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GHACPP: Genetic-based Human-Aware Coverage Path Planning
Algorithm for Autonomous Disinfection Robot
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Abstract— Numerous mobile robots with mounted
Ultraviolet-C (UV-C) lamps were developed recently, yet
they cannot work in the same space as humans without
irradiating them by UV-C. This paper proposes a novel
modular and scalable Human-Aware Genetic-based Coverage
Path Planning algorithm (GHACPP), that aims to solve the
problem of disinfecting of unknown environments by UV-C
irradiation and preventing human eyes and skin from being
harmed.

The proposed genetic-based algorithm alternates between the
stages of exploring a new area, generating parts of the resulting
disinfection trajectory, called mini-trajectories, and updating
the current state around the robot. The system performance in
effectiveness and human safety is validated and compared with
one of the latest state-of-the-art online coverage path planning
algorithms called SimExCoverage-STC. The experimental re-
sults confirmed both the high level of safety for humans and
the efficiency of the developed algorithm in terms of decrease
of path length (by 37.1%), number (39.5%) and size (35.2%)
of turns, and time (7.6%) to complete the disinfection task,
with a small loss in the percentage of area covered (0.6%), in
comparison with the state-of-the-art approach.

I. INTRODUCTION

A. Motivation

In the face of the COVID-19 world-girdling pandemic,
it has become apparent how important the disinfection of
premises is to our lives. Among existing ways of sanitizing
premises, using UltraViolet-C (UV-C) lamps is the most
effective in terms of killing not only SARS-CoV-2 but also
many other harmful bacteria and viruses. Whereas statically
irradiating UV-C lamps cannot disinfect the target area
uniformly [1], many mobile service robots with mounted UV-
C lamps have been developed recently [1]-[3]. All of them
have a completely open lamp arrangement, which limits the
scope of their use to unmanned areas and requires control
of the disinfection process, since ultraviolet irradiation is
dangerous to human eyes and skin.

To overcome this restriction, we developed an autonomous
indoor mobile disinfection robot, called UltraBot, with two
separate blocks of UV-C lamps with non-circular disinfection
shape [4] (more detailed description is presented in System
Overview). In this manner, to conduct disinfection efficiently
and safely for humans, an approach to the UltraBot path
planning must be developed in accordance with the shape of
the disinfection zone and the configuration of the lamps.
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(b) SimExCoverage-STC: Area coverage = 100.0%, Path length = 232.1 m.

Fig. 1: Algorithm trajectories (blue lines) in the empty area. The dark shaded
area is the disinfected area. The irradiation-free area is marked in white.
Irradiated people in protective clothing are circled in red, unirradiated people
are circled in green.

B. Problem statement

Nowadays, there are many types of effective path planning
algorithms. Luo et al. presented an improved ant colony al-
gorithm [5], which showed better performance even in com-
parison with the method based on ant colony optimization
with artificial potential field [6]. Neural RRT* [7] is based
on the Convolutional Neural Network (CNN) model and
the Rapidly-exploring Random Tree Star (RRT*) algorithm,
which allows reducing the computational time and memory
used for the path generation. Wang et al. proposed a novel
non-uniform sampling technique [8] to solve the problem of
optimal path planning by using Generalized Voronoi Graph
and Multiple Potential Functions.

However, these state-of-the-art algorithms are aimed at
solving the problem of finding the shortest or optimal path
in a space with obstacles only. They could not provide
high-quality disinfection of premises by the robot with
nonstandard, non-circular disinfection shape. In our case, the
desired path must simultaneously meet the following set of
requirements:

1) Absence of collision with obstacles.

2) Minimal number of repeatedly visited areas and re-

peatedly disinfected areas.

3) Ability to consider the complexity of the robot’s dis-

infecting zone shape for effective disinfection.



4) Minimal number of turns to safe battery power and to
reduce the time of the whole disinfection task.
5) Avoidance of people irradiation by UV-C lamps.

C. Related works

1) Coverage path planning: The robot path planning task
for effective premises disinfection refers to Coverage Path
Planning (CPP). For the CPP task, a mobile robot should
cover the area in the most efficient possible way, saving
the robot’s energy and time. Many everyday applications
of mobile robots require coverage path planning algorithms,
such as autonomous vacuum cleaning, window cleaning, etc.

One of the first grid-based algorithms was the algorithm,
called Spanning Tree Covering (STC) [9], which subdivides
the work-area into disjoint cells corresponding to a square-
shaped tool. However, this algorithm leaves a lot of uncov-
ered areas near the obstacle borders. The Backtracking Spiral
Algorithm [10] is a coverage strategy for mobile robots based
on the use of spiral filling paths. This approach provides high
performance in cases of a simple environment. Otherwise, the
robot makes a lot of overlaps to achieve the desired covering
space percentage.

Cellular decomposition methods split the target area into
regions which then are covered by a simple boustrophedon
motion [11]. Performance of some of the mentioned algo-
rithms was compared in [12]. Cai et al. presented a method
that made a mobile robot perform a simple boustrophedon
or spiral motion until it faces the already cleaned area
or an obstacle [13]. This algorithm works in fully known
environments only. The algorithm [14] is built upon the
concept of an Exploratory Turing Machine (ETM), which
acts as a supervisor to the autonomous vehicle to guide it
with adaptive navigation commands.

In works [15], [16] a genetic algorithm (GA) was applied
to solve the coverage path planning problem. However, the
target covered area was discretized by discs as a shape of the
robot. This area representation does not reflect the real space
dimensions, which leads to a low covered space percentage.
Despite all its disadvantages, the genetic algorithm allows
working in unknown environments and considering many
conditions while planning paths, including the conditions
into the cost function.

2) Human-aware path planning: Since the disinfection
robot must perform path planning and follow it in such a way
that it does not expose people to its UV-C lamps, human-
aware path planning techniques should be highlighted.

Vega et al. presented the algorithm, that determined if the
space affordances, created by including certain objects with
which humans often interact, were being used as activity
spaces to consider them forbidden for navigation [17]. De-
spite its advantages, the described algorithm doesn’t work
in crowded, dynamic environments, as it was developed to
work in a static environment only.

Kuangi Cai et al. proposes a human-aware motion plan-
ning algorithm [18] based on the adaptive sampling method
to avoid the robot going into crowded areas and improve

robot acceptance in the crowded public environment. How-
ever, the algorithm doesn’t consider interpersonal relation-
ships to perform prediction.

Perez et al. proposed an approach to learn path planning
for robot social navigation by [19]. The problem was for-
mulated as a classification task where a Fully Convolutional
Network (FCN) is used to learn to plan a path to the goal in
the local area of the robot in a supervised way. However, the
proposed approach cannot work in dynamic environments ef-
ficiently due to the absence of human trajectories’ prediction.

Fang et al. proposed a global path planning method based
on the global scope of pedestrian perception and multi-
layer cost-maps [20]. Despite all its advantages, the target
algorithm fails if the goal cannot be reached due to human
appearance.

The planning algorithm for the disinfection robot should
make the robot disinfect as much space as possible, moving
far away from people until humans get out of the way.

D. Contribution

In order to overcome all the disadvantages of the pre-
viously developed algorithms, we propose a novel on-
line Genetic-based Human-Aware Coverage Path Planning
(GHACPP) algorithm for the disinfection robot with a spe-
cific UV-C lamp arrangement that disinfects premises by
UV-C irradiation safely for humans. The word online means
that the algorithm must constantly solve the Path Planning
Coverage Region (PPCR) problem by generating motion
trajectories as information about the space around the robot
to be disinfected is updated. Our algorithm allows getting
highly efficient robot trajectories along with considering a
set of conditions and restrictions formulated in [subsection T-
using the penalty system in our cost function.

Performance of the proposed algorithm was validated by
comparison with one of the latest state-of-the-art online cov-
erage path planning algorithms called SimExCoverage-STC
[21] by solving an online PPCR problem for an autonomous
mobile robot. The performance was evaluated based on the
minimized function of parameters that represent the path
planner effectiveness:

1) Area coverage, %: The percentage of the disinfected
area from the area, defined by the robot during its
disinfection mission in previously unknown space.

2) Path length, m: The global path length obtained after
a set of several map extension - area exploration steps.

3) Number of turns: A number of rotations the robot
makes during the disinfection process.

4) Total turn angle, rad: The total angle by which the
robot turns while following the generated path.

5) Time, sec: Time spent on performing the whole dis-
infection task, including both path planning and path
following actions.

II. SYSTEM OVERVIEW

As a light source for disinfection, UV-C mercury vapor
lamps of Phillips TUV series were used (Fig. [2). The UV-
C fluorescent lamps are working at 253.7 nm wavelength,
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Fig. 2: Decomposition of the UltraBot robot structure.

which has proven the highest germicidal effectiveness [22].
Eight lamps are installed on two opposite sides (4 lamps in
the stack) of the robot, and each stack can be used separately.
Each illuminant has 100 pW/cm? of UV-C irradiation at a
distance of 1 meter and 30 W of electrical power. Therefore,
each side has 400 uW/cm? of irradiation, which is enough
to kill 90% of microorganisms [23].

A. Hardware

Sensors have been chosen to produce a high quality of
the object detection and sensing area. The Hokuyo Light
Detection and Ranging (LiDAR) sensor aims implementation
of simultaneous localization and mapping featuring high
precision and update frequency. It is located in front of
the robot’s body. The RP2 LIDAR sensor determines rear
collision to achieve the robot’s 360 deg. field of view. Ten
ultrasonic sensors and four Intel RealSense RGB-D cameras
are used to detect collisions and people, respectively, to
safely avoid them. Ultrasonic sensors are located beneath
LIDARs to detect low obstacles such as soles of feet and
doorsills, and transparent objects. RGB-D cameras are ap-
plied to detect the person approaching the upper part of
the robot. Human detection is necessary for the emergency
shutdown of lamps if someone is near the working robot
and for the robot path planning while performing human-safe
disinfection. The robot’s control system is based on the high-
level controller (Intel NUC computer with Core-i7 processor)
and low-level controller board (STM32).

B. Shape of disinfection zone

In order to find an effective disinfection zone, we con-
ducted a series of real-word experiments for detection of
effective disinfection range and count Total Bacteria Count

(TBC) depending on distance from the robot [24]. We
received that TBC was equal to 100% for distance of 0.3
meter, 86,9% for distance of 0.6 meter, 84,6% for distance
of 0.9 meter. We chose the value at a distance of 0.9 meters
as the main for disinfection due to it was a high value for
distant disinfection according to Philips data sheet [23].

In order to determine the robot’s effective disinfection
zone shape, we installed 4 fluorescent lamps (30W) into
the robot in the same positions as UV-C ones to investigate
luminosity distribution depending on the location relative to
the lamps from one side of the robot. A normalized and then
summarized luminosity value equals 0.54 that corresponds to
0.9 m distance from the robot fluorescent lamps is taken as a
threshold value to reconstruct the outer border contour of the
effective disinfection zone, provided in Fig. 3] by the green
line. According to the lamp efficiency level, information on
the distribution of disinfection zones will allow the robot to
manage the disinfection process most effectively and achieve
the desired disinfection level of the target premises. For this
purpose, we also assigned the threshold luminosity values
for different disinfection performances from Table I and
plotted them with the red line for 100% and the yellow
line for 86.9% effectiveness. The effective disinfection zone
distribution in accordance with ranges is provided in Fig. 3]
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Fig. 3: Effective disinfection zones with outer borders - 100% (red), 86.9%
(yellow) and 84.6% (green). Top view.
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Since UltraBot has a symmetrical design, the shape of the
disinfection zone obtained from one side is also valid for the
other side. Therefore, the final shape of a disinfection area
resembles butterfly.

III. COVERAGE PATH PLANNING ALGORITHM
A. The evolutionary approach

To achieve an optimal trajectory, solving the online PPCR
problem, we propose a GHACPP algorithm for the robotic
disinfection by UV-C irradiation. Our approach allows the
disinfection robot to find the best part of the resulting
disinfection trajectory, called mini-trajectory, obtained after
each step of the target area exploration.

The global trajectory that allows the robot to cover the
target area by the disinfection coverage spot fully consists
of a set of mini-trajectories, obtained step by step along
with the target area exploration and its digital map exten-
sion performed by Simultaneous Localization and Mapping
(SLAM) [25]. The mini-trajectories contain coordinates that
are marked as visited after each mini-trajectory generation is
completed. Each mini-trajectory is generated in a few steps
according to Algorithm [I]



Algorithm 1: Evolutionary approach GHACPP of
generating a mini-trajectory.

Output: MiniTrajectory
1 Generate an initial population Po(IV).
2 P+ Po
3 fori<1to M do
Pmutated «— P
for Mutation in Mutations do
L Pmutated — MUtation(Pmutated)

P+ P+ Pmutated
8 Costs(P) < Evaluate(P)
9 P = Sort(P|Costs(P),N)

=7 N

N

10 if P.first() is the same T times in a row then
11 MiniTrajectory « P.first()
12 return MiniTrajectory

13 MiniTrajectory < P.first()
return MiniTrajectory

—
-

At the first step, our algorithm performs a generation of the
initial population that consists of N random mini-trajectories
called chromosomes. Then, the chromosomes evolve by a
set of mutations, applied with corresponding probabilities.
After that, the mutated chromosomes are evaluated by a cost
function and compared between each other and chromosomes
of the previous population. N chromosomes with the lowest
costs form a new population, which can be mutated further.
After the population is mutated M times, a selection step is
performed, where the chromosome with the lowest cost is
selected as a new mini-trajectory that is added to the global
robot trajectory.

However, to reduce the computational costs spent on the
mutation process, we propose to set the 7 minimal amount
of times when the best chromosome in terms of cost remains
the same. If it occurs, the mutation process is stopped and
followed by the selection step, where the chromosome is
selected as a new mini-trajectory. As a result, there is always
a chromosome that can be selected as a new part of the global
robot trajectory to follow.

B. Genetic mutations

Genetic mutations are operators that change some parts
or even the whole input chromosome. As chromosomes
are mini-trajectories, they consist of a set of points that
are reached by the robot as it moves along a particular
mini-trajectory. In this manner, when the chromosome is
mutated, its point coordinates are modified. Crossover is
another chromosome change operator in genetic algorithms
that shuffles the chromosome parts of a population. However,
the proposed algorithm implies the use of chromosomes with
a small number of points (maximum 5), so the operation per-
formed by crossover is covered by the proposed mutations.
In this regard, we propose not to include it in the population
mutation process, to save computational resources. A set of
mutations used in the proposed UV-C Genetic-based Path
Planner is described below.

1) Random Sample Mutation: This mutation completely
replaces the input chromosome with a new one, leaving only

the first point as it represents the current robot position.
Having the first point, the second point is sampled in 8
possible directions with some resolution relative to the first
point. Then, the sampling process is repeated with the second
point, excluding the direction toward the first point (see Fig.
[). After L times of repeating the sampling process, an output
chromosome consists of L + 1 points.

Fig. 4: Allowed sampling directions while sampling the 2" point (green)
and the 3" point (light blue).

2) Add Point Mutation: This type of mutation allows
adding one more point to the existing chromosome, in-
creasing its length and repairing an unfeasible path. In
contrast to [26] our approach suggests random selection of
the chromosome point index where to add a new point. Thus,
the new point can be either intermediate or the last one. Also,
it is sampled with the same resolution as for Random Sample
Mutation. If the point is intermediate, it should be sampled
near both previous and next chromosome points to keep the
resolution between chromosome points. All cases of adding
a new intermediate point, are provided in Fig. [3

3 -3 @ 2 3
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Fig. 5: Allowed sampling positions (green) and connections (dash green)
of the new added point, which is assigned to be intermediate between two
chromosome points (1 and 2), located: a) diagonally, b) horizontally, c)
vertically.

3) Remove Point Mutation: This type of mutation works
according to the principle opposite to Add Point Mutation.
It removes a randomly selected point from the input chro-
mosome, as in [26]. However, there are some restrictions.
The first one is that the first point cannot be removed, as it
represents the robot current position, and the robot is already
in it. In addition, if the point remove index is not the last
one in the chromosome, the point can be removed only if
the previous and the next points can be connected with the
same resolution as in previous two mutations. Situations, in
which the point can be removed, are clarified in Fig. [6]

a) b) <)

Fig. 6: Allowed positions of the removed point (red) and new connections
(dash green) between the previous and the next chromosome points (1 and
3), located: a) diagonally, b) horizontally, c) vertically.



C. Cost function

A cost function is necessary for a detailed description of a
generated chromosome C' (mini-trajectory). The function de-
scribes the absence of restrictions applicable to the trajectory,
such as the occurrence of a collision, long trajectory length,
the closeness of a robot to a human, etc. To evaluate the
cost of each generated mini-trajectory, 6 penalties were taken
into consideration. Thus, a sum of normalized and weighted
penalties makes up the cost function (Algorithm [2).

Our algorithm is designed to take into account each
penalty with a different weight. We assigned the highest
weight to the Collision penalty and Human closeness penalty,
because they are our top priority. The list of all penalties is
given below in descending order according to their weights.

Collision penalty. This penalty is responsible for the
detection of collision that occurred while moving along the
generated chromosome, Algorithm 2] A check of possible
collisions is performed with some interpolation step, where
the interpolated point is checked to be within an occupied or
free area of a C-space. C-space is an occupancy map created
by SLAM using LiDAR sensors, but with obstacles, which
borders are extended on half of the robot size. It allows the
collision detection algorithm not to recreate the robot shape
in every trajectory point for a check but quickly perform the
trajectory point check in the C-shape map instead. This ap-
proach allows reducing the required computational resources
significantly. If the collision is detected, the collision penalty
value is 1.0, otherwise, it equals O.

Human closeness penalty This penalty is responsible for
determining whether the robot will bypass close to humans
and irradiate them by UV-C lamps, following the current
mini-trajectory. In order to estimate the robot closeness to
humans, a Gaussian cost function is built for personal space

[20], according to the following equation: )
d
, s (D
PersonalCost;(Point(z;,y;)) = e 494,

where d = \/(z — ;)2 + (y — y;)? is the distance to a
person, x;, y; are the coordinates of the person p; location,
and o; is the standard deviation of the Gaussian cost function,
which prohibits the robot from crossing the personal space
and satisfies the requirement of safety. The cost function is
applied to each point of the Human Point Cloud obtained
from RGB-D cameras. The points with the highest costs
affect the planning of the robot’s trajectory and force the
robot to be attentive to humans.

Visited penalty. This penalty is responsible for determining
whether the robot will revisit places it has already visited,
following previously generated mini-trajectories that are part
of a global trajectory already traveled. As the places were
visited with some resolution, proposed in
the fact of revisiting is identified with the use of a cost map
of visited places, provided in Fig.[/| If already visited points,
except the first one, are in the newly generated chromosome,
the normalized penalty is applied (line 11 of Algorithm [2).

Absence of visited neighbour penalty. This penalty is
responsible for covering the target area that remained un-

Algorithm 2: Cost computation.

Input: MiniTrajectory (the chromosome)
Output: Cost
Data: Step, Wi .. Ws (weights), DisinfectionMap,
HumanPointCloud
Cost + 0
Interpolated = Interpolate(MiniTrajectory, Step)
/+ Collision penalty: */
Penalty, < 0.0
for Point in Interpolated do
if Point is in occupied area then
L Penalty; + 1.0

[

T S

/+ Human closeness penalty: */
7 Penaltys < 0.0
8 for Point in MiniTrajectory do
for HumanPoint in HumanPointCloud do
10 PersonalCost
GetPersonalCost(Point, HumanPoint)
Penaltys <+ Max(Penaltys, PersonalCost)

/+ Visited penalty: */
11 Penaltys < 0.0

12 for Point in MiniTrajectory do

13 if Point has been already visited then

14 L Penaltys + Penaltys + 1.0

15 Penaltys < Normalize(Penaltys)
/* Absence of visited neighbour penalty: */
16 Penaltys < 0.0
17 for Point in MiniTrajectory do
18 Neighbours < GetNeighbour Points(Point)
19 for Neighbour in Neighbours do
20 if Neighbour has been already visited then
21 | Penaltys + Penaltys + 0.14

22 Penaltys < Normalize(Penaltys)

/+ Turn penalty: */
23 Penaltys < 0.0
24 for i < 2 to MiniTrajectory.size() do

25 Turn < MiniTrajectory(i).angle —
MiniTrajectory(i — 1).angle

26 if Turn = 0° then

27 L Penaltys < Penaltys + 0.0

28 0° < Turn < 45° Penaltys + Penaltys + 1.0
29 45° < Turn < 90° Penaltys <+ Penaltys + 0.5
30 90° < Turn < 180° Penaltys < Penaltys + 1.0

31 Penaltys < Normalize(Penaltys)

/+ Repeating disinfection penalty: */
32 Penaltys < 0.0
33 for Point in Interpolated do
34 Mask < GetDisin fectionM ask(Point)
35 PointPenalty < Disin fectionM ap.apply(Mask)
36 Penaltys < Penaltys + Point Penalty

37 Penaltys < Normalize(Penaltys)

/+ Cost function: */
38 Cost < Z?zl W, * Penalty;
39 return C'ost

cleaned after the robot pass. These uncleaned areas appear
because of UV-C lamps installed on the left and right sides
of the robot only, which leads to not disinfecting areas, along
which the robot actually moves. Performing boustrophedon-
like motion allows the robot to disinfect the local area fully.
This motion is achieved by applying the penalty in cases
when there are no visited neighbor places for the newly
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Fig. 7: The map of the visited places (mini-trajectory points).

generated mini-trajectory point (Fig. [7).

Turn penalty. This parameter is responsible for reducing
the number of turns performed while performing the dis-
infection task and following the generated mini-trajectories.
Whereas the turn penalty value for the whole chromosome
(mini-trajectory) remains normalized, absolute penalty values
for each point are distributed according to rules in line 25
of Algorithm [2] This distribution allows to generate mini-
trajectories, that are as straight as it is possible.

Repeating disinfection penalty. This penalty is respon-
sible for detection of disinfection of already disinfected
areas. While the target area is covered with some robot
disinfection zone shape, the corresponding map cells are
marked as already disinfected. The repeating disinfection
penalty is computed by drawing the disinfection zone in
each interpolated point of the mini-trajectory with the further
comparison of the obtained disinfection masks with the
current disinfection map.

IV. EXPERIMENTS

A. Experiment 1

1) Experimental setup: In order to validate the perfor-
mance of the developed GHACPP algorithm, we set up an
experimental area measuring 3 by 4 meters and prepared
three experimental scenarios according to Fig. [§]

3m

Fig. 8: Experimental area for 3 scenarios: 1) Central obstacle presence. 2)
Inner wall presence. 3) The area is empty.

Performance of the GHACPP algorithm, solving an online
PPCR problem for a mobile robot, was compared (Table
] and Fig. O) with the state-of-the-art algorithm called
SimExCoverage-STC [21]. SimExCoverage-STC is one of
the most recent online coverage path planning algorithms,

which combines solving both exploration and coverage prob-
lems. The exploration provides a map for coverage path
planning, while the coverage provides the path for robot
motion. While the robot is moving along the coverage path,
exploration is carried out.

The UltraBot was launched from the left upper corner 10
times under both GHACPP and SimExCoverage-STC algo-
rithms for each scenario. The robot’s speed was set up to 0.5
km/h. The following parameters, reflecting the performance
of the path planner, were calculated and compared:

1) Area coverage, %;

2) Path length, m;

3) Number of turns;

4) Total turn angle, rad;

5) Time, sec.

To compute the Repetition disinfection penalty and the
disinfected area percentage, a special disinfection zone shape
of the robot was used. In the experiment, a zone that provides
84.6% of disinfection effectiveness was considered (Fig. [3).

2) Scenario 1: The first experimental scenario was con-
ducted with an obstacle placed in the center of the experi-
mental area. The GHACCP algorithm disinfected 0.3% less
area, whereas it significantly reduced the overall trajectory
length by 36.0%, the number of turns by 48.8%, the total turn
angle by 45.2%, and disinfection mission time by 5.9%.

3) Scenario 2: The second experimental scenario was
conducted with the inner wall, which doesn’t allow the
robot SLAM algorithms to reconstruct a much larger part
of the experimental area in the beginning, in comparison
with the first scenario. The experimental results showed that
with 0.6% less area disinfected, the GHACPP algorithm
significantly reduced the overall trajectory length by 31.5%,
the number of turns by 43.0%, the total turn angle by 39.9%,
and disinfection mission time by 0.7%.

4) Scenario 3: The third experiment allowed to estimate
performance of both planners in the static and totally known
environment. The experimental results showed that with
0.9% less area disinfected, the GHACPP algorithm signif-
icantly reduced the overall trajectory length by 43.8%, the
number of turns by 26.6%, the total turn angle by 20.6%,
and disinfection mission time by 16.1%.

5) Result of the Ist Experiment: It can be concluded
that, in total, with less than 1% area coverage (0.6% in
average), the GHACPP algorithm allowed to reduce the total
path length by 43.8% (37.1% in average), the number of
turns by 48.8% (39.5% in average), the total turn angle by
45.2% (35.2% in average), and coverage time by 16.1%
(7.6% in average), in comparison with the state-of-the-art
SimExCoverage-STC algorithm (Table [T} Fig. [9).

The GHACPP algorithm achieved the lowest performance
in total path length and execution time with the inner wall
presence. More exploration map update steps were required
due to the large obstacle dimensions. In an empty area, the
highest performance for these parameters was achieved, as
the SimExCoverage-STC algorithm made many unnecessary
bypasses that led to high disinfection repeatability of already
disinfected areas.
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Fig. 9: Results of the first experiment for path planning evaluation.
TABLE 1. COVERAGE AREA. ‘ [ |
Scenario Ne Algorithm Mean Min SD
| GHACPP 99.60 98.43 | 0.48 ] 1
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B. Experiment 2

The first experiment was conducted in the small size envi-
ronment to validate the algorithm’s performance statistically.
However, no human presence was considered in this case.
Being in the robot area of view, humans must affect the
disinfection process, as the robot must provide safety for
humans and not irradiate them with UV-C lamps. In order to
consider both the larger environment and human presence in
the disinfection task, 2 experimental scenarios were prepared
for an area measuring 6 by 14.5 meters.

The UltraBot was launched from the left lower corner 1
time for each of two path-planning algorithms for each sce-
nario. The robot’s speed was set up to 0.5 km/h. Additionally,
as for the first experiment, we set the same robot disinfection
zone shape and computed the same parameters, representing
path planner performance.

1) Scenario 1: The first experimental scenario allowed
to estimate generated trajectories and disinfection results for
both planners in a large static environment without humans.
Robot trajectories are provided in Fig. [I0] As a result, with
1.1% less area disinfected the GHACPP algorithm reduced
the overall trajectory length by 29.0%, a number of turns by
14.0%, and a total turn angle by 8.5%, in comparison with
the SimExCoverage-STC algorithm.

2) Scenario 2: The second experimental scenario was
conducted considering 3 persons in protective clothing lo-
cated in the center and near two opposite walls of the
experimental area. This scenario allowed to estimate planner
performance in human safety while performing a disinfection
task. Corresponding robot trajectories are provided in Fig.
[} According to the experimental results, with 19.7% less
disinfected area, the GHACPP algorithm showed a lower
total trajectory length by 62.5%, a lower number of turns by
54.8%, and a lower total turn angle 54.9% and lower execu-
tion time by 50.3%. The algorithm showed less performance

(a) GHACPP: Area coverage = 98.9%, Path length = 188.97 m.

‘J*‘l1“‘l““[‘

(b) SimExCoverage-STC: Area coverage = 100.0%, Path length = 266.32 m.

Fig. 10: Algorithm trajectories (blue lines) in the empty area. The dark
shaded area is the disinfected area covered by the robot disinfection zone
(light blue counter in the right bottom corner of Fig. 9(a).

in the covered area percentage, as it didn’t allow the robot
to irradiate people during disinfection, as opposed to the
SimExCoverage-STC algorithm, which completely irradiate
people several times in one disinfection task.

3) Result of the 2nd Experiment: Working in a large
space without humans, the GHACPP algorithm showed the
lower total path length, the number of turns, and the total
turn angle compared to the SimExCoverage-STC algorithm.
Performing disinfection in the large space side by side with
humans, both path planning algorithms successfully avoided
collisions with them. However, it should be mentioned,
that the GHACPP algorithm did not harm people by UV-C
irradiation, as it considered human presence in the area. In
contrast, the SimExCoverage-STC algorithm fully irradiated
all humans in the area. Therefore, we can conclude that
the GHACPP algorithm is able to perform safe disinfection
effectively, working in the same space as humans, while not
irradiating them by UV-C light, in contrast to the compared
path planning algorithm.



V. CONCLUSION

In this work, a Genetic-based Human-Aware Cover-
age Path Planning algorithm was developed for a mobile
differential-drive robot with a non-regular UV-C lamp ar-
rangement to disinfect premises, working in the same space
as humans. This algorithm was implemented for the high-
level control system of the UltraBot, an autonomous indoor
mobile disinfection robot with two independent blocks of
UV-C lamps. An experiment with three different scenarios
on the path planner performance validation was conducted in
a limited area with obstacles of different sizes. Additionally,
an experiment on the planner performance in a large space,
considering human presence, was held. The experimental
results confirmed both the high level of safety for humans
and the efficiency of the developed algorithm in terms of
path length (37.1%), number (39.5%) and size (35.2%) of
turns, and time (7.6%) to complete the disinfection task, with
a small loss in the percentage of area covered (0.6%), in
comparison with one of the latest state-of-the-art approach.

In the future, we plan to conduct several ablation studies
to expand the scope of this algorithm. Our method can be
applied in many areas of robotics, where it is necessary
to solve the problem of coverage path planning for the
completeness of tasks with the presence of any obstacles,
for example, research and search for objects using drones
[27], robots for detecting plant diseases [28], any kind of
inventory in warehouses [29], [30] and stores [31], and even
for the Mars exploration rovers [32].
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