scripted dynamic and environment elements. In descriptions
of the scenery, programmatic structures have been replaced
by a more natural to read sentence structure, while retaining
the information detail present in the past version of Level-1

Fig. 6. Natural Language WMG-SDL Level-1 Dynamics Specification

Fig. 7. Past WMG-SDL Level-1 Environment Specification

Fig. 8. Natural Language WMG-SDL Level-1 Environment Specification

Fig. 9. Past WMG-SDL Level-1 traffic specification

SDL. For unscripted traffic, the earlier description of traffic in
terms of centroids has been replaced. Traffic specifications
are now coupled with the description of the roads in the
scenery.

In the following section, we present our architecture for
assisting scenario stakeholders in reading and writing sce-
narios.

IV. EXTENSIBLE ARCHITECTURE FOR DEVELOPING
CORRECT SCENARIOS

This section presents our DSL architecture, containing
tools built to support developing syntactically and seman-
tically correct scenarios. The architecture is based on the
Eclipse Xtext framework [22], which allows us to expose
and object-oriented scenario structure for Level-1 and Level-
2 WMG-SDL scenarios. This enables automation extensions
to be added to the tool-suite that use and manipulate the
scenario object. Some example purposes of developing such
extensions may include, translating WMG-SDL scenarios
into other scenario specifications, developing instructions for
testing (virtually or on a physical test platform), generating
new scenarios, assessing scenario coverage, comparisons
against ADS ODDs, and so on.

Eclipse-Xtext

WMG-SDL

Syntax

Outline
Generator Validator

Semantic

Translators

WMG-SDL

Parser
Validator
Translator

(binary)

Compile

Build Configuration

Graphical IDE (Supporting LSP)
(Eclipse,Visual Studio Code,

Jetbrains IntelliJ)

File Edit Source Project ... Help

SDL Project
File Explorer

SDL Outline

Roads

Dynamics

Environment

LSAD pedestrianALKS side swerving

Scenario
Specification

4

5

6

7

Roads: R1: START

Road type [Motorway] as [R1] ...

Number of lanes [3] as [R2.L-1, ...

Road R2 is not defined

ALKS side swerving.sdl

Error on Line 6, Column 26-27:
Road R2 is not defined

Scenario

Validation
Messages

LSP

Fig. 10. DSL Architecture for Scenarios in WMG-SDL using Xtext

Figure 10 presents the proposed DSL architecture for
developing scenarios. The architecture consists of: (1) WMG-
SDL Level-1, Level-2 Syntax Parsers, (2) Scenario Outline

Generator, (3) Semantic Error-Checking Validators, (4) Ex-
tensions/Translators and a (5) Build Configuration. Detailed
descriptions regarding each component are as follows.

A. WMG-SDL Syntax Parsers

The fabric of a parser consists of terminals (keywords,
integers, decimal numbers, and strings) and grammar syntax
rules (defining the grammar of a scenario, expressing how
a scenario is developed using terminals and other grammar
rules). The parsers for natural language and Level-2 WMG-
SDLs are defined in Xtext.

We implement syntax rules for the proposed natural-
language SDL, as defined in Section III. For Level-2 WMG-
SDL, we retain the syntactic structure of contemporary
WMG-SDL, making only minor updates to align its vocab-
ulary with the ISO 34503 and BSI-PAS 1883.

The advantage of using Xtext is that it allows us to pig-
gyback an object-oriented class structure atop the grammar
definition.

A snippet of an Xtext rule for roads in Level-2 is as
follows:

RoadElement : null?=‘None’ |
id=R ID ‘:’ ‘START’ (‘[’(startJunction=ID|startRoad=R ID)‘]’)?
‘Road’ ‘type’ ‘[’roadType=RoadType‘]’ ‘as’ ‘[’roadAltID=R ID‘]’
‘with’ ‘zone’ ‘as’ ‘[’zoneType=ZoneType‘]’ ‘AND’
‘speed ’ ‘limit’ ‘of’ ‘[’(speedLimit=DOUBLE|noSpeedLimit?=‘N/A’)‘]’
‘in’ (‘a’|‘an’) ‘[’environmentType=EnvironmentType‘]’ ‘environment’
‘with’ ‘Number’ ‘of’ ‘lanes’ laneDescription=LaneDescription

The rule above implies a class structure for class Road-
Element with class attributes defined by those marked in
italics, while the attribute data-types (or class-types) are
correspondingly marked in bold. The data-types represent
terminal rules (such as ID or R ID representing string names
for general strings or road names, or DOUBLE representing
decimal numbers), or rules to produce further specifica-
tion (such as RoadType, ZoneType, EnvironmentType,
LaneDescription). Hence, when a scenario is parsed, an
object is created from the scenario with named-fields that
can be processed for various purposes as detailed in later
sections.

Such rules are then used in the parser to check the syntactic
correctness of a scenario (see Figure 12). We discuss seman-
tic validation in Section IV-C. Detailed grammar rules for the
proposed natural language WMG-SDL as well as the revised
Level-2 grammar are available as an online resource [29].

B. Scenario Outline Generator

Scenarios for ADS can become complex to specify in any
language. This complexity could be due to the length of the
specification, or due to the complex interactions and attribute
values of scenario components. It is therefore important to,
(1) be able to navigate scenarios, and (2) have a high-level
summary view of the scenario - with the ability to hide
information that may not be relevant to the moment.

A collapsible outline view of the scenario addresses both
these needs. The Xtext framework has allowed us to imple-
ment a tree-structure hierarchical view of the scenario for

both WMG-SDL levels (as shown in the bottom left of Fig-
ures 12 and 13). Custom-definitions have been implemented
to provide summary outline views that are consistent with the
component structure of WMG-SDL, partitioning the scenario
at the highest level according to scenery, dynamics, envi-
ronment and traffic specification. For complex components
(such as scenery and dynamics) the outline further breaks
this down into an organized structure of roads, junctions,
manoeuvres, phased activities, as may be the requirement.
Synchronous and asynchronous actor actions are also evident
from the outline structure (see Figure 11), allowing authors
to navigate the hierarchy as deep as necessary, expanding or
collapsing components as they require.

Fig. 11. Scenario Outline Summary describing the outline for a scenario
having three asynchronous sets of manoeuvres.

C. Semantic Error-Checking Validators

Beyond following syntactic rules, scenario correctness also
requires that the scenario be semantically sound (mean-
ingfully correct). For instance, a scenery element (such as
a road) isn’t defined in the scenario, but is used while
positioning a vehicle, or perhaps a measurement is made
relative to the unknown element; this would represent a
semantic error. Such errors must be brought to the notice
of the author in a manner that communicates the error and
provides guidance on how to fix it.

We develop detailed semantic validation checks that assess
the correctness of junctions and roads, ensuring that they
are correctly defined with no missing elements; we compare
the scenery with the dynamics ensuring that the dynamic
specifications use correct scenery elements, and highlight any
issues that result in the scenario being incorrect.

An example of a semantic error highlighted during level-2
scenario development is shown in Figure 13.

D. Scenario Extensions/Translators

The SDL class definition that is generated from our
grammar definition, described in Section IV-A, is used during
parsing to parse the scenario into an SDL object instance.
This object instance may be used to extend the functionality
of the tool and interface with other tools in the V&V pipeline,
such as for scenario generation, translation or execution.

For instance, we have developed an extension for translat-
ing WMG-SDL Level-2 scenario specifications into ASAM
OpenSCENARIO (OSC) and OpenDRIVE (ODR) scenario
specification standards. OSC and ODR languages are XML-
based languages, making them intrinsically machine read-
able, and are hence supported by simulation tools such as
esmini [30]. However, scenarios in OSC and ODR quickly,
even for the simplest of scenarios, become complex and
lengthy to develop. They are therefore difficult to read.
By enabling a translation from WMG-SDL to OSC/ODR,
WMG-SDL inherits the benefits afforded by tools that sup-
port OSC/ODR. This enables scenarios to be written in easy
to read, extensible, navigable, tool-supported WMG-SDL,
with the benefits of simulation and execution support of
OSC/ODR.

The scenario object structure developed enables develop-
ers to create tools (for generating, translating or executing
scenarios) for use in the V&V pipeline.

E. Build Configuration for Executability

The architecture and tools developed may be used in a
graphical integrated development environment (IDE), or may
be executed as a standalone Java binary. In order to build a
Java binary, we develop a configuration that orchestrates how
syntax and semantic validation errors are displayed and how
any extensions are used (for instance generating scenarios in
ASAM OpenX standards).

F. Bringing it all together

Some of the features described above are visible in Fig-
ures 12 and 13.The scenario outline pane on the bottom
left of the IDE window provides easy navigation through
the scenario, along with a high-level hierarchical scenario
breakdown, further assisting scenario inspection.

It is our intention to make the scenario tool-suite (in-
cluding codified grammars, parsers-validators and supporting
components - translators, outline generators) open-source.

V. LANGUAGE PARSER CASE STUDIES

We use our scenario framework to develop scenarios in
the the UN Regulation for Automated Lane Keeping Sys-
tems (ALKS) [31], which describes the necessary functional
requirements to be fulfilled for the approval of an ALKS.
In this article we present a selection of the scenarios in the
natural language Level-1 WMG-SDL and their correspond-
ing Level-2 descriptions at the logical scenario level. The

Fig. 12. Graphical IDE (Eclipse) for developing natural-language WMG-
SDL Level-1 scenarios. A syntactic error is detected on line 15 of the
natural-language scenario, with a suggested fix provided.

Fig. 13. Graphical IDE (Eclipse) for developing logical WMG-SDL Level-2
detailed scenarios. A semantic error is detected on line 24 of the scenario,
with a semantic cause provided, indicating use of road label that is not
defined in the scenery.

scenarios are developed with the intention of assessing the
ADS dynamic driving task under different conditions.

A. Field of View - Lateral Range Detection

This scenario evaluates the ADS’s capabilities to detect
another road user beside it, within its lateral detection area,
up to at least the full width of the adjacent lane (clause
4.6 [31]). Figure 14 presents the scenario specified in natural
language SDL, while Figure 15 specifies the same scenario
in Level-2 SDL.

Fig. 14. Field of View - Lateral Range Detection: Natural Language SDL

B. Multiple Blocking Targets

This scenario evaluates the ADS’s capabilities to avoid a
collision with a road user or object blocking the lane it is in,
while its driving speed is up to the maximum specified speed
of the ADS. This specific scenario uses multiple consecutive
obstacles blocking the lane (clause 4.2.2 (g) [31]). Figure 16

Fig. 15. Field of View - Lateral Range Detection: Level-2 SDL

presents the scenario specified in natural language SDL,
while Figure 17 specifies the same scenario in Level-2 SDL.

All the scenarios presented have been validated by the
parser. The intended scenario behaviours are then verified
using our OSC/ODR translator extension – by simulating the
translated OSC/ODR scenario in esmini, and by examining
the simulation log to ensure that the WMG-SDL events occur
as expected and are timed correctly. The latter is used to
examine synchronization.

Fig. 16. Multiple Blocking Targets: Natural Language SDL

VI. CONCLUSIONS

This paper recognizes scenario-based testing to test safety
performance and driving characteristics of ADS’s over hu-
man drivers. Scenarios must be available in different forms to
address the variety of ADS stakeholders. Authors of scenar-
ios require assistance in writing correct scenarios. Correct-

Fig. 17. Multiple Blocking Targets: Level-2 SDL. Note that Scenery and
Environment components of the scenario have been omitted since they are
identical to those in Fig. 15.

ness of scenario specifications is multi-faceted. We provide
a two-pronged approach. We update the Level-1 WMG-SDL
syntax to read more naturally, which intrinsically ensures the
specifications reflect the intended scenario. We also provide
a parser to check scenario syntax and a semantic validator
to ensure that a scenario is semantically valid. The parser-
validator architecture works with open-standard Language
Server Protocol (LSP), enabling our tool to communicate
with graphical integrated development environments (IDEs)
to visually manage and develop scenario projects. Scenarios
in our framework are parsed into objects, which can then
be used by tool developers to create extensions for scenario
generation, translation and execution. As a motivating exam-
ple, the object-interface extension mechanism has enabled
us to develop a translation of WMG-SDL Level-2 scenarios
into concrete ASAM OpenX (OpenScenario and OpenDrive)
executable scenarios. The regulation on Automated Lane-
Keeping Systems (ALKS) has been used as a case study
to develop scenarios. It is intended that the parser tool-chain
be made open-source to enable wider use of the tool.

ACKNOWLEDGEMENT

The work presented in this paper has been supported by
UKRI Future Leaders Fellowship (Grant MR/S035176/1),
Department of Transport, UK, and Transport Canada. The
authors would like to thank the WMG center of HVM Cat-
apult, and WMG, University of Warwick, UK for providing
the necessary infrastructure for conducting this study.

REFERENCES

[1] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: Opportunities, barriers and policy recommendations,” Transp.
Res. Part A Policy Pract., vol. 77, p. 167–181, 2015.

[2] S. Le Vine, X. Liu, F. Zheng, and J. Polak, “Automated cars: Queue
discharge at signalized intersections with ‘Assured-Clear-Distance-
Ahead’ driving strategies,” Transp. Res. Part C Emerg. Technol.,
vol. 62, p. 35–54, 2016.

[3] S. Khastgir, S. Brewerton, J. Thomas, and P. Jennings, “Systems
Approach to Creating Test Scenarios for Automated Driving Systems,”
Reliability Engineering & System Safety, vol. 215, p. 107610, nov
2021.

[4] S. Khastgir, B. Stewart, G. Dhadyalla, and P. Jennings, “The science
of testing: An automotive perspective,” SAE Technical Paper 2018-
01-1070, Tech. Rep., 2018.

[5] T. Menzel, G. Bagschik, L. Isensee, A. Schomburg, and M. Maurer,
“From functional to logical scenarios: Detailing a keyword-based
scenario description for execution in a simulation environment,” IEEE
Intelligent Vehicles Symp., Proc., vol. 2019-June, pp. 2383–2390, 2019.

[6] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defin-
ing and Substantiating the Terms Scene , Situation , and Scenario
for Automated Driving,” Proc. of the 2015 IEEE 18th Int. Conf. on
Intelligent Transportation Systems, pp. 982–988, 2015.

[7] X. Zhang, S. Khastgir, H. Asgari, and P. Jennings, “Test framework
for automatic test case generation and execution aimed at developing
trustworthy avs from both verifiability and certifiability aspects,” in
2021 IEEE Int. Intelligent Transportation Systems Conf. (ITSC), 2021,
pp. 312–319.

[8] E. De Gelder, J.-P. Paardekooper, A. Khabbaz Saberi, H. Elrofai,
O. o. d. Camp, S. Kraines, J. Ploeg, and B. De Schutter, “Towards
an ontology for scenario definition for the assessment of automated
vehicles: An object-oriented framework,” IEEE Transactions on Intel-
ligent Vehicles, pp. 1–1, 2022.

[9] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development,
test and validation of automated vehicles,” arXiv, vol. 2018-June,
no. Iv, pp. 1821–1827, 2018.

[10] D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya, X. Bruso,
P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal scenario-based
testing of autonomous vehicles: From simulation to the real world,”
in 2020 IEEE 23rd Int. Conf. on Intelligent Transportation Systems
(ITSC), 2020, pp. 1–8.

[11] E. Esenturk, A. G. Wallace, S. Khastgir, and P. Jennings, “Identifica-
tion of traffic accident patterns via cluster analysis and test scenario
development for autonomous vehicles,” IEEE Access, vol. 10, pp.
6660–6675, 2022.

[12] X. Zhang, S. Khastgir, and P. A. Jennings, “Scenario Description
Language for Automated Driving Systems: A Two Level Abstraction
Approach,” in 2020 IEEE Int. Conf. Systems, Man, and Cybernetics,
pp. 973–980.

[13] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: A Language for Scenario Spec-
ification and Scene Generation,” in Proc. of the 40th ACM SIGPLAN
Conf. on Programming Language Design and Implementation. ACM,
2019, pp. 63–78.

[14] Fortellix, “Open M-SDL: Measurable Scenario Description Language,”
2022. [Online]. Available: https://www.foretellix.com/open-language/

[15] R. Queiroz, T. Berger, and K. Czarnecki, “GeoScenario: An Open
DSL for Autonomous Driving Scenario Representation,” 2019.
[Online]. Available: https://geoscenario.readthedocs.io/

[16] ASAM, “ASAM OpenSCENARIO® Standard,” 2021. [Online].
Available: https://www.asam.net/standards/detail/openscenario/

[17] ——, “ASAM OpenDRIVE® Standard,” 2021. [Online]. Available:
https://www.asam.net/standards/detail/opendrive/

[18] I. Automotive, “CarMaker,” 2022. [Online]. Available: https:
//ipg-automotive.com/en/products-solutions/software/carmaker/

[19] I. The MathWorks, “MATLAB Automated Driving Toolbox,” 2022.
[20] U. o. W. WMG, “World’s largest public scenario database for testing

and assuring safe Autonomous Vehicle deployments,” 2021. [Online].
Available: https://warwick.ac.uk/newsandevents/pressreleases/worlds
largest public/

[21] ——, “Safety PoolTM Scenario Database,” 2021. [Online]. Available:
https://www.safetypool.ai/database

[22] Eclipse, “Language Engineering for Everyone,” 2021. [Online].
Available: https://www.eclipse.org/Xtext/

[23] L. Bettini, Implementing Domain Specific Languages with Xtext and
Xtend - Second Edition (2nd. ed.). Packt Publishing, 2016.

[24] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and
P. Jennings, “Identification of test cases for automated driving systems
using bayesian optimization,” in 2019 IEEE Intelligent Transportation
Systems Conf. (ITSC), 2019, pp. 1961–1967.

[25] C. Neurohr, L. Westhofen, M. Butz, M. Bollmann, U. Eberle, and
R. Galbas, “Criticality Analysis for the Verification and Validation of
Automated Vehicles,” IEEE Access, vol. 9, no. i, 2021.

[26] J. Hennessy and M. Ganapathi, “Advances in compiler technology,”
in Ann. Rev. Comput. Sci., vol. 1, 1986, pp. 83–106.

[27] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, p.
316–344, dec 2005.

[28] Microsoft, “Language Standard Protocol,” 2022. [Online]. Available:
https://microsoft.github.io/language-server-protocol/

[29] U. o. W. WMG, “Proposed Two-Level Scenario Description
Language,” 2022. [Online]. Available: https://docs.safetypooldb.ai/
docs/sdl

[30] E. Knabe et al., “Environment Simulator Minimalistic (esmini),”
2022. [Online]. Available: https://github.com/esmini/esmini

[31] U. N. E. C. for Europe, “UN Regulation No. 157 -
Automated Lane Keeping Systems (ALKS),” 2021. [Online].
Available: https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-157-automated-lane-keeping-systems-alks

