
Multi-objective Binary Coordinate Search for Feature Selection

Sevil Zanjani Miyandoab∗1, Shahryar Rahnamayan∗2, SMIEEE, Azam Asilian Bidgoli∗3

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/SMC53992.2023.10394067

Abstract— A supervised feature selection method selects an
appropriate but concise set of features to differentiate classes,
which is highly expensive for large-scale datasets. Therefore,
feature selection should aim at both minimizing the number of
selected features and maximizing the accuracy of classification,
or any other task. However, this crucial task is computationally
highly demanding on many real-world datasets and requires a
very efficient algorithm to reach a set of optimal features with a
limited number of fitness evaluations. For this purpose, we have
proposed the binary multi-objective coordinate search (MOCS)
algorithm to solve large-scale feature selection problems. To the
best of our knowledge, the proposed algorithm in this paper
is the first multi-objective coordinate search algorithm. In this
method, we generate new individuals by flipping a variable of
the candidate solutions on the Pareto front. This enables us to
investigate the effectiveness of each feature in the corresponding
subset. In fact, this strategy can play the role of crossover
and mutation operators to generate distinct subsets of features.
The reported results indicate the significant superiority of our
method over NSGA-II, on five real-world large-scale datasets,
particularly when the computing budget is limited. Moreover,
this simple hyper-parameter-free algorithm can solve feature
selection much faster and more efficiently than NSGA-II.

I. INTRODUCTION

Feature selection involves eliminating as many features
or variables as possible without decreasing the accuracy
of classification, or any other task on a specific dataset.
Removing irrelevant or redundant features not only reduces
computational costs but also improves the classifier’s per-
formance by reducing the curse of dimensionality, and also,
makes the model easier to interpret [1], [2].

Since over the past years, the domain of features used in
machine learning and pattern recognition has broadened to
include thousands and millions of variables, the importance
of feature selection methods has become more prominent [1].
Each function call in a feature selection task consists of a
classification task using a classifier, e.g., k-Nearest Neighbor
(kNN), Support Vector Machine (SVM), or Decision Tree
(DT), etc. This makes the problem extremely expensive when
the dimensionality increases. In this condition, reaching an
acceptable result earlier, in a limited computational time or
budget, would be greatly appreciated. Besides, reducing the
amount of data by reducing the number of features in such
large-scale datasets will be desirable. However, eliminating

*Nature-Inspired Computational Intelligence (NICI) Lab
1Department of Electrical, Computer, and Software En-

gineering, Ontario Tech University, Oshawa, ON, Canada
sevil.zanjanimiyandoab@ontariotechu.net

2Department of Engineering, Brock University, St. Catharines, ON,
Canada srahnamayan@brocku.ca

3Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
Abidgoli@wlu.ca

too many features leads to a failure in classification. Hence,
we have two conflicting objectives in multi-objective feature
selection, namely, the number of features and the accuracy
of classification[3].

Feature selection is usually considered as a critical prob-
lem with broad applications across different fields, such as
bioinformatics (e.g., for nucleotide or amino acid sequence
analysis or micro-array analysis) [4], text mining (e.g., for
text categorization) [5], and image analysis (e.g., to find the
most appropriate pixels, color, etc) [6], [7] and many other
branches and subjects.

Feature selection techniques can be categorized into three
main groups: wrapper, filter, and embedded methods [8], [4],
[9], [1], [10]. The filter-based method is based on analyzing
the general characteristics of data and evaluating features
without involving any learning models [10]. Embedded meth-
ods involve variable selection as part of the training process,
varying for each learning machine. Using wrappers, subsets
of variables are scored based on their predictive power under
the black-box of the learning machine [9], [8].

Coordinate Search (CS), and similarly, Coordinate Descent
(CD), is one of the simplest iterative methods, both in
specifying the search direction and updating the variables in
each iteration, that solves optimization problems. Reference
[2] has formulated feature selection as a binary-constrained
optimization problem, and proves that coordinate gradient
descent is a simple technique that is surprisingly efficient
and scalable in variable elimination. Park et al. [11] have
proposed a modified Coordinate Descent methodology by
applying changes to its search initialization and adding
coordinate randomization as an exploratory step and box
search for fine-tuning. In [2], Ghalwash et al. have introduced
a fast block coordinate gradient descent method for high
dimensional feature selection of structured features grouped
according to prior knowledge. Reference [12] shows that
exploiting a population of individuals rather than a single one
further improves the results of this algorithm. As Wright [13]
points out, less attention is sometimes paid to CD algorithms
due to their simplicity and lack of sophistication. However,
several studies demonstrate their impressive performance
[14], [15]. Despite the simplicity and efficiency of coordinate
search, there is no multi-objective version of this algorithm to
solve an optimization problem with two or more conflicting
objectives.

In this study, we propose a binary Multi-Objective Coordi-
nate Search (MOCS) algorithm for the first time, apply it to
feature selection as a multi-objective optimization problem,
and compare the performance of this approach with the
well-known multi-objective evolutionary algorithm, NSGA-

ar
X

iv
:2

40
2.

12
61

6v
1 

 [
cs

.L
G

] 
 2

0 
Fe

b 
20

24

https://ieeexplore.ieee.org/abstract/document/10394067


II (Non-dominated Sorting Genetic Algorithm II) [16].
To convert feature selection into an optimization problem,

the status of each feature would be represented by a binary
variable. Since each feature of the dataset can only be kept
or removed, each variable has only two states. As a result,
each individual - or solution - represents a distinct state of
features. The accuracy of classification, which is calculated
by masking the features of the dataset and using a regular
classifier, e.g., kNN, SVM, or DT, can be considered as an
objective value of each individual. Additionally, due to the
importance of the number of remaining features for large-
scale databases, we define the ratio of the retained features
as the second objective of each individual in our optimization
problem.

Reference[17] has introduced a multi-objective optimiza-
tion method for feature selection in classification, called
PRDH. They have developed a duplication handling method
to enhance the diversity of the population in the objective
and search spaces. In addition, their method reformulates the
multi-objective feature selection problem as a constrained
optimization problem by focusing on classification perfor-
mance. And a novel constraint-handling method has been
used to select feature subsets with more informative and
strongly relevant features. Cheng et al. [18] have shown that
the novel variable granularity search-based multi-objective
evolutionary algorithm, named VGS-MOEA, significantly
reduces the search space of large-scale feature selection
problems. In this method, each bit of the individuals rep-
resents a feature subset. This subset (search granularity) is
larger at the beginning and becomes refined gradually, aiming
for higher-quality features. This technique can remarkably
improve feature selection efficiency and accuracy.

Wang et al. [19] have proposed information theory-based
non-dominated sorting ant-colony optimization algorithm,
INSA, for bi-objective feature selection. They have intro-
duced a heuristic information function, which improves
search efficiency and addresses the imbalance preference
problem for the objectives. Moreover, their novel technique
of pheromone updating enhances the balance between di-
versity and convergence. In order to enhance the evaluation
and selection of solutions for a multi-objective optimization
problem, a novel fitness evaluation mechanism (FEM) is
introduced in [20], employing fuzzy relative entropy (FRE).
A multi-objective optimization framework is also devised,
integrating the FEM with an adaptive local search strategy.
To solve the problem effectively, a hybrid genetic algorithm
is employed within this framework.

To the best of our knowledge, our proposed method is the
first time CS has been modified to apply to multi-objective
problems, e.g., feature selection. This is simple in terms of
concept and implementation. Although it is a population-
based version of CS, it generates distinct sets of solutions
in each iteration by changing the status of a feature. A non-
dominated sorting algorithm will preserve the most suitable
set of features. With this simple scheme of generating
operator, it lacks hyper-parameters and search components
(such as mutation and crossover), which is a big advantage

over many existing multi-objective algorithms. Because of
the exponentially reducing search space, convergence can
happen in early iterations. It makes this method an excellent
candidate for expensive optimization problems with a budget
limitation. Moreover, it can be hybridized with other meta-
heuristic algorithms, to further improve their performance.

In order to provide a comprehensive understanding of the
topic and to present our research methodology and findings
in a logical manner, this paper is organized as follows:
Section II provides a detailed background review, Section
III outlines our proposed method, highlighting the steps
and employed techniques, Section IV showcases results and
analysis derived from our study, and Section V concludes
with remarks.

II. BACKGROUND REVIEW

Two main building components of the proposed method
are Coordinate Search and Multi-objective Optimization
which are explained in detail in the following subsections.

A. Coordinate Search

Coordinate descent (CD) algorithms try to tackle optimiza-
tion problems by solving a sequence of simple optimization
problems [21]. Thus, they are a category of decomposition-
based algorithms. At each iteration, CD optimizes one or a
block of coordinates (variables) while fixing all other coordi-
nates or blocks [22]. In other words, the idea behind the CD
algorithm is that, when directional derivatives are unavailable
or difficult to compute, one-dimensional minimization can be
replaced to approximate a good solution [23]. In numerical
linear algebra or arithmetic optimization, gradient informa-
tion is required to apply CD. However, in the Evolutionary
Computation community, when exact gradient information is
not applicable, the method is called coordinate search (CS).
In this case, the algorithm benefits function value samplings
on coordinates in turn to find a suitable value for each
variable.

Despite its simplicity and inexact derivative-free mini-
mization, the algorithm still produces acceptable practical
results and performs better than other algorithms in solving
expensive optimization problems such as feature selection.
Depending on several parameters which determine the frame-
work of the CS algorithm, different versions of the algorithm
are proposed. Some of these parameters are the order of
coordinates or blocks to be optimized in turn, the number of
simultaneously updated coordinates, the initial point to start
the optimization process, the number of sampled points, and
the way that sampling is conducted (i.e., the step value of
sampling).

Depending on the number of coordinates that are opti-
mized simultaneously, CS can be viewed as two variants. At
each iteration, the algorithm may update only one coordinate
based on the fitness evaluation of the sampled points while
all other coordinates are fixed. In order to accelerate the
optimization process, particularly in large- or huge- scale
optimization problems, a block-CS can be utilized in which
instead of only one coordinate, a block of variables can be



updated simultaneously, and consequently, the number of
fitness evaluations is decreased dramatically [24].

B. Multi-objective Optimization

Multi-objective optimization has been defined as optimiz-
ing two or more conflicting objectives.The algorithms to
solve these problems usually make a trade-off decision and
generate a set of solutions instead of only one. This set
of solutions is called the Pareto front, or non-dominated
solutions. The Pareto front is created using the concept of
dominance, which is used to compare solutions.

Definition 1. Multi-objective Optimization [25]

Min/Max F (xxx) = [f1(xxx), f2(xxx), ..., fM (xxx)]

s.t. Li ≤ xi ≤ Ui, i = 1, 2, ..., d
(1)

where M is the number of objectives, d is the number of
decision variables (i.e., dimension), and the value of each
variable, xxxi, is in the interval [Li, Ui] (i.e., box-constraints).
fi represents the objective function, which should be mini-
mized or maximized.

One of the commonly used concepts for comparing can-
didate solutions in such problems is dominance.

Definition 2. Dominance Concept
If xxx = (x1, x2, ..., xd) and x́xx = (x́1, x́2, ..., x́d) are two
vectors in a minimization problem search space, xxx dominates
x́xx (xxx ≺ x́xx) if and only if

∀i ∈ {1, 2, ...,M}, fi(xxx) ≤ fi(x́xx)∧
∃j ∈ {1, 2, ...,M} : fj(xxx) < fj(x́xx)

(2)

This concept defines the optimality of a solution in a multi-
objective space. Candidate solution xxx is better than x́xx if it is
not worse than x́xx in any of the objectives and at least it has
a better value in one of the objectives. All of the solutions,
which are not dominated by any other solution, create the
Pareto front and are called non-dominated solutions [26].

Another popular method for comparing candidate solu-
tions in multi-objective problems is crowding distance. For
computing the crowding distance of the individuals, we sort
them based on each objective and assign an infinite distance
to the boundary individuals (minimums and maximums).
Other individuals are assigned the sum of the normalized
Euclidean individual distance from their neighbors with the
same rank on all objectives. This estimates the importance
of an individual in relation to the density of individuals
surrounding it [16].

Multi-objective algorithms attempt to find the Pareto front
by utilizing generating strategies/operators and selection
schemes. The non-dominated sorting (NDS) algorithm [16]
is one of the popular selection strategies which works based
on the dominance concept. It ranks the solutions of the
population in different levels of optimality. The algorithm
starts with determining all non-dominated solutions in the
first rank.

In order to identify the second rank of individuals, the non-
dominated vectors are removed from the set to process the
remaining candidate solutions in the same way. This process
will continue until all of the individuals are grouped into

different levels of Pareto. Deb et al. [16] has introduced one
of the most famous and impressive state-of-the-art multi-
objective optimization methods, NSGA-II, based on this
concept. It is the main competitor to our method.

III. PROPOSED METHOD

A. Objectives

As mentioned in the previous sections, improving classi-
fication accuracy as well as reducing the number of features
are the main goals of a large-scale feature selection problem.
Therefore, we define two objectives for each candidate
solution (or set of features). Our first objective is to increase
the accuracy of classification. For calculating the classifi-
cation accuracy, we employ the k-Nearest Neighbor (kNN)
classifier to be trained and evaluated on the train set (during
the optimization phase) and test set (after optimization for
evaluating the final solutions).

In order to design a minimization optimization problem,
we define the error of classification as the first objective using
the predictions of the kNN:

Classification Error = 1− #Correct Predictions

Total#Predictions
(3)

The second objective is to minimize the number of se-
lected features. For that reason, we count the number of
variables with the value of 1 (or True) for each individual,
and accordingly, we can compute the ratio of the selected
features:

Ratio of Selected Features =
Number of 1′s

Total#Features
(4)

The optimizer tries to minimize both of these objectives,
and both may have a real value in the interval [0, 1]. Studies
have shown that these two objectives are in conflict, so they
are appropriate candidates for multi-objective optimization
[3].

B. MOCS

In the proposed MOCS for feature selection, each feature
is evaluated individually by considering two objectives. For
this purpose, at each iteration, we choose a feature based
on a random permutation of the variables and change the
status of the corresponding feature in all individuals of the
population to generate new candidate solutions. This method
is basically based on the process of the CS algorithm in
which the value of one variable is changed while all others
are kept unchanged.

Since the goal of the proposed method is to generate
a Pareto front for multi-objective feature selection, a pop-
ulation for CS should be created. Although the selection
strategy is partly adopted from the NSGA-II algorithm,
generating new subsets of features in each generation is a
novel approach that can be effectively applied to large-scale
feature selection and probably other binary multi-objective
tasks.



The proposed method consists of several major steps as
mentioned in Algorithm 1. The details of each step are
provided as follows:

1) Initialization: First of all, a random population of N
solutions is formed. An individual, also known as a
candidate solution or chromosome in the adaptation of
optimization with the feature selection problem, con-
sists of strings of bits - 0s and 1s. These variables - or
bits - of an individual determine whether corresponding
features in the original dataset are selected or removed.
If a variable is set to 1, the corresponding feature in the
dataset will remain; on the other hand, if the variable is
set to 0, the feature will be deleted. Accordingly, each
individual - or solution - represents a distinct state of
the features. After generating the initial population, the
objective values for each individual (set of features)
are calculated. At this point, we have evaluated N
individuals so far. Therefore, the number of function
calls (NFC) should be set to N .

2) Selection/Survival: NDS is applied to the population
to identify the Pareto front. Since the next steps are
required to be applied to the best set of candidate
solutions, dominated candidate solutions are no longer
needed and can be removed from the population.

3) Generation of New Solutions: We create an empty
temporary list. New solutions are generated by flipping
a specific variable of the solutions in the Pareto front
and calculating their objective values. Then the new
candidate solution should be compared with its parent.
If a newly generated candidate solution is not domi-
nated by its parent, it will be added to the temporary
list. This allows the effectiveness of each feature to be
assessed one-by-one.

4) Formation of the New Population: We merge the
individuals in the temporary list (mentioned in the
previous step) with the population (parents or current
Pareto front).

5) Selection/Survival: After applying NDS to the popu-
lation to identify the Pareto front and removing the
dominated solutions as in step 2, we may also want
to check the population size here. If the number of
members of the Pareto front exceeds a maximum
threshold, e.g., N , we use the crowding distance to
select the N best solutions of the Pareto front and
eliminate the other individuals from the population.

6) If the termination condition is not met, a new iter-
ation starts by jumping to step 3 and assessing the
next feature. For instance, if the number of function
calls (NFC) has not reached the maximum allowed
number (maxNFC), the algorithm should continue
in the loop. All these steps should be iterated over
all variables (i.e., features). Since the order of features
can play a role in the assessment of each feature, after
iterating over all variables, a new random permutation
is considered on the order of features to start a subse-
quent round of assessment.

In contrast to NSGA-II, our method does not employ
crossover and mutation operators. Instead, we alter the state
of only one variable of selected individuals to generate
distinct children - or better put, candidate solutions. When
a newly generated solution is not dominated by its corre-
sponding member of the Pareto front, it will be merged with
the population. After this, the survival or selection process
would be run on the population and the non-dominated set of
solutions would survive. Furthermore, the crowding distance
of the individuals is not necessary to be calculated in each
iteration. If and only if the Pareto front size exceeds a specific
number N , we calculate and sort the crowding distances
of the solutions and select the best N individuals from the
Pareto front. We set N equal to the initial population size
so that the number of individuals never rises beyond 2×N
since the number of newly generated solutions can be in the
range of [1, N ]. However, some of them may be eliminated
before merging with the current population because of the
dominance of their parents.

It is worth mentioning that in most cases, eliminating
individuals other than those in the Pareto front in each
iteration leads to a decrease in memory usage compared to
NSGA-II, which keeps 2 ×N individuals in each iteration.
Although, our proposed method and NSGA-II have similar
time and memory complexities. The most computationally
demanding operator in each NSGA-II iteration is NDS
with O(MN2) computations[16]. MOCS also includes this
selection process, while its novel generation technique does
not exceed O(N) computations to generate new candidate
solutions. As a result, its computational complexity for each
iteration is O(MN2).

We may define a termination condition based on the total
number of evaluations (as in our experiments), so that, after
evaluating a specific number of solutions, the algorithm stops
and the output would be the final Pareto front. Another
termination option that can be considered for the proposed
method is convergence. In MOCS, if the Pareto front remains
unchanged in 2 × D (i.e., two times the total number of
features) subsequent iterations, it indicates that the algorithm
has converged and it cannot find any better solution. The
reason is that after that number of iterations, the status of
all features has been flipped and evaluated; therefore, if no
improvement has been achieved, the next iterations will not
result in distinct solutions. Thus, the algorithm can stop. This
is an advantage of the proposed algorithm. While we cannot
identify a definite convergence indicator in other stochastic
evolutionary methods such as NSGA-II.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Datasets

We compare the performance of MOCS and NSGA-II on
five large-scale datasets [27] in the fields of microarray and
image/face recognition to select the best set of features. One
of the most prominent characteristics of datasets in these
fields is their high number of features with a relatively
small number of instances. It deteriorates the classifier’s
performance and increases their need to reduce the number of



features. You may find the properties of the adopted datasets
in Table I.

B. Experimental Settings

Twenty percent of each dataset’s instances are randomly
selected as test sets, which are not seen during optimization.
Due to the stochasticity of optimization algorithms, we run
the algorithm 10 times and at each run, a random subset
of samples is considered as the test set. Therefore, the
experiments are somehow similar to 10-fold cross-validation
with a probability of overlapping the test sets. Because of the
expensiveness of the feature selection process on large-scale
datasets, we have fixed the number of function calls (maxi-
mum NFC), or evaluations, to 50,000 for both algorithms to
have a fair comparison. Details of the hyperparameters can
be found in Table II.

We consider the error of classification as the first objective
and the ratio of the selected features to all features as
the second objective. Consequently, minimization of both
objectives is desired and both may have a real value in the
interval [0, 1]. We evaluate the multi-objective optimization
algorithms by measuring the hypervolume (HV) with the
reference point of (1, 1).

We use kNN implemented with the help of FAISS [28]
as the classifier on the train set to compute the classification
error on each candidate solution (i.e., a subset of features).
The k parameter for warpAR10P, warpPIE10P, TOX-171,
pixraw10P, and CLL-SUB-111 datasets is 5, 5, 5, 5, and 4,
respectively.

C. Numerical Results and Analysis

Fig. 1 shows the average trend of the HV during opti-
mization for both methods (left column) and the resultant
Pareto fronts on test sets (right column). We see that in
all datasets, MOCS presents a very rapid jump-up of HV,
while the HV plots of NSGA-II reach a relatively low
value in such large-scale search spaces and cannot improve
significantly compared to MOCS. Evolutionary algorithms
have lower improvement rates than CS for solving large-
scale optimization problems.

Table III contains the average of the numerical results for
the final Pareto fronts resulting from MOCS and NSGA-
II algorithms after 50,000 function calls. As you can see
in the table, numerical results in every aspect prove the
superiority of MOCS over NSGA-II. In all datasets, the final
train and test HV resulting from MOCS have a significant
advantage over NSGA-II. The HV rises much slower with
NSGA-II than with MOCS, as shown in Fig. 1. This is
especially beneficial and valuable for computationally ex-
pensive optimization problems as with this limited number
of fitness calls, MOCS can quickly reach a set of optimal
features. MOCS reaches a train HV of 0.97 for 4 datasets
out of 5, while NSGA-II cannot reach a train HV of 0.87
for any datasets. For datasets in the field of image or
face recognition, both algorithms increase HV faster than
microarray in most cases. Optimizing a large microarray
dataset such as CLL-SUB-111 requires more function calls

Algorithm 1: Pseudo-code of binary MOCS
input : dataset, N , maxNFC
output: Paretofront

// Initialization
population = random population with size N ;
evaluate(population);
NFC = N ;
population = NDS(population).front[0];
while true do

permutation = New Permutation;
// Iterating over variables
for i← 1 to NumberofFeatures do

index = permutation[i];
// Generating new individuals
NewCandidateSolutions = New List;
// Iterating over population;
for j ← 1 to len(population) do

NewIndividual = population[j];
NewIndividual[index] =
!NewIndividual[index];

evaluate(NewIndividual);
NFC = NFC + 1;
if population[j] does not dominate
NewIndividual then

add NewIndividual to
NewCandidateSolutions

end
end
population =
NewCandidateSolutions ∪ population;

population = NDS(population).front[0];
if NFC > maxNFC or population has not

changed in 2×D iterations then
Exit

end
if len(population) > N then

calculate the crowding distance of
individuals;

sort individuals based on crowding
distance;
population = N best individuals;

end
end

end

TABLE I
DATASETS DESCRIPTION

Dataset #Features #Instances #Classes Domain
warpAR10P 2400 130 10 Image, Face
warpPIE10P 2420 210 10 Image, Face

TOX-171 5748 171 4 Microarray
pixraw10P 10000 100 10 Image, Face

CLL-SUB-111 11340 111 3 Microarray



even for MOCS. In order to demonstrate the improvement of
HV values during the optimization process, the initial values
of HV which are computed from the initial population are
also reported. Not only is the HV of the train Pareto front
of MOCS significantly higher than NSGA-II, but also the
Pareto front of test data results in superior HV values than
NSGA-II.

Moreover, Table IV represents the minimum classification
error and the average ratio of features on the final train Pareto
fronts for MOCS and NSGA-II. In addition, the resultant
Pareto fronts on test sets demonstrate better sets of features
in terms of both objectives. In four datasets, the average
number of features of the Pareto front has been reduced
to 2% of the total features or less. While NSGA-II keeps
more than 12% of the features for all of the datasets after a
similar number of function calls. Therefore, we notice that
MOCS is exceptionally successful at eliminating unnecessary
features and reducing the ratio of retained features (the
second objective) while minimizing classification error (the
first objective).

MOCS not only remarkably improves the simultaneous
minimization of both objectives, but also makes the distribu-
tion of Pareto front solutions in the objective space (mostly
the first objective: classification error) broader in most cases.
A wider distribution of solutions provides decision-makers
with more options in practice. MOCS’ solutions are rarely
worse than NSGA-II’s solutions.

An earlier convergence of MOCS increases the number
of solutions on the Pareto front. For instance, after 20,000
function calls for the warpPIE10P dataset, the HV almost
does not change in MOCS, while exploring the features
of the population leads to finding new solutions on the
Pareto front or even with duplicate objective values (we
eliminate solutions with a duplicate set of variables for both
algorithms). Consequently, some solutions may overlap in
the objective space. For this reason, the number of MOCS
Pareto front solutions for this dataset is remarkably more
than NSGA-II’s; on the other hand, this difference is much
less for the CLL-SUB-111 dataset, in which both algorithms
have not converged yet.

Consequently, the proposed binary MOCS can efficiently
solve huge- and large-scale optimization problems such as
feature selection, which are computationally demanding. Al-
locating numerous fitness evaluations to regular population-
based evolutionary algorithms is not usually applicable to
real-world problems. Another advantage of MOCS is that it is
a hyper-parameter-free algorithm. Dislike many evolutionary
algorithms which can be highly affected by tuning the hyper-
parameters, the only parameter that should be considered
in MOCS is the initial population size. However, even this
parameter loses its impact during the process.

V. CONCLUSION REMARKS

The cost of data processing usually increases exponentially
when the number of features in a dataset increases. Ac-
cordingly, for big data an efficient and fast feature selection

TABLE II
PARAMETER SETTINGS FOR BOTH MOCS AND NSGA-II ALGORITHMS

MOCS
Maximum size of population 100
Number of function calls (NFC) 50000
Sampling method Binary Random Sampling
Survival method NDS algorithm
Duplicate Elimination TRUE
Number of runs of algorithm 10

NSGA-II
Population size 100
Number of function calls (NFC) 50000
Sampling method Binary Random Sampling
Selection method Tournament Selection
Mutation method Bit-flip Mutation
Crossover SPX
Survival method NDS algorithm
Duplicate Elimination TRUE
Number of runs of algorithm 10

method is essential. By considering improving the ratio of re-
tained features as well as the accuracy of classification as our
objectives, feature selection becomes a binary-constrained
multi-objective optimization problem. We have solved this
problem using the novel multi-objective coordinate search
method, which generates new individuals by flipping the
value of a variable of the solutions in the Pareto front instead
of applying crossover and mutation as used in many multi-
objective algorithms. In fact, the proposed algorithm investi-
gates the effectiveness of each feature in the task of classifi-
cation. This method is simple, needs fewer hyper-parameters,
uses less memory, and can recognize convergence. Based on
the experiment results, our method outperforms NSGA-II,
not only in minimizing both objectives in a limited time but
also in making the distribution of the Pareto front solutions in
the objective space much wider in most cases. The number of
features in the resultant optimal sets by the proposed method
is significantly less than those obtained by NSGA-II.

As a potential future work, MOCS can be applied to huge-
scale datasets, as well as other tasks than feature selection.
Also, the non-binary scheme of this method should be
developed and tested on a wide range of problems. A unique
mark of CS or MOCS is that these algorithms can also be
applied for fine-tuning the results of other algorithms, as a
local search after their results converge.

REFERENCES

[1] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp.
16–28, 2014.

[2] M. F. Ghalwash, X. H. Cao, I. Stojkovic, and Z. Obradovic, “Struc-
tured feature selection using coordinate descent optimization,” BMC
bioinformatics, vol. 17, no. 1, pp. 1–14, 2016.

[3] A. A. Bidgoli, H. Ebrahimpour-Komleh, and S. Rahnamayan, “An
evolutionary decomposition-based multi-objective feature selection for
multi-label classification,” PeerJ Computer Science, vol. 6, p. e261,
2020.

[4] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection
techniques in bioinformatics,” bioinformatics, vol. 23, no. 19, pp.
2507–2517, 2007.

[5] M. H. Aghdam, N. Ghasem-Aghaee, and M. E. Basiri, “Text feature
selection using ant colony optimization,” Expert systems with appli-
cations, vol. 36, no. 3, pp. 6843–6853, 2009.



(a) warpAR10P (b) warpAR10P

(c) warpPIE10P (d) warpPIE10P

(e) TOX-171 (f) TOX-171

(g) pixraw10P (h) pixraw10P

(i) CLL-SUB-111 (j) CLL-SUB-111

Fig. 1. HV plots during optimization on the train set (left) and median final test Pareto set (right) on datasets. f1 and f2 are the classification error and
the ratio of selected features, respectively.



TABLE III
RESULTS FOR COMPARING AVERAGE FINAL TRAINING AND TESTING HV AND NUMBER OF SOLUTIONS IN THE PARETO FRONTS OF MOCS AND

NSGA-II. INITIAL HV IS COMPUTED OVER THE INITIAL POPULATION.

MOCS NSGA-II

Dataset Initial HV Final
Train HV

Final
Test HV

#Solutions
in Pareto front

Final
Train HV

Final
Test HV

#Solutions
in Pareto front

warpAR10P 0.27±0.05 0.97±0.01 0.67±0.05 20.1±5.2 0.70±0.03 0.45±0.09 4.3±2.3
warpPIE10P 0.35±0.03 0.99±0.01 0.78±0.07 45.4±23.7 0.86±0.01 0.57±0.04 2.9±3.0

TOX-171 0.38±0.04 0.97±0.01 0.73±0.07 24.1±5.5 0.65±0.02 0.49±0.04 2.5±1.9
pixraw10P 0.35±0.07 0.99±0.01 0.70±0.11 59.6±33.9 0.62±0.01 0.43±0.07 2.5±2.8

CLL-SUB-111 0.36±0.05 0.75±0.06 0.62±0.09 11.4±1.4 0.54±0.01 0.42±0.05 3.5±2.8
Average 0.34±0.05 0.93±0.02 0.70±0.08 32.1±13.9 0.67±0.02 0.47±0.06 3.1±2.6

TABLE IV
RESULTS FOR COMPARING AVERAGE FINAL OBJECTIVE VALUES IN THE PARETO FRONTS OF MOCS AND NSGA-II

MOCS NSGA-II

Dataset Minimum
Classification Error

Average
Ratio of Features

Minimum
Classification Error

Average
Ratio of Features

warpAR10P 0.03±0.01 0.01±0.01 0.16±0.04 0.17±0.01
warpPIE10P 0.01±0.01 0.01±0.01 0.01±0.01 0.13±0.01

TOX-171 0.02±0.01 0.02±0.01 0.05±0.01 0.32±0.01
pixraw10P 0.01±0.01 0.01±0.01 0.03±0.01 0.36±0.01

CLL-SUB-111 0.11±0.03 0.17±0.01 0.12±0.01 0.39±0.01
Average 0.04±0.01 0.04±0.01 0.07±0.02 0.27±0.01

[6] A. A. Bidgoli, S. Rahnamayan, T. Dehkharghanian, A. Riasatian, and
H. Tizhoosh, “Evolutionary computation in action: Hyperdimensional
deep embedding spaces of gigapixel pathology images,” IEEE Trans-
actions on Evolutionary Computation, 2022.

[7] A. Asilian Bidgoli, S. Rahnamayan, T. Dehkharghanian, A. Grami, and
H. R. Tizhoosh, “Bias reduction in representation of histopathology
images using deep feature selection,” Scientific reports, vol. 12, no. 1,
p. 19994, 2022.

[8] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed,
“Metaheuristic algorithms on feature selection: A survey of one decade
of research (2009-2019),” IEEE Access, vol. 9, pp. 26 766–26 791,
2021.

[9] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[10] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Feature selection in data
mining. PMLR, 2010, pp. 4–13.

[11] J. H. Park, M. S. Khan, and M. Lee, “Modified coordinate descent
methodology for solving process design optimization problems: ap-
plication to natural gas plant,” Journal of Natural Gas Science and
Engineering, vol. 27, pp. 32–41, 2015.

[12] D. Z. Farsa, A. A. Bidgoli, E. Rokhsat-Yazdi, and S. Rahnamayan,
“Population-based coordinate descent algorithm with majority voting,”
in Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, 2021, pp. 1283–1289.

[13] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[14] S. Rahnamayan and S. J. Mousavirad, “Towards solving large-scale
expensive optimization problems efficiently using coordinate descent
algorithm,” in 2020 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE, 2020, pp. 2506–2513.

[15] M. M. Feraidooni, D. Gharavian, M. Alaee-Kerahroodi, and S. Imani,
“A coordinate descent framework for probing signal design in cogni-
tive mimo radars,” IEEE Communications Letters, vol. 24, no. 5, pp.
1115–1118, 2020.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions
on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[17] R. Jiao, B. Xue, and M. Zhang, “Solving multi-objective feature
selection problems in classification via problem reformulation and du-
plication handling,” IEEE Transactions on Evolutionary Computation,
2022.

[18] F. Cheng, J. J. Cui, Q. J. Wang, and L. Zhang, “A variable granularity
search based multi-objective feature selection algorithm for high-
dimensional data classification,” IEEE Transactions on Evolutionary
Computation, 2022.

[19] Z. Wang, S. Gao, M. Zhou, S. Sato, J. Cheng, and J. Wang,
“Information-theory-based nondominated sorting ant colony optimiza-
tion for multiobjective feature selection in classification,” IEEE Trans-
actions on Cybernetics, 2022.

[20] L. He, R. Chiong, W. Li, S. Dhakal, Y. Cao, and Y. Zhang,
“Multiobjective optimization of energy-efficient job-shop scheduling
with dynamic reference point-based fuzzy relative entropy,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 1, pp. 600–610,
2021.

[21] H.-P. P. Schwefel, Evolution and optimum seeking: the sixth genera-
tion. John Wiley & Sons, Inc., 1993.

[22] A. A. Bidgoli and S. Rahnamayan, “Memetic differential evolution
using coordinate descent,” in 2021 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2021, pp. 359–366.

[23] E. Frandi and A. Papini, “Coordinate search algorithms in multilevel
optimization,” Optimization Methods and Software, vol. 29, no. 5, pp.
1020–1041, 2014.

[24] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and
applications, vol. 109, no. 3, pp. 475–494, 2001.

[25] A. Asilian Bidgoli, S. Rahnamayan, B. Erdem, Z. Erdem, A. Ibrahim,
K. Deb, and A. Grami, “Machine learning-based framework to cover
optimal pareto-front in many-objective optimization,” Complex &
Intelligent Systems, vol. 8, no. 6, pp. 5287–5308, 2022.

[26] A. A. Bidgoli, H. Ebrahimpour-Komleh, and S. Rahnamayan,
“Reference-point-based multi-objective optimization algorithm with
opposition-based voting scheme for multi-label feature selection,”
Information Sciences, vol. 547, pp. 1–17, 2021.

[27] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and
H. Liu, “Advancing feature selection research,” ASU feature selection
repository, pp. 1–28, 2010.

[28] J. Adamczyk. (2020) Make knn 300 times faster than scikit-learn’s
in 20 lines! [Online]. Available: https://towardsdatascience.com/
make-knn-300-times-faster-than-scikit-learns-in-20-lines-5e29d74e76bb

https://towardsdatascience.com/make-knn-300-times-faster-than-scikit-learns-in-20-lines-5e29d74e76bb
https://towardsdatascience.com/make-knn-300-times-faster-than-scikit-learns-in-20-lines-5e29d74e76bb

	INTRODUCTION
	BACKGROUND REVIEW
	Coordinate Search
	Multi-objective Optimization

	PROPOSED METHOD
	Objectives
	MOCS

	EXPERIMENTAL RESULTS AND ANALYSIS
	Datasets
	Experimental Settings
	Numerical Results and Analysis

	CONCLUSION REMARKS
	References

