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Abstract—This paper presents a scenario-based safety assur-
ance process for Automated Driving Systems (ADSs) combined
with the Vehicle-to-Everything (V2X) connectivity aspect. In
addition, a novel approach to V2X modelling is introduced and
implemented to obtain the required configuration of the V2X pa-
rameters for individual system, such modelling approach ensures
that the V2X is effective within a system during testing by using
a distance-based V2X parameter that correlates to the system
speed. Such parameter is then used as the configuration of the
V2X model when carrying out the ADS and V2X combined test.
Using a pedestrian crossing scenario, a reduction in failure cases
is demonstrated by combining the V2X and the ADS. Therefore,
a synchronised approach of vehicle, sensor and communication
sub-system can improve the overall safety function of the system.

Index Terms—V2X, Connectivity, Scenario-based testing, ADS,
Safety

I. INTRODUCTION

Safety Assurance Recent development in Cyber-physical
Systems (CPSs) as part of Intelligent Transportation Systems is
driven by its benefits. However, the safety certification of CPSs
faces many challenges [1]. For Automated Driving Systems
(ADSs) and Advanced Driver Assistance Systems (ADASs),
scenario-based testing has been widely proposed [1].

A scenario contains the temporal development between
several scenes, where a scene is an instantaneous snapshot
of the elements within a scenario [2]. The scenario covers
the elements defined within the Operational Design Domain
(ODD) and their behaviors [3]. ODD refers to the operating
conditions under which a system is designed to safely op-
erate, which contains the scenery, environmental conditions,
and dynamic elements (e.g., agent types, macroscopic traffic
behaviour, system-under-test (SUT)’s speed limit) [4], whereas
the behavioural aspects are associated with activities and
manoeuvres scenario agents can perform. Underpinned by the
ODD, scenario-based testing defines the relevant scenarios,
executes them in a valid environment (virtual, physical, hybrid)
together with the SUT, collects safety evidence, and outputs
testing outcomes [1]. To sum up, a scenario-based testing
workflow contains the scenarios, the environment, and the
safety argumentation.

Connectivity Although an ADS can function without V2X
capabilities, its sensing capabilities of the surroundings (range,
precision, and accuracy) are limited by its function, its lo-
cations, and its point of view relative to other road users.

Cooperative information sharing among ADSs not only helps
avoid the contentions of trying to out-predict each other’s
behaviours, but also enhances road capacity and fuel efficiency.
Non-ADS system has already implemented some rudimentary
cooperative communications such as turn signals, horn, and
brake lights. Front headlights and driver hand gestures are
often used to communicate the right-of-way with other road
users. Advanced communications for human drivers are how-
ever limited because they can be distracting and misleading.
ADSs, on the other hand, can be designed to communicate
within the same protocol without ambiguity.

Objectives In this paper, a scenario-based and simulation-
based testing methodology and implementation involving both
an ADS and the V2X protocol are presented. The main contri-
butions include: 1) illustrating a scenario and simulation-based
testing of ADS with V2X capabilities, 2) providing evidence
on the impact of V2X for ADS safety and performance, 3)
introducing a novel connectivity modelling approach, and a
V2X-related critical distance parameter to ensure the validity
of V2X testing. Considering both the connectivity elements
and an ADS, this paper aims to deliver the following objec-
tives:

• Obj 1 - illustrate a scenario-based and simulation-based
testing workflow, as well as the representation of connec-
tivity in scenarios and within simulation execution.

• Obj 2 - present a novel approach to connectivity mod-
elling, and its incorporation within scenario-based testing.

• Obj 3 - using example use case to provide a testing
baseline for the open-source ADS stack Autoware [5].

• Obj 4 - determine the connectivity range required for
V2X & ADS combined testing, and identify a robust V2X
configuration for the system testing.

• Obj 5 - use the connectivity representation and the ADS
together to perform scenario-based testing.

II. RELATED WORK

A. Scenario-Based Testing Workflow

A scenario-based assurance workflow was discussed in [1]
and three key components exist at a high level: Scenario,
Environment, and Safety Evidence (Figure 1). Scenario further
covers Create, Format, and Store, which corresponds to the
creation of the scenario content, the representation of the
created content into description formats, and the storage into



a scenario database such as the Safety PoolTM Scenario
Database [6]. Plan and Execute then determine an execution
environment (virtual, physical, or hybrid) and collect execution
data. Analyse analyses the collected data and checks against
pass/fail criteria, such results will then be fed into an opti-
misation module to create more challenging concrete scenario
parameters for the SUT. At the final step, the Decide will
provide the outcome of the whole process.

B. Scenario

Several scenario description languages [7]–[10] are avail-
able for describing scenarios for ADSs/ADASs, covering
different abstraction levels. Functional, logical, and concrete
scenario abstraction levels were first proposed [11]. A recent
paper further adds the abstract scenario level in between
functional scenario and logical scenario [12]. To create a
coherent and traceable scenario-based development and testing
process, as shown in Figure 2 [8], there is a need to establish
linkage across different levels [1], [7]. The SDL level 1 from
the two-level SDL [7] uses a natural language-based format at
abstraction scenario level, the SDL level 2 sits at the logical
and concrete scenario level. [8] also documents a texture
format covering various abstraction level. [7] and [8] further
contributed to the BSI Flex 1889 [13] on a structured natu-
ral language based scenario description format. The ASAM
OpenSCENARIO [9] and OpenDRIVE [10] are widely used
for simulation execution at the concrete scenario level. [14]
presented an automated translation workflow, together with
its open-source plan, to convert from the two-level SDL into
OpenSCENARIO 1.1 and OpenDRIVE 1.6 formats.

Although various scenario description formats exist, the
consideration of connectivity within the languages is still
limited. At the time of writing, only [15] has embedded the
connectivity aspects within the usual driving scenario context.
The connectivity features were divided into the road structure
aspect within the scenery description (e.g., a communication
box), the dynamic aspect (e.g., casting certain messages), and
the environmental condition aspect (e.g., the overall coverage
of the connectivity).

C. Connectivity

Connectivity has always been a sub-system in safety-related
applications. Therefore, the tolerance for failure is far greater
than those that include a human in the loop [16]. However,
that does not mean various safety protocols do not exist.
Safety protocols such as CANBUS [17], MODBUS [18],
Time-Trigger Ethernet [19], and EtherCat [20] are designed
for machine-to-machine communication in a human in the

Fig. 1. Scenario-based evaluation continuum with its sub components [1]

loop safety system [21]. Key characteristics of these protocols
include: messages having a fixed data size [22], communi-
cation using Token Ring architecture where there is a master
controller polling between each sub-system and the sub-system
takes a turn to communicate. A time-critical infrastructure is
kept to maintain a watchdog that ensures all stages of the
protocol return to their initial conditions. The programming
language on communication is often written in Safety C
[23], where only one infinite loop can exist in the whole
system, memory access is direct only (dynamic addressing
is not allowed); There are two processors running in locked
steps (processors check each other’s execution) and decisions
are made in a “three voters, two pass” system. Typically,
these systems use communication medium that has a 10-9

error probably which is acceptable in the system critical
environment [24].

D. Virtual Test Environment and System Under Test

Several environment simulation tools are available to pro-
vide the virtual ’world’ within which driving functions can
operate. Among the available simulation tools, they vary in
fidelity level and focus on different testing objectives. From
the fidelity perspective, they range from visually compelling
photo-realistic physics engine-based simulation, to minimalis-
tic graphical rendering of the environment, to purely text-based
simulation. From a testing objective perspective, they range
from microscopic traffic-based simulation to individual vehicle
and pedestrian level simulation, to system level simulation
(e.g., planning module simulation), and sensor level simulation
[25].

For the SUT, Autoware [5] and Apollo [26] are two of the
popular choices for research as well as industrial use cases,
they both include a fully autonomous driving stack. On the
other hand, rather than incorporating the established AV stacks,
one can also implement naive rule-based driving functions for
rapid prototyping and development interfacing with different
simulation tools.

E. Optimisation Engine

During a scenario-based testing workflow, the parameter
spaces defined in a logical scenario format (i.e., parameter
value ranges) are explored to identify specific concrete pa-
rameter values that induce SUT failures. Various methods have

Fig. 2. Scenario abstraction levels mapped to the V model for system
development and testing [8]



been published addressing how to effectively derive such fail-
ure cases, as the parameter spaces become large, the possible
combinations of parameter values will also increase exponen-
tially. One of the basic methods is ’brute force’, or grid search
over a multidimensional grid; however, such a method can
easily reach the resource constraint. Another alternative is to
use constraint randomisation, which generates concrete values
randomly within the defined value ranges. Such a method was
used previously for scenario generation process [27], however
for exploring the scenario parameter space during the testing
phase it might result into missing key failure cases. [28]
demonstrated the use of Bayesian optimisation capabilities to
find the edge cases within a scenario parameter space, the
optimisation engine learns from the previous execution result
and can effectively identify the parameter combinations that
violate the pre-defined safety goals.

III. METHODOLOGY

A. Connectivity

In order to purely test the connectivity, it is necessary to
ensure the input data (e.g., pedestrian location) to the SUT
originates from the connectivity, rather than other sensing
functions. Within a scenario, a SUT can accumulate its travel
distance (d) through a variety of velocities (vn) in different
time sequences (tn), dtotal =

∑∞
n=1 vntn. On the other hand,

the V2X protocols operate with time domain only (tn) across
different sub-stages, which may include the starting stage to
load the V2X Communication Protocol per instruction in t1,
to operate the instruction of the protocol in t2, the physical
transmission of the protocol as per instruction in t3, the envi-
ronment reaction to the transmission in t4. Similarly, listening
to the protocol involves the sampling of the environment in
t5, the translation of samples to data t6, the interpretation of
the data to information in t7, the action (car manoeuvring) in
t8. As the SUT can adjust its velocity at any time during the
test, and different systems can achieve different velocity in the
same period of time, a pure V2X test on a SUT would need a
dynamically changing distance to compensate for the vehicle’s
potential actions, and ensure that the groundtruth data feed lies
in the V2X communication rather than other sensing layers. As
shown in Figure 3, within the same time period from the SUT
perspective, if the total time for the communication multiply
by the SUT speed (dsuccess) is less than the SUT’s actual
distance of travel (dtotal), then the destination groundtruth data
will be received by the SUT from the V2X earlier than its own
sensing (providing in this case SUT only knows groundtruth
at its current location), hence the V2X is being tested. On
the other hand, if the communication time multiply by the
SUT speed (dfail) exceeds the actual travel distance by the
SUT (dtotal), then the destination groundtruth received by the
SUT will come from its own sensing rather than V2X. In this
paper, a novel methodology is introduced to quantify the com-
munication requirements from a time based approach into a
distance based approach, limd→∞ f(dn) = f(tn) where f(dn)
is the distance the SUT will travel within the communication
time, and f(tn) is the communication time. The distance SUT

Fig. 3. Pass and failed of the V2I Communication

will travel for successful communication to be made dsuccess
is therefore the sum of distances travelled by the SUT at
individual communication stages, dsuccess =

∑∞
n=1 dn.

Paradoxically, each of the communication protocol stages
could pass or fail, and any stage that fails would result in the
delay or breakdown of the V2X communication protocol as
conjunction, Soverall = SStage1 ∧SStage2 ∧SStage3 ...SStagen

where S represent the success, the system might retry the
failed stage until succeed and then move to the next stage.
The distance required to successfully complete all the stages
of the protocol must be less than the total distance in the
test dsuccess ≤ dtotal to pass. Furthermore, distance related
to individual stages dn also needs to be much less than the
total distance dn ≪ dsuccess ≤ dtotal. An example of a V2X
protocol could contain an acceptable tolerable failure if the
number of stages in the protocol is low as seen in Figure
3. dtotal ≥ dtolerance +

∑
n dn, where the acceptable failure

in distance dtolerance is effectively the total distance dtotal
subtracted from the number of stages nstage in protocol and
each success distance dtotal.

B. Scenario Format and Conversion

As mentioned in Section II-B, the V2X elements have been
incorporated into the two-level abstraction scenario formats
[7], [15] which will cover the abstract scenario level using a
natural language format, and the logical scenario level using
parameter ranges. Through the conversion [14] to ASAM
OpenX formats [9], [10] for simulation execution, the concrete
scenario level can also be covered, Figure 4 illustrates such a
process. Currently, such a conversion process covers the non-
V2X elements.

In SDL level 1 and level 2, the representation of connec-
tivity spreads across the scenery elements (for describing the
communication devices), the dynamic elements (for describing
the communication activities), and the environmental elements
(for defining the connectivity coverage). However, such direct
representation of connectivity in the ASAM OpenX format
is not yet supported, especially for the dynamic and envi-
ronmental aspects. In this paper, the scenery aspect of the
connectivity (i.e., the communication device) is translated as
scenario objects with their positions defined in the ASAM
OpenDRIVE file. For the dynamic and environmental aspects,



Fig. 4. Conversion between different scenario abstraction levels [29]

they are implemented by an external Python script that parses
directly the SDL connectivity descriptions and incorporates
the receiving/sending of certain ground truth data between
scenario objects and actors based on the scenario. The con-
nectivity model (in Section III-A) is also incorporated with
the script.

C. Execution Framework

The execution framework utilises a modularised approach,
it broadly consists of a scenario conversion, a simulation core
(with V2X interfacing), an ADS, an optimisation engine, a V2X
model, and optionally a visualisation engine, as seen in Figure
5.

It can be seen that the whole workflow starts with the
SDL level 1&2 descriptions of an intended scenario. Such
a scenario is then converted to the ASAM OpenSCNEARIO
1.1 format and OpenDRIVE 1.6 format. The open source
simulator esmini [30] has been chosen as the simulation
engine for this implementation as it enjoys a high degree of
ASAM OpenX support and contains a detailed user guide for
integration. An additional V2X interface module handles the
communication with the V2X model for calculating the data
transmission properties, it also synchronises with the SDL
description to perform the communications of certain ground
truth data with the SUT. Please note that the V2X model can
be used for: 1) identifying V2X requirements, and 2) testing a
specific V2X parameter combination. An example of the first
category can be that given a desired time or distance advantage
as the input, the valid V2X parameter combinations will be
calculated and output. An example of the second category
can be that given a set of V2X parameters, the model will
calculate the corresponding communication time or distance
and use it for the scenario-based testing process to explore
the SUT failure modes. For the SUT, in this implementation,
the open-source Autoware [5] AV stack is chosen. This im-
plementation considers the sensing and perception layers only
at the object-list level, therefore the focus is more on the
planning and control layers. An optimisation engine is then
integrated to analyse the execution data against pre-defined
scenario criteria, the outcome of the optimisation engine is
a new set of concrete scenario parameters which are used to
create a new OpenSCENARIO file. In this implementation, the
Bayesian Optimisation algorithm is used as the optimisation

Fig. 5. Virtual execution framework with its components

engine. Finally, an additional visualisation module is also
integrated within the execution framework to provide photo-
realistic replays of the scenario executions. Such visualisation
module in the current implementation is only used for human
consumption since the SUT is running directly on the object
list, however, it can also be used to provide raw sensor input
to the ADS for broader system-level testing.

D. Optimisation Objectives

Bayesian Optimisation is a class of machine-learning-based
optimisation methods for optimising objective functions that
take a long time to evaluate. At its core lies the Gaussian
Process (GP) models which derive a prior over the black box
function that is being optimised [28]. It is particularly useful in
situations where traditional optimisation methods may be too
slow or too expensive to use. Bayesian optimisation builds a
probabilistic model of the objective function, using Bayesian
inference to iteratively update the model as new observations
are made. The model is used to make informed decisions about
where to sample the objective function next, in order to find
the optimum with the least amount of function evaluations. In
this study, a simple optimisation objective of collision between
the SUT and other scenario actors is used, and the scenario
parameters related to the SUT and other actors are used as the
input to the optimisation engine. The collision can be treated
as the occurrence of any overlapping between the bounding
boxes that define the SUT and other actors, and the scenario
parameters include SUT/other actors’ speed, position, etc.

E. Three stages of the investigation

To meet the objectives set out in the Introduction, and to
demonstrate the capabilities of such workflow combining the
V2X feature, this study will be divided into three stages.

Stage I will focus on a non-V2X scenario, and carry out a
scenario-based testing process on Autoware using the Bayesian
optimisation to identify failure conditions.

Stage II will then investigate providing a distance-based
advantage parameter derived from the connectivity range, and
investigate a suitable V2X parameter combination for the SUT.
Such distance advantage will be analysed and suggested from
the V2X model considering various data transmission stages
within the communication.



Stage III will utilise the V2X-based distance parameter from
Stage II, incorporate it using a V2X sensor modelled within the
simulation to supply ground truth data to the SUT. The testing
process over the same scenario and SUT (Autoware) will be
performed with the V2X sensor integrated. Comparison will
be made between the non-V2X ADS and V2X incorporated
ADS.

IV. CASE STUDY

A. Problem Statement

Since this study is not focused on scenario generation, an
existing scenario from the Safety PoolTM Scenario Database
[6] is used for the case study. The Safety PoolTM Scenario
Database contains more than 250,000 scenarios, generated
from over eight different scenario generation methods covering
both data-based and knowledge-based approaches, it is the
world’s largest public database at the time of writing. Across
different data sources and scenario generation methods, the
pedestrian crossing scenario has been identified. A variation
of the scenario is covered in the UN regulation R157 on
ALKS (Automated Lane Keeping Systems) [31], also in the
ISO 22737 on LSAD (Low-Speed Automated Driving) test
procedures [32], as well as in the EURO NCAP Car-to-
Pedestrian scenarios [33]. A schematic can be seen in Figure
7.

Based on the pedestrian crossing scenario, the following
steps are taken: 1) identify the parameter combinations of
VPed, VCar, d that result in a pedestrian-SUT collision, 2)
introduce a distance-based advantage parameter derived from
the V2X model, 3) identify failure parameter combinations
of the same SUT but with V2X incorporated in the test, and
benchmark failure combinations found in step 1.

B. Scenario representation

The scenario description at the abstract scenario level is
described using the BSI Flex 1889 with a structured natural
language format [13], which is presented in Figure 6. The pro-
cess of scenario development follows the conversion analogy
presented in Figure 4 in order to derive logical and concrete-
level scenarios while maintaining traceability. Based on Figure

Fig. 6. Scenario description in BSI Flex 1889 format [13]

Fig. 7. Diagram of the pedestrian crossing scenario

6, a logical-level scenario description using the WMG SDL
level 2 format is created to provide more details and use
parameter ranges. Finally, the concrete scenario is generated
to provide the exact scenery and chain of events with concrete
parameters using the translation toolchain detailed in [34]. At
this level of abstraction, the ASAM OpenSCENARIO 1.1 and
OpenDRIVE 1.6 formats are used.

C. Stage 1 - ADS Only Testing

Similar to Figure 6 (without the connectivity aspect), the
scenario in Stage 1 involves two actors: a SUT equipped with
an ADS (Autoware) and a pedestrian intending to cross the
road. A visual representation of this scenario is illustrated
in Figure 7. The intended safe behaviour for Stage 1 is that
the vehicle stops or avoids collision with the pedestrian. This
step investigates three key scenario parameters: the speed
of the SUT (VSUT ), the speed of the pedestrian (VPed),
and the vehicle’s initial distance to the pedestrian (d). The
Bayesian Optimisation (BO) algorithm, described in Section
II-E, explores the parameter values to identify potential colli-
sion events. To restrict optimisation engine exploration space,
bounds were determined for each of the parameters as shown
in Table I.

The testing objective is to determine the minimum distance
between the pedestrian and the SUT, thus to determine non-
collision and collision cases. During each execution of the log-
ical scenario described in WMG SDL level 2, the BO engine
conducted 20 iterations with the objective to drive collision

TABLE I
BAYESIAN OPTIMISATION PARAMETERS BOUNDS

Parameter Unit Value
Initial distance [d] m 40 to 120
SUT initial speed [VSUT ] m/s 5 to 35
Pedestrian speed [VPed] m/s 0.5 to 3

Fig. 8. Example of the object detection by Autoware



Fig. 9. Results of Stage 1, non-V2X testing

events as described in III-D. The same logical scenario was
executed five times to demonstrate a wider range of results.
The Autoware platform is utilised to represent the SUT, Figure
8 illustrates a visualisation of the pedestrian detection made by
Autoware. As can be seen that the SUT detects the obstacle on
the trajectory path and subsequently triggers a chain of events
internally.

The results from the BO-identified parameters and the
scenario execution are shown in Figure 9. Each dot represents
an execution of the OpenSCENARIO and OpenDRIVE pair.
The y-axis of the graph represents the minimum distance
attained between the ego vehicle and the pedestrian within
each execution, while the x-axis indicates the iteration number.
Furthermore, the non-collision cases are denoted by black
points, while the collision cases are represented by red points.
These instances result in negative values, indicating that the
bounding boxes of entities overlapped. Initially, it is evident
that in the majority of scenarios, a collision occurred. The
achieved distance exhibits variability during the initial itera-
tions, as the BO engine is exploring a broad parameter space.
Once the engine identifies the failure cases, it narrows its
exploring area to the proximity of the collision boundary,
enabling the identification of collision-prone scenarios. All five
executions show a consistent trend, indicating that failure cases
are detected at approximately iteration number six. Based
on the data, collisions occurred in 79% of the scenarios. It
demonstrates that BO is effective in identifying the scenario
parameters that cause the ADS to fail. Please note, this
paper is not intended to investigate the capabilities of the
optimisation algorithm, but rather to demonstrate a complete
testing workflow using V2X in later stages, therefore the BO
is used as an example.

D. Stage 2 - Connectivity

There are two main objectives in Stage 2: 1) identify a V2X
range for the Stage 3 - V2X and ADS testing using the pedes-
trian scenario, 2) introduce a robust V2X model and identify
the V2X parameter combination for the system, such that
the system cannot cheat and gain knowledge advantage of a
target object using sensing functions other than the V2X to
pass the V2X test (i.e., maintaining dsuccess ≤ dtotal).

For the V2X range - the SUT would send a V2I protocol
to the communication box and the communication box would
reply back to the SUT. In comparison to Stage 1, the V2I

system is effectively increasing the range of an ADS ’sensing
layer’ to detect (via communication) its surrounding. Similar
to an ADS extends its range of sensing by the use of road
signs and traffic lights. An ADS that communicates with
the road system can cooperatively optimise the road capacity
to support other systems by communicating its velocity, its
separation distance with other road users, and the road capacity
to enable the re-routing of other road users to alternative paths.
A vehicle-to-vehicle/pedestrian communication network (V2I)
is only limited by its radio reach to the connection box. In this
example, a V2I system is being proposed and the communi-
cation distance starts from 100m to 200m [35] away from the
ADS system to the connection box. The formula for calculate
the distance is given by, Dtotal = λ/4π

√
PtDrDt/(Pr) [36],

where Pt and Pr are the radio power between receiver and
transmitter respectively and Dr and Dt, λ is the wavelength
in meters (0.125m for 2.4GHz). As long as the received
transmission power remains high Pr/Pt > (1/4πDtotal)

2 and
both transmitter and receiver antennas have a DtDr radio
coefficient close to 1, power loss in free space is equal to
1/4π square relative to distance. The modern receiver has
a sensitivity of -70dBm and so 100m to 200m distance is
achievable in our simulation.

On the other hand, for V2X protocol only testing - since
there are 8 stages in our protocol to transmit and receive a
reply message. The breakdown of 8 stages of the protocol is
simulated as dsuccess = d1 + d2 + d3, .... + d8, each stage is
tested by assigning an arbitrary distance to complete with the
sum of the distances equal to dsuccess. If the ego vehicle pre-
emptively reduces its potential velocity to cheat the V2I test at
Stage 2, the relative distances dn of individual stages would be
shorter to ensure dsuccess ≤ dtotal for each test. For example,
a SUT travelling at 100 mph the dsuccess will be different
compared with if it is travelling at 10 mph. At 10 mph,
the dtotal will be much smaller for the same time duration,
therefore the corresponding dsuccess will be smaller. Imagine,
if a system designed for driving at 100 mph deliberately
drives at 10 mph, the dsuccess will be small from a static
V2X model. Under such dsuccess, if the system then travels at
100 mph for connectivity testing, it will have already gained
destination information before V2X communicates to it, and
act accordingly to pass, but the V2X model of dsuccess will
still assume it is traveling at 10 mph and therefore consider it
as a pass. To prevent such ’cheats’ to happen by the system,



TABLE II
dn AND PASS/FAIL AT EACH PROTOCOL STAGE

Protocol Stages Distance Value
Loading of protocol instruction [d1] 1m pass
Hardware protocol instruction [d2] 3m pass
RF physical transmission [d3] 1m pass
Environment reaction [d4] 1m fail
RF physical transmission [d3] 1m pass
Environment reaction [d4] 1m pass
Sampling (Listening) [d5] 1m pass
Sampling translation [d6] 1m pass
Interpret data to info [d7] 3m pass
Car manoeuvring [d8] 8m pass
Total [dsuccess] 21m pass

the calculation of dsuccess will need to be dynamically adapted
to the system and consider the ODD of the SUT where the
maximum designed safe operating speed is specified. In Stage
2, the SUT is tested multiple times and the V2X parameter
combinations generated take into consideration the system.
This is done by simply operating the SUT to drive at different
levels of capacity and calculate the dtotal (as shown in Figure
3), such dtotal will be used as the maximum dsuccess for the
V2X modelling, and consequently, the parameter combinations
can be determined.

Stage 2 will use dsuccess to measure the responsiveness of
the V2I protocol by testing its design/coding/performance in
relative time according to distance. This will then encourage
vehicle designers to increase their resilience, reliability, and
reciprocity in an effective exchange of data for SUT with
higher velocity potential. The ego vehicle may fail each stage
of the protocol, and each stage could only advance until
they have passed the previous stages, this is handled by
the processor and watchdog inside the ADS V2I system as
explained in the related works. Since in this scenario, the
road system can extend indefinitely to work out its dsuccess,
it is possible for all ADS to pass V2I eventually even when
dsuccess → ∞. A typical V2V SUT testing model may include
but is not limited to the ranges illustrated in Table II.

E. Stage 3 - ADS with V2X Combined Testing

In Stage 3, the V2X capability is incorporated to enable data
transmission to the vehicle from added V2X sensor. This is
accomplished by providing the Autoware system with ground
truth data based on the suggested range in Stage 2, in this
case, 130m is chosen. Under such a V2X range, the vehicle is
aware of its surroundings much earlier than in the ADS-only
case (Stage 1). This stage utilises the same scenario design as
described in IV-C. A V2X communication box is integrated
to firstly monitor and obtain crosswalk data, and secondly
transmit the information to the SUT. The scenario setup
including the V2X sensor is shown in Figure 10. Such feed of
ground truth data provides more time for the vehicle’s planning
module to analyse the data and determine an appropriate
course of action.

The results for the Stage 3 are present in Figure 11. It can
be observed that in most iterations collision does not occur.

Fig. 10. Schematic diagram of the V2X communication enabled scenario

In execution numbers 2, 4, and 5, no collision is recorded.
During the later iterations of execution numbers 1 and 3,
collision cases can be observed. The early iterations across
all executions present more diverse values of the minimum
distance [dmin] as the BO explores a wide range of parameters.
Subsequently, the values of [dmin] decrease after the fifth
iteration. Execution number 2 exemplifies this trend. A general
observation is that the obtained results for [dmin] remain close
to zero, with a range of 0m to 5m, indicating no collision cases.
Therefore it can be assumed that the SUT has enough time to
act and stop before the pedestrian. Only 7% of scenarios failed
which is a decrease of 72% in comparison to Stage 1 results.
It demonstrates that BO process encountered more difficulties
in challenging the system and identifying collision cases than
in Stage 1. Therefore, the V2X-enabled scenario demonstrates
enhanced safety when compared to the ADS-only systems.

V. CONCLUSION

In this paper, a three-stage investigation for testing ADS is
presented. Stage 1 contains an ADS only testing (without con-
nectivity) using the Bayesian Optimisation engine to identify
system failure cases. Stage 2 presents: 1) a multi-stage V2X
modelling framework to dynamically derive the required V2X
parameters based on the SUT speed, 2) introduce a V2X-based
distance advantage parameter which can be used in Stage 3.
Stage 3 then incorporates this V2X distance parameter within
the testing and explores the system failure cases with the
consideration of the connectivity aspect. It was observed that
the SUT with V2X capability showed increased safety (i.e.,
less collision cases). Furthermore, the novel and robust V2X
modelling technique can dynamically provide the required
V2X parameter combinations for any given SUTs. This paper
also provides first-hand evidence of incorporating V2X into
the ADS testing framework.
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